Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Application of Hydrogen in Ophthalmology

Author(s): Hiroshi Takahashi*

Volume 27, Issue 5, 2021

Published on: 19 October, 2020

Page: [592 - 594] Pages: 3

DOI: 10.2174/1381612826666201019103446

Price: $65

Abstract

This report reviews studies on the use of H2 in the ophthalmological field. In retinal diseases, particularly in a retinal ischemia-reperfusion injury, effects of H2 are remarkable in reducing retinal tissue damage. H2 treatment of corneal damage caused by alkali or UVB suppressed scar formation. The most unique application of H2 in the ophthalmological field appears to be its use in phacoemulsification cataract surgery. Ultrasound oscillation produces ·OH through the cavitation phenomenon in the anterior chamber of the eye, which induces oxidative insults in the corneal endothelium. Phacoemulsification using H2 dissolved in the irrigation solution significantly suppressed the corneal endothelial damage. The effect of H2 was direct and clear, as H2 instantly scavenges ·OH produced by ultrasound oscillation in the anterior chamber, thereby suppressing oxidative insults during the phacoemulsification procedure.

Keywords: Ophthalmology, retinal ischemia-reperfusion injury, retinal disease, corneal injury, phacoemulsification, corneal endothelium, cataract surgery.

[1]
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13(6): 688-94.
[http://dx.doi.org/10.1038/nm1577] [PMID: 17486089]
[2]
Oharazawa H, Igarashi T, Yokota T, et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2010; 51(1): 487-92.
[http://dx.doi.org/10.1167/iovs.09-4089] [PMID: 19834032]
[3]
Feng M, Wang XH, Yang XB, Xiao Q, Jiang FG. Protective effect of saturated hydrogen saline against blue light-induced retinal damage in rats. Int J Ophthalmol 2012; 5(2): 151-7.
[PMID: 22762040]
[4]
Qi LS, Yao L, Liu W, et al. Sirtuin type 1 mediates the retinal protective effect of hydrogen-rich saline against light-induced damage in rats. Invest Ophthalmol Vis Sci 2015; 56(13): 8268-79.
[http://dx.doi.org/10.1167/iovs.15-17034] [PMID: 26720481]
[5]
Wei L, Ge L, Qin S, et al. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig. Exp Eye Res 2012; 94(1): 117-27.
[http://dx.doi.org/10.1016/j.exer.2011.11.016] [PMID: 22154552]
[6]
Feng Y, Wang R, Xu J, et al. Hydrogen-rich saline prevents early neurovascular dysfunction resulting from inhibition of oxidative stress in STZ-diabetic rats. Curr Eye Res 2013; 38(3): 396-404.
[http://dx.doi.org/10.3109/02713683.2012.748919] [PMID: 23252792]
[7]
Sun JC, Xu T, Zuo Q, et al. Hydrogen-rich saline promotes survival of retinal ganglion cells in a rat model of optic nerve crush. PLoS One 2014; 9(6): e99299.
[http://dx.doi.org/10.1371/journal.pone.0099299] [PMID: 24915536]
[8]
Chen T, Tao Y, Yan W, et al. Protective effects of hydrogen-rich saline against N-methyl-N-nitrosourea-induced photoreceptor degeneration. Exp Eye Res 2016; 148: 65-73.
[http://dx.doi.org/10.1016/j.exer.2016.05.017] [PMID: 27215478]
[9]
Liu Y, Li R, Xie J, et al. Protective effect of hydrogen on sodium iodate-induced age-related macular degeneration in mice. Front Aging Neurosci 2018; 10: 389.
[http://dx.doi.org/10.3389/fnagi.2018.00389] [PMID: 30564112]
[10]
Long P, Yan W, He M, et al. Protective effects of hydrogen gas in a rat model of branch retinal vein occlusion via decreasing VEGF-α expression. BMC Ophthalmol 2019; 19(1): 112.
[http://dx.doi.org/10.1186/s12886-019-1105-2] [PMID: 31096936]
[11]
Yan WM, Zhang L, Chen T, et al. Effects of hydrogen-rich saline on endotoxin-induced uveitis. Med Gas Res 2017; 7(1): 9-18.
[http://dx.doi.org/10.4103/2045-9912.202905] [PMID: 28480027]
[12]
Kubota M, Shimmura S, Kubota S, et al. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Invest Ophthalmol Vis Sci 2011; 52(1): 427-33.
[http://dx.doi.org/10.1167/iovs.10-6167] [PMID: 20847117]
[13]
Cejka C, Kossl J, Hermankova B, Holan V, Cejkova J. Molecular hydrogen effectively heals alkali-injured cornea via suppression of oxidative stress. Oxid Med Cell Longev 2017; 2017: 8906027.
[http://dx.doi.org/10.1155/2017/8906027] [PMID: 28400915]
[14]
Cejka C, Kossl J, Hermankova B, et al. Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage. Sci Rep 2017; 7(1): 18017.
[http://dx.doi.org/10.1038/s41598-017-18334-6] [PMID: 29269749]
[15]
Kawashima M, Tsuno S, Matsumoto M, Tsubota K. Hydrogen-producing milk to prevent reduction in tear stability in persons using visual display terminals. Ocul Surf 2019; 17(4): 714-21.
[http://dx.doi.org/10.1016/j.jtos.2019.07.008] [PMID: 31352083]
[16]
Shimazaki J, Amano S, Uno T, Maeda N, Yokoi N. National survey on bullous keratopathy in Japan. Cornea 2007; 26(3): 274-8.
[http://dx.doi.org/10.1097/ICO.0b013e31802c9e19] [PMID: 17413952]
[17]
Keenan TD, Jones MN, Rushton S, Carley FM. Trends in the indications for corneal graft surgery in the United Kingdom: 1999 through 2009. Arch Ophthalmol 2012; 130(5): 621-8.
[http://dx.doi.org/10.1001/archophthalmol.2011.2585] [PMID: 22652847]
[18]
Park CY, Lee JK, Gore PK, Lim CY, Chuck RS. Keratoplasty in the United States: A 10-year review from 2005 through 2014. Ophthalmology 2015; 122(12): 2432-42.
[http://dx.doi.org/10.1016/j.ophtha.2015.08.017] [PMID: 26386848]
[19]
Pirazzoli G, D’Eliseo D, Ziosi M, Acciarri R. Effects of phacoemulsification time on the corneal endothelium using phacofracture and phaco chop techniques. J Cataract Refract Surg 1996; 22(7): 967-9.
[http://dx.doi.org/10.1016/S0886-3350(96)80200-8] [PMID: 9041091]
[20]
Takahashi H, Sakamoto A, Takahashi R, Ohmura T, Shimmura S, Ohara K. Free radicals in phacoemulsification and aspiration procedures. Arch Ophthalmol 2002; 120(10): 1348-52.
[http://dx.doi.org/10.1001/archopht.120.10.1348] [PMID: 12365914]
[21]
Murano N, Ishizaki M, Sato S, Fukuda Y, Takahashi H. Corneal endothelial cell damage by free radicals associated with ultrasound oscillation. Arch Ophthalmol 2008; 126(6): 816-21.
[http://dx.doi.org/10.1001/archopht.126.6.816] [PMID: 18541846]
[22]
Igarashi T, Ohsawa I, Kobayashi M, et al. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery. Sci Rep 2016; 6: 31190.
[http://dx.doi.org/10.1038/srep31190] [PMID: 27498755]
[23]
Igarashi T, Ohsawa I, Kobayashi M, et al. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: A prospective randomized clinical trial. Am J Ophthalmol 2019; 207: 10-7.
[http://dx.doi.org/10.1016/j.ajo.2019.04.014] [PMID: 31077667]
[24]
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5: 12.
[http://dx.doi.org/10.1186/s13618-015-0035-1] [PMID: 26483953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy