Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Chemical Composition, Antioxidant, Alpha-glucosidase Inhibitory, Anticholinesterase and Photoprotective Activities of the Aerial Parts of Schinus molle L.

Author(s): Mustapha M. Bouhenna*, Chawki Bensouici, Latifa Khattabi, Farid Chebrouk and Nabil Mameri

Volume 17, Issue 6, 2021

Published on: 14 October, 2020

Article ID: e010621186885 Pages: 17

DOI: 10.2174/1573407216999201014153251

Price: $65

Abstract

Background: Schinus molle L. is a medicinal and aromatic plant widely used in folk medicine and commonly found in Algeria and the Mediterranean region. In the present work, we investigated the in vitro antioxidant, anti-cholinesterase, α-glucosidase inhibitory and photoprotective potentials of the Schinus molle L. plant’s extract/fractions. The metabolite profile of Schinus molle L. was analyzed using RP-HPLC and GC-MS.

Methods: The antioxidant activity was assessed using different tests. The anticholinesterase activity was investigated by quantifying the acetylcholinesterase and butyrylcholinesterase inhibitory activities. The antidiabetic activity was investigated by α-glucosidase inhibition test, whereas photoprotective activity was evaluated by Sun Protection Factor (SPF) using spectrophotometry UV-Vis. The extracts were then subjected to RP-HPLC–PDA and GC–MS analysis.

Results: Ethyl acetate and butanol fractions with high contents of total phenolics and flavonoids exhibited the strongest antioxidant activity. Ethyl acetate extract exhibited considerable enzyme inhibition potential on acetylcholinesterase, butyrylcholinesterase and α-glucosidase with percentages of inhibition of 99.08 ± 0.79%, 100% and 98.80 ± 0.18%, respectively. Furthermore, the ethyl acetate fraction showed high photoprotective activity with the Sun Protection Factor (SPF) value = 38,26 ± 0.73. Three phenolic acids (gallic, tannic and vanillic acids) and five flavonoids (myricetin, apigenin, naringenin, rutin and quercetin) were identified with RP-HPLC–PDA.

Conclusion: These findings suggest that Schinus molle L. may be useful in the development of an alternative agent for oxidative stress, Alzheimer’s disease, diabetes and could be used as a natural sunscreen in pharmaceutics or cosmetic formulations.

Keywords: Schinus molle L. , antioxidant activity, acetylcholinesterase, butyrylcholinesterase, α-glucosidase, photoprotective activity.

Graphical Abstract

[1]
Elaloui M, Ennajah A, Ghazghazi H, et al. A comparative phytochemical and biological study between different solvent extracts of leaves and stems extracts of erica arborea L. and Viburnum tinus L. plants growing in tunisia. Curr Bioact Compd 2019; 15: 686-91.
[http://dx.doi.org/10.2174/1573407214666180730110232]
[2]
De Monte C, Carradori S, Chimenti P, et al. New insights into the biological properties of Crocus sativus L.: Chemical modifications, human monoamine oxidases inhibition and molecular modeling studies. Eur J Med Chem 2014; 82: 164-71.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.048] [PMID: 24904963]
[3]
Gali L, Bedjou F. Antibacterial and cytotoxic effects of the cultivated ruta chalepensis. Curr Bioact Compd 2020; 16: 654-60.
[http://dx.doi.org/10.2174/1573407215666190207125643]
[4]
Marongiu B, Porcedda APS, Casu R, Pierucci P. Chemical composition of the oil and supercritical CO2 extract of Schinus molle L. Flavour Fragrance J 2004; 19: 554-8.
[http://dx.doi.org/10.1002/ffj.1350]
[5]
Belhamel K, Abderrahim A, Ludwig R. Chemical composition and antibacterial activity of the essential oil of Schinus Molle L. growth in Algeria. Int. J. Essen. Oil Ther 2008; 2: 175-6.
[http://dx.doi.org/10.17660/ActaHortic.2009.826.27]
[6]
Tahtamouni RW. Investigating the Antibacterial Potential of Ethanolic and Methanolic Extracts of the Schinus molle L Tree. Jordan J Biol Sci 2018; 11: 527-31.
[http://dx.doi.org/10.1007/s11694-018-9727-2]
[7]
Abderrahim A, Belhamel K, Chalard P, Figuérédo G. Correlation between chemical composition and antioxidant activity of the essential oils from leaves and berries of Schinus molle L. growing in two areas of Bejaia (Algeria). J Food Meas Charact 2018; 12: 1123-34.
[http://dx.doi.org/10.1007/s11694-018-9727-2]
[8]
Yueqin Z, Recio MC, Máñez S, Giner RM, Cerdá-Nicolás M, Ríos JL. Isolation of two triterpenoids and a biflavanone with anti-Inflammatory activity from Schinus molle fruits. Planta Med 2003; 69(10): 893-8.
[http://dx.doi.org/10.1055/s-2003-45096] [PMID: 14648390]
[9]
Ferrero AA, Chopa CS, González JO, Alzogaray RA. Repellence and toxicity of Schinus molle extracts on Blattella germanica. Fitoterapia 2007; 78(4): 311-4.
[http://dx.doi.org/10.1016/j.fitote.2006.11.021] [PMID: 17490831]
[10]
Hayouni A, Chraief I, Abedrabba M, et al. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int J Food Microbiol 2008; 125(3): 242-51.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.04.005] [PMID: 18511141]
[11]
Steinbauer MJ, Wanjura WJ. Christmas beetles (Anoplognathus spp., Coleoptera: Scarabaeidae) mistake peppercorn trees for eucalypts. J Nat Hist 2002; 36: 119-25.
[http://dx.doi.org/10.1080/00222930010022917]
[12]
Wimalaratne PDC, Slessor KN, Borden JH, Chong LJ, Abate T. Isolation and identification of house fly,Musca domestica L., repellents from pepper tree,Schinus molle L. J Chem Ecol 1996; 22(1): 49-59.
[http://dx.doi.org/10.1007/BF02040199] [PMID: 24226982]
[13]
Kasmi A, Hammami M, Abderrabba M, Ayadi S. Schinus molle: Chemical Analysis, Phenolic Compounds and Evaluation of Its Antioxidant Activity. J Chem Pharm Res 2016; 8: 93-101.
[14]
Bendaoud H, Romdhane M, Souchard JP, Cazaux S, Bouajila J. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J Food Sci 2010; 75(6): C466-72.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01711.x] [PMID: 20722898]
[15]
Manoharan KP, Kemelo SM, Mosotho JG, Sibusisiwe M. Antioxidant activity of extracts from Schinus molle L. and Gleditsia triacanthos L. J Med Plants Res 2018; 12: 369-74.
[16]
Díaz C, Quesada S, Brenes O, Aguilar G, Cicció JF. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines. Nat Prod Res 2008; 22(17): 1521-34.
[http://dx.doi.org/10.1080/14786410701848154] [PMID: 19023816]
[17]
Salem MZM, Zayed MZ, Ali HM, Abd El-Kareem MSM. Chemical composition, antioxidant and antibacterial activities of extracts from Schinus molle wood branch growing in Egypt. J Wood Sci 2016; 62: 548-61.
[http://dx.doi.org/10.1007/s10086-016-1583-2]
[18]
Vinholes J, Grosso C, Andrade PB, et al. In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chem 2011; 129(2): 454-62.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.098] [PMID: 30634251]
[19]
Mukherjee PK, Kumar V, Mal M, Houghton PJ. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007; 14(4): 289-300.
[http://dx.doi.org/10.1016/j.phymed.2007.02.002] [PMID: 17346955]
[20]
Stevanato R, Bertelle M, Fabris S. Photoprotective characteristics of natural antioxidant polyphenols. Regul Toxicol Pharmacol 2014; 69(1): 71-7.
[http://dx.doi.org/10.1016/j.yrtph.2014.02.014] [PMID: 24607767]
[21]
Costa SCC, Detoni CB, Branco CRC, Botura MB, Branco A. In vitro photoprotective effects of Marcetia taxifolia ethanolic extract and its potential for sunscreen formulations. Brazilian J Pharmacogn 2015; 25: 413-8.
[http://dx.doi.org/10.1016/j.bjp.2015.07.013]
[22]
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-Rrelated human diseases. Trends Pharmacol Sci 2017; 38(7): 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[23]
Atere TG, Akinloye OA, Ugbaja RN, Ojo DA, Dealtry G. In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Sci Hum Wellness 2018; 7: 266-72.
[http://dx.doi.org/10.1016/j.fshw.2018.09.004]
[24]
Wojtunik-Kulesza KA, Oniszczuk A, Oniszczuk T, Waksmundzka-Hajnos M. The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Biomed Pharmacother 2016; 78: 39-49.
[http://dx.doi.org/10.1016/j.biopha.2015.12.024] [PMID: 26898423]
[25]
African Plant Database APD. Conservatoire et Jardin botaniques de la Ville de Genève and South African National Biodiversity Institute Pretoria http://www.ville-ge.ch/musinfo/bd/cjb/africa2020.
[26]
Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent Methods Enzymol 1999; 299: 152-78.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[27]
Moreno MIN, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 2000; 71(1-2): 109-14.
[http://dx.doi.org/10.1016/S0378-8741(99)00189-0] [PMID: 10904153]
[28]
Blois MS. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958; 181: 1199-200.
[http://dx.doi.org/10.1038/1811199a0]
[29]
Apak R, Güçlü K, Özyürek M, Çelik SE. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Mikrochim Acta 2008; 160: 413-9.
[http://dx.doi.org/10.1007/s00604-007-0777-0]
[30]
Miller HE. A simplified method for the evaluation of antioxidants. J Am Oil Chem Soc 1971; 48: 91.
[http://dx.doi.org/10.1007/BF02635693]
[31]
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26(9-10): 1231-7.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[32]
Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese J Nutr Diet 1986; 44: 307-15.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[33]
Hennessy DJ, Reid GR, Smith FE, Thompson SL. Ferene — a new spectrophotometric reagent for iron. Can J Chem 1984; 62: 721-4.
[http://dx.doi.org/10.1139/v84-121]
[34]
Takebayashi J, Tai A, Gohda E, Yamamoto I. Characterization of the radical-scavenging reaction of 2-O-substituted ascorbic acid derivatives, AA-2G, AA-2P, and AA-2S: A kinetic and stoichiometric study. Biol Pharm Bull 2006; 29(4): 766-71.
[http://dx.doi.org/10.1248/bpb.29.766] [PMID: 16595915]
[35]
Mansur J, Breder M, Mansur M, Azulay R. Correlação entre a determinação do fator de proteção solar em seres humanos e por espectrofotometria An Bras Dermatol 1986; 61
[36]
Sayre RM, Agin PP, LeVee GJ, Marlowe E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photobiol 1979; 29(3): 559-66.
[http://dx.doi.org/10.1111/j.1751-1097.1979.tb07090.x] [PMID: 441130]
[37]
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[38]
Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem 2013; 141(3): 2170-6.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.123] [PMID: 23870944]
[39]
Giuffrida D, Martínez N, Arrieta-Garay Y, Fariña L, Boido E, Dellacassa E. Valorisation of Schinus molle fruit as a source of volatile compounds in foods as flavours and fragrances. Food Res Int 2020; 133: 109103.
[http://dx.doi.org/10.1016/j.foodres.2020.109103] [PMID: 32466921]
[40]
Schmourlo G, Mendonça-Filho RR, Alviano CS, Costa SS. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants. J Ethnopharmacol 2005; 96(3): 563-8.
[http://dx.doi.org/10.1016/j.jep.2004.10.007] [PMID: 15619579]
[41]
Grochowski DM, Uysal S, Aktumsek A, et al. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem Lett 2017; 20: 365-72.
[http://dx.doi.org/10.1016/j.phytol.2017.03.005]
[42]
Zhang L, Tu Z cai, Xie x, et al. Antihyperglycemic, antioxidant activities of two Acer palmatum cultivars, and identification of phenolics profile by UPLC-QTOF-MS/MS: New natural sources of functional constituents. Ind Crops Prod 2016; 89: 522-32.
[http://dx.doi.org/10.1016/j.indcrop.2016.06.005]
[43]
Hu X, Chen L, Shi S, Cai P, Liang X, Zhang S. Antioxidant capacity and phenolic compounds of Lonicerae macranthoides by HPLC-DAD-QTOF-MS/MS. J Pharm Biomed Anal 2016; 124: 254-60.
[http://dx.doi.org/10.1016/j.jpba.2016.03.008] [PMID: 26970594]
[44]
Chirinos R, Pedreschi R, Rogez H, Larondelle Y, Campos D. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Ind Crops Prod 2013; 47: 145-52.
[http://dx.doi.org/10.1016/j.indcrop.2013.02.025]
[45]
Tlili N, Yahia Y, Feriani A, et al. Schinus terebinthifolius vs Schinus molle: A comparative study of the effect of species and location on the phytochemical content of fruits. Ind Crops Prod 2018; 122: 559-65.
[http://dx.doi.org/10.1016/j.indcrop.2018.05.080]
[46]
Aboalhaija A, Amro R, Abaza I, et al. Schinus molle L. Collected from Jordan and Turkey: Essential Oil Composition and Anticholinesterase Activity. J Essent Oil Bear Plants 2019; 22: 704-16.
[http://dx.doi.org/10.1080/0972060X.2019.1639552]
[47]
Bernhard AR, Shibamoto T, Yamaguchi K, White E. The volatile constituents of Schinus molle L. J Agric Food Chem 1983; 31: 463-6.
[http://dx.doi.org/10.1021/jf00116a075]
[48]
Maffei M, Chialva F. Essential oils from Schinus molle L. berries and leaves. Flavour Fragrance J 1990; 5: 49-52.
[http://dx.doi.org/10.1002/ffj.2730050109]
[49]
Ennigrou A, Hosni K, Casabianca H, Vulliet E, Smiti S. Leaf volatile oil constituants of Schinus terebinthifolius and Schinus molle from Tunisia
[50]
Rossini C, Menéndez P, Dellacassa E, Moyna P. Essential Oils from Leaves of Schinus molle and S. lentiscifolius of Uruguayan Origin. J Essent Oil Res 1996; 8: 71-3.
[http://dx.doi.org/10.1080/10412905.1996.9700558]
[51]
Martins MdoR, Arantes S, Candeias F, Tinoco MT, Cruz-Morais J. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J Ethnopharmacol 2014; 151(1): 485-92.
[http://dx.doi.org/10.1016/j.jep.2013.10.063] [PMID: 24231069]
[52]
Abdel-Sattar E, Zaitoun AA, Farag MA, Gayed SH, Harraz FM. Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum. Nat Prod Res 2010; 24(3): 226-35.
[http://dx.doi.org/10.1080/14786410802346223] [PMID: 19241279]
[53]
Salem MZM, El-Shikh SM, M. Ali H. Chemical Characterization of the Volatile Oil Isolated from Leaves of Schinus molle L. and its Antioxidant Activity. J Pure Appl Microbiol 2013; 7: 355-60.
[54]
da Silveira RCDSS, Guedes AL, Frattani FS, Epifânio NMM, de Souza MAA, Chaves DS de A. Chemical profile of schinus molle L. Essential oil and its antihemostatic properties. Nat Volatiles Essent Oils 2020; 7: 1-8.
[55]
Ibrahim MT, Haggag EG. Phenolics from Schinus molle stems and their anti-bacterial and anti-microalgal activity. Life Sci J 2013; 10: 1931-7.
[56]
Marzouk MS, Moharram FA, Haggag EG, Ibrahim MT, Badary OA. Antioxidant flavonol glycosides from Schinus molle. Phytother Res 2006; 20(3): 200-5.
[http://dx.doi.org/10.1002/ptr.1834] [PMID: 16521111]
[57]
Schiassi MCEV, Souza VR, Lago AMT, Campos LG, Queiroz F. Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chem 2018; 245: 305-11.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.104] [PMID: 29287376]
[58]
Lesjak M, Beara I, Simin N, et al. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 2018; 40: 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[59]
Semwal DK, Semwal RB, Combrinck S, Viljoen A. Myricetin: A dietary molecule with diverse biological activities. Nutrients 2016; 8(2): 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[60]
Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of Apigenin. Int J Mol Sci 2019; 20(6): 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[61]
Moretti E, Mazzi L, Terzuoli G, et al. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reprod Toxicol 2012; 34(4): 651-7.
[PMID: 23064111]
[62]
Zobeiri M, Belwal T, Parvizi F, et al. Naringenin and its nano-formulations for fatty liver: Cellular modes of action and clinical perspective. Curr Pharm Biotechnol 2018; 19(3): 196-205.
[http://dx.doi.org/10.2174/1389201019666180514170122] [PMID: 29766801]
[63]
Assini JM, Mulvihill EE, Huff MW. Citrus flavonoids and lipid metabolism. Curr Opin Lipidol 2013; 24(1): 34-40.
[http://dx.doi.org/10.1097/MOL.0b013e32835c07fd] [PMID: 23254473]
[64]
Dahibhate NL, Kumar UR, Phytochemical Screening K. Antimicrobial and Antioxidant Activities of Selected Mangrove Species. Curr Bioact Compd 2020; 16: 152-63.
[http://dx.doi.org/10.2174/1573407214666180808121118]
[65]
Huang X, Xi Y, Mao Z, et al. Vanillic acid attenuates cartilage degeneration by regulating the MAPK and PI3K/AKT/NF-κB pathways. Eur J Pharmacol 2019; 859: 172481.
[http://dx.doi.org/10.1016/j.ejphar.2019.172481] [PMID: 31228458]
[66]
Ow Y-Y, Stupans I. Gallic acid and gallic acid derivatives: Effects on drug metabolizing enzymes. Curr Drug Metab 2003; 4(3): 241-8.
[http://dx.doi.org/10.2174/1389200033489479] [PMID: 12769668]
[67]
Mahapatra DK, Patil SP and AG. The progressive journey of phytosomes in herbal based pharmacotherapeutics. Curr Bioact Compd 2019; 14: 1-33.
[http://dx.doi.org/10.2174/1573407215666190417121237]
[68]
Arumugam R, Kirkan B, Sarikurkcu C. Phenolic profile, antioxidant and enzyme inhibitory potential of methanolic extracts from different parts of Astragalus ponticus Pall. S Afr J Bot 2019; 120: 268-73.
[http://dx.doi.org/10.1016/j.sajb.2018.07.002]
[69]
Chuen TLK, Vuong QV, Hirun S, et al. Antioxidant and anti-proliferative properties of Davidson’s plum (Davidsonia pruriens F. Muell) phenolic-enriched extracts as affected by different extraction solvents. J Herb Med 2016; 6: 187-92.
[http://dx.doi.org/10.1016/j.hermed.2016.08.005]
[70]
Mahomoodally MF, Zengin G, Aumeeruddy MZ, Sezgin M, Aktumsek A. Phytochemical profile and antioxidant properties of two Brassicaceae species: Cardaria draba subsp. draba and Descurainia sophia. Biocatal Agric Biotechnol 2018; 16: 453-8.
[http://dx.doi.org/10.1016/j.bcab.2018.09.020]
[71]
Do QD, Angkawijaya AE, Tran-Nguyen PL, et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Yao Wu Shi Pin Fen Xi 2014; 22(3): 296-302.
[http://dx.doi.org/10.1016/j.jfda.2013.11.001] [PMID: 28911418]
[72]
Agatonovic-Kustrin S, Kustrin E, Morton DW. Phenolic acids contribution to antioxidant activities and comparative assessment of phenolic content in mango pulp and peel. S Afr J Bot 2018; 116: 158-63.
[http://dx.doi.org/10.1016/j.sajb.2018.03.013]
[73]
Qasim M, Abideen Z, Adnan MY, et al. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S Afr J Bot 2017; 110: 240-50.
[http://dx.doi.org/10.1016/j.sajb.2016.10.005]
[74]
Chew YL, Lim YY, Omar M, Khoo KS. Antioxidant activity of three edible seaweeds from two areas in South East Asia. Lebensm Wiss Technol 2008; 41: 1067-72.
[http://dx.doi.org/10.1016/j.lwt.2007.06.013]
[75]
Kacem M, Kacem I, Simon G, et al. Phytochemicals and biological activities of Ruta chalepensis L. growing in Tunisia. Food Biosci 2015; 12: 73-83.
[http://dx.doi.org/10.1016/j.fbio.2015.08.001]
[76]
Terpinc P, Čeh B, Ulrih NP, Abramovič H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod 2012; 39: 210-7.
[http://dx.doi.org/10.1016/j.indcrop.2012.02.023]
[77]
Hinneburg I, Damien Dorman HJ, Hiltunen R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem 2006; 97: 122-9.
[http://dx.doi.org/10.1016/j.foodchem.2005.03.028]
[78]
Gao H, Cheng N, Zhou J, Wang B, Deng J, Cao W. Antioxidant activities and phenolic compounds of date plum persimmon ( Diospyros lotus L.) fruits. J Food Sci Technol 2014; 51(5): 950-6.
[http://dx.doi.org/10.1007/s13197-011-0591-x] [PMID: 24803703]
[79]
Granato D, Koot A, Schnitzler E, van Ruth SM. Authentication of geographical origin and crop system of grape juices by phenolic compounds and antioxidant activity using chemometrics. J Food Sci 2015; 80(3): C584-93.
[http://dx.doi.org/10.1111/1750-3841.12794] [PMID: 25675840]
[80]
Kumar S. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin. Indian J Pharmacol 2015; 47(4): 444-6.
[http://dx.doi.org/10.4103/0253-7613.161274] [PMID: 26288480]
[81]
Usman K. Medicinal plants anti-cholinesterase activity and the potential for alzheimer’s disease treatment. J Dis Med Plants 2017; 3: 68.
[http://dx.doi.org/10.11648/j.jdmp.20170304.12]
[82]
Yan SD, Bierhaus A, Nawroth PP, Stern DM. RAGE and Alzheimer’s disease: a progression factor for amyloid-β-induced cellular perturbation? J Alzheimers Dis 2009; 16(4): 833-43.
[http://dx.doi.org/10.3233/JAD-2009-1030] [PMID: 19387116]
[83]
Szwajgier D. Anticholinesterase activity of phenolic acids and their derivatives. Z Natforsch C J Biosci 2013; 68(3-4): 125-32.
[http://dx.doi.org/10.1515/znc-2013-3-408] [PMID: 23819308]
[84]
Zaidi H, Ouchemoukh S, Amessis-Ouchemoukh N, et al. Biological properties of phenolic compound extracts in selected Algerian honeys—The inhibition of acetylcholinesterase and α-glucosidase activities. Eur J Integr Med 2019; 25: 77-84.
[http://dx.doi.org/10.1016/j.eujim.2018.11.008]
[85]
Özbek H, Güvenalp Z, Yılmaz G, Yerdelen K, Kazaz C, Demirezer ÖL. In vitro anticholinesterase activity and molecular docking studies of coumarin derivatives isolated from roots of Heptaptera cilicica. Med Chem Res 2018; 27: 538-45.
[http://dx.doi.org/10.1007/s00044-017-2080-x]
[86]
Bozkurt B, Coban G, Kaya GI, Onur MA, Unver-Somer N. Alkaloid profiling, anticholinesterase activity and molecular modeling study of Galanthus elwesii. S Afr J Bot 2017; 113: 119-27.
[http://dx.doi.org/10.1016/j.sajb.2017.08.004]
[87]
Ghanei-Nasab S, Khoobi M, Hadizadeh F, et al. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety. Eur J Med Chem 2016; 121: 40-6.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.014] [PMID: 27214510]
[88]
Kurt BZ, Gazioglu I, Kandas NO, Sonmez F. Synthesis, anticholinesterase, antioxidant, and anti-aflatoxigenic activity of novel coumarin carbamate derivatives. ChemistrySelect 2018; 3: 3978-83.
[http://dx.doi.org/10.1002/slct.201800142]
[89]
Kurt BZ, Gazioglu I, Dag A, et al. Synthesis, anticholinesterase activity and molecular modeling study of novel carbamate-substituted thymol/carvacrol derivatives. Bioorg Med Chem 2017; 25(4): 1352-63.
[http://dx.doi.org/10.1016/j.bmc.2016.12.037] [PMID: 28089589]
[90]
Gu C, Yang M, Zhou Z, Khan A, Cao J, Cheng G. Purification and characterization of four benzophenone derivatives from Mangifera indica L. leaves and their antioxidant, immunosuppressive and α-glucosidase inhibitory activities. J Funct Foods 2019; 52: 709-14.
[http://dx.doi.org/10.1016/j.jff.2018.11.045]
[91]
Han L, Fang C, Zhu R, Peng Q, Li D, Wang M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int J Biol Macromol 2017; 95: 520-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.089] [PMID: 27894824]
[92]
Tewari N, Tiwari VK, Mishra RC, et al. Synthesis and bioevaluation of glycosyl ureas as α-glucosidase inhibitors and their effect on mycobacterium. Bioorg Med Chem 2003; 11(13): 2911-22.
[http://dx.doi.org/10.1016/S0968-0896(03)00214-1] [PMID: 12788361]
[93]
Feng J, Yang X-W, Wang R-F. Bio-assay guided isolation and identification of α-glucosidase inhibitors from the leaves of Aquilaria sinensis. Phytochemistry 2011; 72(2-3): 242-7.
[http://dx.doi.org/10.1016/j.phytochem.2010.11.025] [PMID: 21215978]
[94]
Yin Z, Zhang W, Feng F, Zhang Y, Kang W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci Hum Wellness 2014; 3: 136-74.
[http://dx.doi.org/10.1016/j.fshw.2014.11.003]
[95]
Gordon J. McDougall and Derek Stewart. Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 2005; 23: 189-95.
[http://dx.doi.org/10.1002/biof.5520340108]
[96]
Adouni K, Zouaoui O, Chahdoura H, et al. In vitro antioxidant activity, α-glucosidase inhibitory potential and in vivo protective effect of Asparagus stipularis Forssk aqueous extract against high-fructose diet-induced metabolic syndrome in rats. J Funct Foods 2018; 47: 521-30.
[http://dx.doi.org/10.1016/j.jff.2018.06.006]
[97]
Mai TT, Thu NN, Tien PG, Van Chuyen N. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J Nutr Sci Vitaminol (Tokyo) 2007; 53(3): 267-76.
[http://dx.doi.org/10.3177/jnsv.53.267] [PMID: 17874833]
[98]
Zhao J, Zhou X-W, Chen X-B, Wang Q-X. α-glucosidase inhibitory constituents from Toona sinensis. Chem Nat Compd 2009; 45: 244-6.
[http://dx.doi.org/10.1007/s10600-009-9289-y]
[99]
Wansi JD, Lallemand MC, Chiozem DD, et al. α-glucosidase inhibitory constituents from stem bark of Terminalia superba (Combretaceae). Phytochemistry 2007; 68(15): 2096-100.
[http://dx.doi.org/10.1016/j.phytochem.2007.02.020] [PMID: 17434189]
[100]
Chika A, Bello SO. Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats J Ethnopharmacol 2010; 129: 34-7.
[101]
Ranilla LG, Kwon YI, Apostolidis E, Shetty K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour Technol 2010; 101(12): 4676-89.
[http://dx.doi.org/10.1016/j.biortech.2010.01.093] [PMID: 20185303]
[102]
Kwon YI, Apostolidis E, Shetty K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour Technol 2008; 99(8): 2981-8.
[http://dx.doi.org/10.1016/j.biortech.2007.06.035] [PMID: 17706416]
[103]
Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol (Tokyo) 2006; 52(2): 149-53.
[http://dx.doi.org/10.3177/jnsv.52.149] [PMID: 16802696]
[104]
Abreu Dutra E, Almança Gonçalves da Costa e Oliveira D, Rosa Maria Kedor-Hackmann E, Santoro M. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Revista Brasileira De Ciencia Do Solo -. Rev Bras Ciênc Solo 2004; 40: 381-5.
[105]
Mahmood Z, Imam S, Azhar I. In vitro Evaluation of Sun Protection Factor (SPF) of a Cream Formulation Prepared From Extracts of Musa accuminata (L.), Psidium gujava (L.), and Pyrus communis (L.). Asian J Pharm Clin Res 2015; 8: 234-7.
[106]
Napagoda MT, Malkanthi BMAS, Abayawardana SAK, Qader MM, Jayasinghe L. Photoprotective potential in some medicinal plants used to treat skin diseases in Sri Lanka. BMC Complement Altern Med 2016; 16(1): 479.
[http://dx.doi.org/10.1186/s12906-016-1455-8] [PMID: 27881112]
[107]
Ebrahimzadeh MA, Enayatifard R, Khalili M, Ghaffarloo M, Saeedi M, Yazdani Charati J. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran J Pharm Res 2014; 13(3): 1041-7.
[PMID: 25276206]
[108]
Nunes AR, Rodrigues ALM, de Queiróz DB, et al. Photoprotective potential of medicinal plants from Cerrado biome (Brazil) in relation to phenolic content and antioxidant activity. J Photochem Photobiol B 2018; 189: 119-23.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.013] [PMID: 30342307]
[109]
Surget G, Stiger-Pouvreau V, Le Lann K, et al. Structural elucidation, in vitro antioxidant and photoprotective capacities of a purified polyphenolic-enriched fraction from a saltmarsh plant. J Photochem Photobiol B 2015; 143: 52-60.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.12.018] [PMID: 25600264]
[110]
Chaiprasongsuk A, Onkoksoong T, Pluemsamran T, Limsaengurai S, Panich U. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol 2016; 8: 79-90.
[http://dx.doi.org/10.1016/j.redox.2015.12.006] [PMID: 26765101]
[111]
Jarzycka A, Lewińska A, Gancarz R, Wilk KA. Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions. J Photochem Photobiol B 2013; 128: 50-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.07.029] [PMID: 24007865]
[112]
de Oliveira RG Jr, Souza GR, Guimarães AL, et al. Dried extracts of Encholirium spectabile (Bromeliaceae) present antioxidant and photoprotective activities in vitro. J Young Pharm 2013; 5(3): 102-5.
[http://dx.doi.org/10.1016/j.jyp.2013.08.005] [PMID: 24396251]
[113]
Lefahal M, Zaabat N, Ayad R, et al. Contents, antioxidant and photoprotective activities of crude methanolic extract of aerial parts of growing in algeria. Medicines (Basel) 2018; 5: 1-10.
[http://dx.doi.org/10.3390/medicines5020026] [PMID: 29565294]
[114]
Violante IMP, Souza IM, Venturini CL, Ramalho AFS, Santos RAN, Ferrari M. Avaliação in vitro da atividade fotoprotetora de extratos vegetais do cerrado de Mato Grosso Revista Brasileira de Farmacognosia scielo 2009; 19: 425-57.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy