Review Article

草药资源治疗对抗进行性和退行性神经系统失调的帕金森氏病

卷 22, 期 6, 2021

发表于: 13 October, 2020

页: [609 - 630] 页: 22

弟呕挨: 10.2174/1389450121999201013155202

价格: $65

摘要

帕金森病是一种最常见的成人发病疾病,慢性神经退行性变导致黑质多巴胺能神经元逐渐丧失,导致纹状体多巴胺水平降低,导致震颤、肌强直和运动障碍。遗传学和环境因素被认为是帕金森病发病的原因。帕金森病的确切发病机制相当复杂,目前的抗帕金森病治疗在临床上尚不充分。综合研究表明,人参、姜黄素、南非醉茄(印度人参)、黄芩素等天然产物可用于本病的对症治疗。这些天然产物表现出的神经保护作用主要是由于它们能够增加纹状体中的多巴胺水平,管理氧化应激,线粒体功能障碍,谷胱甘肽水平,清除α- synuclein的聚集,诱导自噬,减少促炎细胞因子和脂质过氧化。本文综述了科学家进行的各种天然产物研究,以确定天然产物(包括代谢物提取物和纯代谢物)作为辅助神经保护剂的作用。

关键词: 帕金森病,多巴胺,天然产物,草药,天然神经保护剂,神经退行性变

图形摘要

[1]
de Lau LM, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6): 525-35.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[2]
Prakash J, Yadav SK, Chouhan S, Singh SP. Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem Res 2013; 38(5): 972-80.
[http://dx.doi.org/10.1007/s11064-013-1005-4] [PMID: 23430469]
[3]
Essa MM, Braidy N, Subash S, et al. Review of natural products on Parkinson’s disease pathology. J Aging Res 2014; 3(3): 127-36.
[4]
Gao L, Fang JS, Bai XY, et al. In silico target fishing for the potential targets and molecular mechanisms of baicalein as an antiparkinsonian agent: discovery of the protective effects on NMDA receptor-mediated neurotoxicity. Chem Biol Drug Des 2013; 81(6): 675-87.
[http://dx.doi.org/10.1111/cbdd.12127] [PMID: 23461900]
[5]
Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012; 36(4): 342-53.
[http://dx.doi.org/10.5142/jgr.2012.36.4.342] [PMID: 23717136]
[6]
Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018; 42(3): 239-47.
[http://dx.doi.org/10.1016/j.jgr.2017.03.011] [PMID: 29989012]
[7]
Van Kampen J, Robertson H, Hagg T, Drobitch R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol 2003; 184(1): 521-9.
[http://dx.doi.org/10.1016/j.expneurol.2003.08.002] [PMID: 14637121]
[8]
Hu S, Han R, Mak S, Han Y. Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells. J Ethnopharmacol 2011; 135(1): 34-42.
[http://dx.doi.org/10.1016/j.jep.2011.02.017] [PMID: 21349320]
[9]
Rajasankar S, Manivasagam T, Surendran S. Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett 2009; 454(1): 11-5.
[http://dx.doi.org/10.1016/j.neulet.2009.02.044] [PMID: 19429045]
[10]
Kuboyama T, Tohda C, Komatsu K. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol Pharm Bull 2014; 37(6): 892-7.
[http://dx.doi.org/10.1248/bpb.b14-00022] [PMID: 24882401]
[11]
RajaSankar S, Manivasagam T, Sankar V, et al. Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 2009; 125(3): 369-73.
[http://dx.doi.org/10.1016/j.jep.2009.08.003] [PMID: 19666100]
[12]
Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 2007; 12(4): 473-81.
[http://dx.doi.org/10.2478/s11658-007-0015-0] [PMID: 17415533]
[13]
Ahmad M, Saleem S, Ahmad AS, et al. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005; 93(1): 94-104.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03000.x] [PMID: 15773909]
[14]
Rojas P, Montes P, Rojas C, Serrano-García N, Rojas-Castañeda JC. Effect of a phytopharmaceutical medicine, Ginko biloba extract 761, in an animal model of Parkinson’s disease: therapeutic perspectives. Nutrition 2012; 28(11-12): 1081-8.
[http://dx.doi.org/10.1016/j.nut.2012.03.007] [PMID: 22817828]
[15]
Bridi R, Crossetti FP, Steffen VM, Henriques AT. The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother Res 2001; 15(5): 449-51.
[http://dx.doi.org/10.1002/ptr.814] [PMID: 11507743]
[16]
Rojas P, Serrano-García N, Mares-Sámano JJ, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Eur J Neurosci 2008; 28(1): 41-50.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06314.x] [PMID: 18662333]
[17]
Kim MS, Lee JI, Lee WY, Kim SE. Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytother Res 2004; 18(8): 663-6.
[http://dx.doi.org/10.1002/ptr.1486] [PMID: 15472919]
[18]
Kang X, Chen J, Xu Z, Li H, Wang B. Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells. Toxicol in vitro 2007; 21(6): 1003-9.
[http://dx.doi.org/10.1016/j.tiv.2007.02.004] [PMID: 17509817]
[19]
Cao F, Sun S, Tong ET. Experimental study on inhibition of neuronal toxical effect of levodopa by ginkgo biloba extract on Parkinson disease in rats. J Huazhong Univ Sci Technolog Med Sci 2003; 23(2): 151-3.
[http://dx.doi.org/10.1007/BF02859941] [PMID: 12973934]
[20]
Choi JG, Kim HG, Kim MC, et al. Polygalae radix inhibits toxin-induced neuronal death in the Parkinson’s disease models. J Ethnopharmacol 2011; 134(2): 414-21.
[http://dx.doi.org/10.1016/j.jep.2010.12.030] [PMID: 21195155]
[21]
Brandão LEM, Nôga DAMF, Dierschnabel AL, et al. Passiflora cincinnata extract delays the development of motor signs and prevents dopaminergic loss in a mice model of Parkinson’s disease. Evid Based Complement Alternat Med 2017; 2017: 8429290.
[http://dx.doi.org/10.1155/2017/8429290] [PMID: 28835767]
[22]
de Oliveria DM, Barreto G, De Andrade DV, et al. Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem Res 2009; 34(2): 215-20.
[http://dx.doi.org/10.1007/s11064-008-9749-y] [PMID: 18512151]
[23]
Lee CH, Hwang DS, Kim HG, et al. Protective effect of Cyperi rhizoma against 6-hydroxydopamine-induced neuronal damage. J Med Food 2010; 13(3): 564-71.
[http://dx.doi.org/10.1089/jmf.2009.1252] [PMID: 20521982]
[24]
Jia H, Liu Y, Yu M, et al. Neuroprotective effect of cyperi rhizome against corticosterone-induced pc12 cell injury via suppression of Ca2+ overloading. Metabolites 2019; 9(11): 244.
[http://dx.doi.org/10.3390/metabo9110244] [PMID: 31652802]
[25]
Kim HG, Ju MS, Shim JS, et al. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br J Nutr 2010; 104(1): 8-16.
[http://dx.doi.org/10.1017/S0007114510000218] [PMID: 20187987]
[26]
Park SE, Kim S, Sapkota K, Kim SJ. Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y. Cell Mol Neurobiol 2010; 30(5): 759-67.
[http://dx.doi.org/10.1007/s10571-010-9502-3] [PMID: 20563702]
[27]
An H, Kim IS, Koppula S, et al. Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells. J Ethnopharmacol 2010; 130(2): 290-8.
[http://dx.doi.org/10.1016/j.jep.2010.05.006] [PMID: 20470875]
[28]
Ju MS, Kim HG, Choi JG, et al. Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson’s disease models. Food Chem Toxicol 2010; 48(8-9): 2037-44.
[http://dx.doi.org/10.1016/j.fct.2010.05.002] [PMID: 20457209]
[29]
Li CL, Tsuang YH, Tsai TH. Neuroprotective effect of Schisandra chinensis on methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonian syndrome in C57BL/6 mice. Nutrients 2019; 11(7): 1671.
[http://dx.doi.org/10.3390/nu11071671] [PMID: 31330885]
[30]
Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Neuroprotective effects of methanolic extract of Avocado Persea americana (var. Colinred) peel on paraquat-induced locomotor impairment, lipid peroxidation and shortage of life span in transgenic knockdown Parkin Drosophila melanogaster. Neurochem Res 2019; 44(8): 1986-98.
[http://dx.doi.org/10.1007/s11064-019-02835-z] [PMID: 31309393]
[31]
Jayaraj RL, Beiram R, Azimullah S, et al. Lycopodium attenuates loss of dopaminergic neurons by suppressing oxidative stress and neuroinflammation in a rat model of Parkinson’s disease. Molecules 2019; 24(11): 2182.
[http://dx.doi.org/10.3390/molecules24112182] [PMID: 31185705]
[32]
Ogunruku OO, Ogunyemi BO, Oboh G, Babatunde OO, Boligon AA. Modulation of dopamine metabolizing enzymes and antioxidant status by Capsicum annuum Lin in rotenone-intoxicated rat brain. Toxicol Rep 2019; 6: 795-802.
[http://dx.doi.org/10.1016/j.toxrep.2019.07.012] [PMID: 31440456]
[33]
Zarmouh NO, Messeha SS, Elshami FM, Soliman KF. Soliman. Natural products screening for the identification of selective monoamine oxidase-B inhibitors. European J Med Plants 2016; 15(1): 14802.
[http://dx.doi.org/10.9734/EJMP/2016/26453] [PMID: 27341283]
[34]
Petramfar P, Hajari F, Yousefi G, Azadi S, Hamedi A. Efficacy of oral administration of licorice as an adjunct therapy on improving the symptoms of patients with Parkinson’s disease, A randomized double blinded clinical trial. J Ethnopharmacol 2020; 247: 112226.
[http://dx.doi.org/10.1016/j.jep.2019.112226] [PMID: 31574343]
[35]
Zhang S, Yu Z, Xia J, et al. Anti-Parkinson’s disease activity of phenolic acids from Eucommia ulmoides Oliver leaf extracts and their autophagy activation mechanism. Food Funct 2020; 11(2): 1425-40.
[http://dx.doi.org/10.1039/C9FO02288K] [PMID: 31971191]
[36]
Wang J, Xu HM, Yang HD, Du XX, Jiang H, Xie JX. Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins. Neurochem Int 2009; 54(1): 43-8.
[http://dx.doi.org/10.1016/j.neuint.2008.10.003] [PMID: 19000728]
[37]
Chen XC, Zhou YC, Chen Y, Zhu YG, Fang F, Chen LM. Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress. Acta Pharmacol Sin 2005; 26(1): 56-62.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00019.x] [PMID: 15659115]
[38]
Zhou T, Zu G, Zhang X, et al. Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology 2016; 101: 480-9.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.024] [PMID: 26525190]
[39]
Liu Y, Zhang RY, Zhao J, et al. Ginsenoside Rd protects SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced injury. Int J Mol Sci 2015; 16(7): 14395-408.
[http://dx.doi.org/10.3390/ijms160714395] [PMID: 26114390]
[40]
Xu BB, Liu CQ, Gao X, Zhang WQ, Wang SW, Cao YL. Possible mechanisms of the protection of ginsenoside Re against MPTP-induced apoptosis in substantia nigra neurons of Parkinson’s disease mouse model. J Asian Nat Prod Res 2005; 7(3): 215-24.
[http://dx.doi.org/10.1080/10286020410001690172] [PMID: 15621629]
[41]
Lee HJ, Noh YH, Lee DY, et al. Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol 2005; 84(11): 897-905.
[http://dx.doi.org/10.1016/j.ejcb.2005.07.003] [PMID: 16323286]
[42]
Cheng Y, He G, Mu X, et al. Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci Lett 2008; 441(1): 16-20.
[http://dx.doi.org/10.1016/j.neulet.2008.05.116] [PMID: 18586394]
[43]
Mu X, He GR, Yuan X, Li XX, Du GH. Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacol Biochem Behav 2011; 98(2): 286-91.
[http://dx.doi.org/10.1016/j.pbb.2011.01.011] [PMID: 21262257]
[44]
Ohkoshi E, Nagashima T, Sato H, Fujii Y, Nozawa K, Nagai M. Simple preparation of baicalin from Scutellariae Radix. J Chromatogr A 2009; 1216(11): 2192-4.
[http://dx.doi.org/10.1016/j.chroma.2008.03.059] [PMID: 18407279]
[45]
Sithisarn P, Rojsanga P, Sithisarn P. Inhibitory effects on clinical isolated bacteria and simultaneous HPLC quantitative analysis of flavone contents in extracts from Oroxylum indicum. Molecules 2019; 24(10): E1937.
[http://dx.doi.org/10.3390/molecules24101937] [PMID: 31137493]
[46]
Zhang ZT, Cao XB, Xiong N, et al. Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacol Sin 2010; 31(8): 900-6.
[http://dx.doi.org/10.1038/aps.2010.77] [PMID: 20644549]
[47]
Gazoni VF, Balogun SO, Arunachalam K, et al. Assessment of toxicity and differential antimicrobial activity of methanol extract of rhizome of Simaba ferruginea A. St.-Hil. and its isolate canthin-6-one. J Ethnopharmacol 2018; 223: 122-34.
[http://dx.doi.org/10.1016/j.jep.2018.05.014] [PMID: 29772356]
[48]
Hussain J, Ali L, Khan AL, et al. Isolation and bioactivities of the flavonoids morin and morin-3-O-β-D-glucopyranoside from Acridocarpus orientalis-A wild Arabian medicinal plant. Molecules 2014; 19(11): 17763-72.
[http://dx.doi.org/10.3390/molecules191117763] [PMID: 25421414]
[49]
Mythri RB, Bharath MMS. Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 2012; 18(1): 91-9.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[50]
Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 2005; 39(10): 1119-25.
[http://dx.doi.org/10.1080/10715760500233113] [PMID: 16298737]
[51]
Du XX, Xu HM, Jiang H, Song N, Wang J, Xie JX. Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci Bull 2012; 28(3): 253-8.
[http://dx.doi.org/10.1007/s12264-012-1238-2] [PMID: 22622825]
[52]
van der Merwe C, van Dyk HC, Engelbrecht L, et al. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol 2017; 54(4): 2752-62.
[http://dx.doi.org/10.1007/s12035-016-9843-0] [PMID: 27003823]
[53]
Jagatha B, Mythri RB, Vali S, Bharath MMS. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 2008; 44(5): 907-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.011] [PMID: 18166164]
[54]
Lan TTP, Huy ND, Luong NN, et al. Identification and characterization of genes in the curcuminoid pathway of Curcuma zedoaria Roscoe. Curr Pharm Biotechnol 2018; 19(10): 839-46.
[http://dx.doi.org/10.2174/1389201019666181008112244] [PMID: 30295188]
[55]
Tan LC, Koh WP, Yuan JM, et al. Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 2008; 167(5): 553-60.
[http://dx.doi.org/10.1093/aje/kwm338] [PMID: 18156141]
[56]
Weinreb O, Mandel S, Amit T, Youdim MBH. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 2004; 15(9): 506-16.
[http://dx.doi.org/10.1016/j.jnutbio.2004.05.002] [PMID: 15350981]
[57]
Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging 2003; 20(10): 711-21.
[http://dx.doi.org/10.2165/00002512-200320100-00001] [PMID: 12875608]
[58]
Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 2006; 78(18): 2073-80.
[http://dx.doi.org/10.1016/j.lfs.2005.12.006] [PMID: 16445946]
[59]
Nie G, Cao Y, Zhao B. Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep 2002; 7(3): 171-7.
[http://dx.doi.org/10.1179/135100002125000424] [PMID: 12189048]
[60]
Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78(5): 1073-82.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00490.x] [PMID: 11553681]
[61]
Lee JS, Kim YN, Kim NH, et al. Identification of hepatoprotective constituents in Limonium tetragonum and development of simultaneous analysis method using high-performance liquid chromatography. Pharmacogn Mag 2017; 13(52): 535-41.
[http://dx.doi.org/10.4103/pm.pm_477_16] [PMID: 29200710]
[62]
Sanna C, Rigano D, Corona A, et al. Dual HIV-1 reverse transcriptase and integrase inhibitors from Limonium morisianum Arrigoni, an endemic species of Sardinia (Italy). Nat Prod Res 2019; 33(12): 1798-803.
[http://dx.doi.org/10.1080/14786419.2018.1434649] [PMID: 29397771]
[63]
Park HJ, Zhao TT, Lee KS, et al. Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson’s disease rat models. Neurochem Int 2015; 83-84(84): 19-27.
[http://dx.doi.org/10.1016/j.neuint.2015.01.003] [PMID: 25747493]
[64]
Wang J, Zhou L, Cheng ZY, et al. Chiral resolution and bioactivity of enantiomeric furofuran lignans from Juglans mandshurica Maxim. Nat Prod Res 2019; 1-4
[http://dx.doi.org/10.1080/14786419.2019.1577839] [PMID: 30821512]
[65]
Kassim NK, Lim PC, Ismail A, Awang K. Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chem 2019; 272: 185-91.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.045] [PMID: 30309531]
[66]
Wang Y, Xu H, Fu Q, Ma R, Xiang J. Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats. J Neurol Sci 2011; 304(1-2): 29-34.
[http://dx.doi.org/10.1016/j.jns.2011.02.025] [PMID: 21376343]
[67]
Kosović E, Topiař M, Cuřínová P, Sajfrtová M. Stability testing of resveratrol and viniferin obtained from Vitis vinifera L. by various extraction methods considering the industrial viewpoint. Sci Rep 2020; 10(1): 5564.
[http://dx.doi.org/10.1038/s41598-020-62603-w] [PMID: 32221407]
[68]
Liu M, Li X, Liu Q, Xie S, Zhu F, Chen X. Preparative isolation and purification of 12 main antioxidants from the roots of Polygonum multiflorum Thunb. using high-speed countercurrent chromatography and preparative HPLC guided by 1,1′-diphenyl-2-picrylhydrazyl-HPLC. J Sep Sci 2020; 43(8): 1415-22.
[http://dx.doi.org/10.1002/jssc.201901287] [PMID: 32003117]
[69]
Radad K, Moldzio R, Taha M, Rausch WD. Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phytother Res 2009; 23(5): 696-700.
[http://dx.doi.org/10.1002/ptr.2708] [PMID: 19089849]
[70]
Trang NT, Wanner MJ, Phuong VN, Koomen GJ, Dung NX. Thymoquinone from Eupatorium ayapana. Planta Med 1993; 59(1): 99.
[http://dx.doi.org/10.1055/s-2006-959619] [PMID: 17230346]
[71]
Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Maldonado PD, Ruiz-Sánchez E. S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice. J Nutr Biochem 2011; 22(10): 937-44.
[http://dx.doi.org/10.1016/j.jnutbio.2010.08.005] [PMID: 21190833]
[72]
Kim SJ, Kim JS, Cho HS, et al. Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells. Neuroreport 2006; 17(16): 1729-33.
[http://dx.doi.org/10.1097/01.wnr.0000239951.14954.10] [PMID: 17047462]
[73]
Areche C, Schmeda-Hirschmann G, Theoduloz C, Rodríguez JA. Gastroprotective effect and cytotoxicity of abietane diterpenes from the Chilean Lamiaceae Sphacele chamaedryoides (Balbis) Briq. J Pharm Pharmacol 2009; 61(12): 1689-97.
[http://dx.doi.org/10.1211/jpp.61.12.0015] [PMID: 19958593]
[74]
Wang J, Xu H, Jiang H, Du X, Sun P, Xie J. Neurorescue effect of rosmarinic acid on 6-hydroxydopamine-lesioned nigral dopamine neurons in rat model of Parkinson’s disease. J Mol Neurosci 2012; 47(1): 113-9.
[http://dx.doi.org/10.1007/s12031-011-9693-1] [PMID: 22205146]
[75]
Zhao Y, Han Y, Wang Z, et al. Rosmarinic acid protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in zebrafish embryos. Toxicol in vitro 2020; 65: 104823.
[http://dx.doi.org/10.1016/j.tiv.2020.104823] [PMID: 32147576]
[76]
Ren P, Jiang H, Li R, et al. Rosmarinic acid inhibits 6-OHDA-induced neurotoxicity by anti-oxidation in MES23.5 cells. J Mol Neurosci 2009; 39(1-2): 220-5.
[http://dx.doi.org/10.1007/s12031-009-9182-y] [PMID: 19219567]
[77]
Dimitris D, Ekaterina-Michaela T, Christina K, et al. Melissa officinalis ssp. altissima extracts: A therapeutic approach targeting psoriasis in mice. J Ethnopharmacol 2020; 246: 112208.
[http://dx.doi.org/10.1016/j.jep.2019.112208] [PMID: 31476443]
[78]
Ruiz-Vargas JA, Morales-Ferra DL, Ramírez-Ávila G, et al. α-Glucosidase inhibitory activity and in vivo antihyperglycemic effect of secondary metabolites from the leaf infusion of Ocimum campechianum mill. J Ethnopharmacol 2019; 243: 112081.
[http://dx.doi.org/10.1016/j.jep.2019.112081] [PMID: 31319121]
[79]
Kim IS, Choi DK, Jung HJ. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules 2011; 16(7): 5349-61.
[http://dx.doi.org/10.3390/molecules16075349] [PMID: 21705974]
[80]
Amor G, Caputo L, La Storia A, De Feo V, Mauriello G, Fechtali T. Chemical composition and antimicrobial activity of Artemisia herba-alba and Origanum majorana essential oils from Morocco. Molecules 2019; 24(22): E4021.
[http://dx.doi.org/10.3390/molecules24224021] [PMID: 31698834]
[81]
Enogieru AB, Haylett WL, Miller HC, van der Westhuizen FH, Hiss DC, Ekpo OE. Attenuation of endoplasmic reticulum stress, impaired calcium homeostasis, and altered bioenergetic functions in MPP+-exposed SH-SY5Y cells pretreated with rutin. Neurotox Res 2019; 36(4): 764-76.
[http://dx.doi.org/10.1007/s12640-019-00048-4] [PMID: 31055769]
[82]
Kaur N, Arora DS, Kalia N, Kaur M. Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Mol Biol Rep 2020; 47(4): 2901-11.
[http://dx.doi.org/10.1007/s11033-020-05394-7] [PMID: 32239464]
[83]
Rao SP, Sharma N, Kalivendi SV. Embelin averts MPTP-induced dysfunction in mitochondrial bioenergetics and biogenesis via activation of SIRT1. Biochim Biophys Acta Bioenerg 2020; 1861(3): 148157.
[http://dx.doi.org/10.1016/j.bbabio.2020.148157] [PMID: 31987812]
[84]
Hossan MS, Fatima A, Rahmatullah M, et al. Antiviral activity of Embelia ribes Burm. f. against influenza virus in vitro. Arch Virol 2018; 163(8): 2121-31.
[http://dx.doi.org/10.1007/s00705-018-3842-6] [PMID: 29633078]
[85]
Bai H, Ding Y, Li X, et al. Polydatin protects SH-SY5Y in models of Parkinson’s disease by promoting Atg5-mediated but parkin-independent autophagy. Neurochem Int 2020; 134: 104671.
[http://dx.doi.org/10.1016/j.neuint.2020.104671] [PMID: 31926197]
[86]
Ji Y, Wang D, Zhang B, Lu H. Bergenin ameliorates MPTP-induced Parkinson’s disease by activating PI3K/Akt signaling pathway. J Alzheimers Dis 2019; 72(3): 823-33.
[http://dx.doi.org/10.3233/JAD-190870] [PMID: 31658061]
[87]
Sanjeev S, Murthy MK, Sunita Devi M, et al. Isolation, characterization, and therapeutic activity of bergenin from marlberry (Ardisia colorata Roxb.) leaf on diabetic testicular complications in Wistar albino rats. Environ Sci Pollut Res Int 2019; 26(7): 7082-101.
[http://dx.doi.org/10.1007/s11356-019-04139-9] [PMID: 30648235]
[88]
Ali E, Arshad N, Bukhari NI, et al. Linking traditional anti-ulcer use of rhizomes of Bergenia ciliata (Haw.) to its anti-Helicobacter pylori constituents. Nat Prod Res 2020; 34(4): 541-4.
[http://dx.doi.org/10.1080/14786419.2018.1488711] [PMID: 30362366]
[89]
Kwon J, Ko K, Zhang L, Zhao D, Yang HO, Kwon HC. An autophagy inducing triterpene saponin derived from Aster koraiensis. Molecules 2019; 24(24): 4489.
[http://dx.doi.org/10.3390/molecules24244489] [PMID: 31817934]
[90]
Lin KH, Li CY, Hsu YM, et al. Oridonin, A natural diterpenoid, protected NGF-differentiated PC12 cells against MPP+- and kainic acid-induced injury. Food Chem Toxicol 2019; 133: 110765.
[http://dx.doi.org/10.1016/j.fct.2019.110765] [PMID: 31430510]
[91]
Park JS, Leem YH, Park JE, Kim DY, Kim HS. Neuroprotective effect of β-lapachone in MPTP-induced Parkinson’s disease mouse model: involvement of astroglial p-AMPK/Nrf2/HO-1 signaling pathways. Biomol Ther (Seoul) 2019; 27(2): 178-84.
[http://dx.doi.org/10.4062/biomolther.2018.234] [PMID: 30739428]
[92]
Panda SP, Panigrahy UP, Panda S, Jena BR. Stem extract of Tabebuia chrysantha induces apoptosis by targeting sEGFR in Ehrlich Ascites Carcinoma. J Ethnopharmacol 2019; 235: 219-26.
[http://dx.doi.org/10.1016/j.jep.2019.02.023] [PMID: 30769041]
[93]
Yang YL, Cheng X, Li WH, Liu M, Wang YH, Du GH. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int J Mol Sci 2019; 20(3): 491.
[http://dx.doi.org/10.3390/ijms20030491] [PMID: 30678325]
[94]
Sharma N, Sharma A, Bhatia G, et al. Isolation of phytochemicals from Bauhinia variegata L. bark and their in vitro antioxidant and cytotoxic potential. Antioxidants 2019; 8(10): E492.
[http://dx.doi.org/10.3390/antiox8100492] [PMID: 31627372]
[95]
Pham HNT, Sakoff JA, Vuong QV, Bowyer MC, Scarlett CJ. Phytochemical, antioxidant, anti-proliferative and antimicrobial properties of Catharanthus roseus root extract, saponin-enriched and aqueous fractions. Mol Biol Rep 2019; 46(3): 3265-73.
[http://dx.doi.org/10.1007/s11033-019-04786-8] [PMID: 30945069]
[96]
Jia L, Wang Y, Sang J, et al. Dihydromyricetin inhibits α-synuclein aggregation, disrupts preformed fibrils, and protects neuronal cells in culture against amyloid-induced cytotoxicity. J Agric Food Chem 2019; 67(14): 3946-55.
[http://dx.doi.org/10.1021/acs.jafc.9b00922] [PMID: 30900456]
[97]
Vieira MN, Winterhalter P, Jerz G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem Anal 2016; 27(2): 116-25.
[http://dx.doi.org/10.1002/pca.2606] [PMID: 26751603]
[98]
Outtrup H, Schaumburg K, Madsen JØ. Isolation of dihydromyricetin and dihydroquercetin from bark of Pinus contorta. Carlsberg Res Commun 1985; 50(6): 369.
[http://dx.doi.org/10.1007/BF02907158]
[99]
Pandey T, Sammi SR, Nooreen Z, et al. Anti-ageing and anti-Parkinsonian effects of natural flavonol, tambulin from Zanthoxyllum aramatum promotes longevity in Caenorhabditis elegans. Exp Gerontol 2019; 120: 50-61.
[http://dx.doi.org/10.1016/j.exger.2019.02.016] [PMID: 30825547]
[100]
Sharma KR, Adhikari A, Choudhary MI, Awale S, Kalauni SK. Bioassay guided isolation of free radical scavenging agent from the bark of Bridelia retusa. J Inst Sci Tech 2015; 20(1): 97-101.
[http://dx.doi.org/10.3126/jist.v20i1.13916]
[101]
Tsankova E, Ognyanov I. Chemical constituents of Achillea depressa. Planta Med 1985; 51(02): 180.
[http://dx.doi.org/10.1055/s-2007-969447]
[102]
Chaurasiya ND, Zhao J, Pandey P, Doerksen RJ, Muhammad I, Tekwani BL. Selective inhibition of human monoamine oxidase B by acacetin 7-methyl ether isolated from Turnera diffusa (Damiana). Molecules 2019; 24(4): 810.
[http://dx.doi.org/10.3390/molecules24040810] [PMID: 30813423]
[103]
Nakanishi T, Ogaki J, Inada A, et al. Flavonoids of Striga asiatica. J Nat Prod 1985; 48(3): 491-3.
[http://dx.doi.org/10.1021/np50039a027]
[104]
He X, Yang S, Zhang R, et al. Smilagenin protects dopaminergic neurons in chronic MPTP/Probenecid—lesioned Parkinson’s disease models. Front Cell Neurosci 2019; 13: 18.
[http://dx.doi.org/10.3389/fncel.2019.00018] [PMID: 30804756]
[105]
Wall ME, Warnock BH, Willaman JJ. Steroidal sapogenins. LXVIII. Their occurrence in Agave lecheguilla. Econ Bot 1962; 16(4): 266-9.
[http://dx.doi.org/10.1007/BF02860184]
[106]
Flåøyen A, Wilkins AL, Deng D, Brekke T. Ovine metabolism of saponins: evaluation of a method for estimating the ovine uptake of steroidal saponins from Narthecium ossifragum. Vet Res Commun 2001; 25(3): 225-38.
[http://dx.doi.org/10.1023/A:1006485726523] [PMID: 11334151]
[107]
Kim M, Jung J, Jeong NY, Chung HJ. The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat Sci Int 2019; 94(4): 285-94.
[http://dx.doi.org/10.1007/s12565-019-00486-2] [PMID: 30949912]
[108]
Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 2000; 59(11): 1387-94.
[http://dx.doi.org/10.1016/S0006-2952(00)00264-1] [PMID: 10751547]
[109]
Ko FN, Huang TF, Teng CM. Vasodilatory action mechanisms of apigenin isolated from Apium graveolens in rat thoracic aorta. Biochim Biophys Acta 1991; 1115(1): 69-74.
[http://dx.doi.org/10.1016/0304-4165(91)90013-7] [PMID: 1659912]
[110]
Nayaka HB, Londonkar RL, Umesh MK, Tukappa A. Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. Int J Bacteriol 2014.
[111]
Subaraja M, Vanisree AJ. The novel phytocomponent asiaticoside-D isolated from Centella asiatica exhibits monoamine oxidase-B inhibiting potential in the rotenone degenerated cerebral ganglions of Lumbricus terrestris. Phytomedicine 2019; 58: 152833.
[http://dx.doi.org/10.1016/j.phymed.2019.152833] [PMID: 30903943]
[112]
Wu C, Duan YH, Li MM, et al. Triterpenoid saponins from the stem barks of Schefflera heptaphylla. Planta Med 2013; 79(14): 1348-55.
[http://dx.doi.org/10.1055/s-0033-1350674] [PMID: 23925903]
[113]
Qi G, Mi Y, Fan R, Li R, Liu Z, Liu X. Nobiletin Protects against systemic inflammation-stimulated memory impairment via MAPK and NF-κB signaling pathways. J Agric Food Chem 2019; 67(18): 5122-34.
[http://dx.doi.org/10.1021/acs.jafc.9b00133] [PMID: 30995031]
[114]
Zeng R, Zhou Q, Zhang W, et al. Icariin-mediated activation of autophagy confers protective effect on rotenone induced neurotoxicity in vivo and in vitro. Toxicol Rep 2019; 6: 637-44.
[http://dx.doi.org/10.1016/j.toxrep.2019.06.014] [PMID: 31334034]
[115]
Zhang B, Wang G, He J, et al. Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via an Nrf2-dependent manner. J Neuroinflammation 2019; 16(1): 92.
[http://dx.doi.org/10.1186/s12974-019-1472-x] [PMID: 31010422]
[116]
Hsieh TP, Sheu SY, Sun JS, Chen MH, Liu MH. Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression. Phytomedicine 2010; 17(6): 414-23.
[http://dx.doi.org/10.1016/j.phymed.2009.08.007] [PMID: 19747809]
[117]
Lee MK, Choi YJ, Sung SH, Shin DI, Kim JW, Kim YC. Antihepatotoxic activity of icariin, a major constituent of Epimedium koreanum. Planta Med 1995; 61(6): 523-6.
[http://dx.doi.org/10.1055/s-2006-959362] [PMID: 8824946]
[118]
Chen C, Wei YZ, He XM, et al. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front Immunol 2019; 10: 936.
[http://dx.doi.org/10.3389/fimmu.2019.00936] [PMID: 31118933]
[119]
Olsen HT, Stafford GI, van Staden J, Christensen SB, Jäger AK. Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J Ethnopharmacol 2008; 117(3): 500-2.
[http://dx.doi.org/10.1016/j.jep.2008.02.015] [PMID: 18372132]
[120]
Singh AK, Raj V, Keshari AK, et al. Isolated mangiferin and naringenin exert antidiabetic effect via PPARγ/GLUT4 dual agonistic action with strong metabolic regulation. Chem Biol Interact 2018; 280: 33-44.
[http://dx.doi.org/10.1016/j.cbi.2017.12.007] [PMID: 29223569]
[121]
Cai CZ, Zhou HF, Yuan NN, et al. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine 2019; 61: 152842.
[http://dx.doi.org/10.1016/j.phymed.2019.152842] [PMID: 31048127]
[122]
Zhang G, Yang G, Liu J. Phloretin attenuates behavior deficits and neuroinflammatory response in MPTP induced Parkinson’s disease in mice. Life Sci 2019; 232: 116600.
[http://dx.doi.org/10.1016/j.lfs.2019.116600] [PMID: 31251998]
[123]
Feng Y, Zheng C, Zhang Y, et al. Triptolide inhibits preformed fibril-induced microglial activation by targeting the microRNA155-5p/SHIP1 pathway. Oxid Med Cell Longev 2019; 2019: 6527638.
[http://dx.doi.org/10.1155/2019/6527638] [PMID: 31182996]
[124]
Vijayakumaran S, Nakamura Y, Henley JM, Pountney DL. Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Mol Cell Neurosci 2019; 101: 103416.
[http://dx.doi.org/10.1016/j.mcn.2019.103416] [PMID: 31654699]
[125]
Li T, Zhang W, Kang X, et al. Salidroside protects dopaminergic neurons by regulating the mitochondrial MEF2D‐ND6 pathway in the MPTP/MPP+‐induced model of Parkinson’s disease. J Neurochem 2020; 153(2): 275-89.
[http://dx.doi.org/10.1111/jnc.14868] [PMID: 31520529]
[126]
Li HB, Chen F. Preparative isolation and purification of salidroside from the Chinese medicinal plant Rhodiola sachalinensis by high-speed counter-current chromatography. J Chromatogr A 2001; 932(1-2): 91-5.
[http://dx.doi.org/10.1016/S0021-9673(01)01232-8] [PMID: 11695872]
[127]
Yoo YM, Nam JH, Kim MY, Choi J, Lee KT, Park HJ. Analgesic and anti-gastropathic effects of salidroside isolated from heartwood. Open Bioactive Compd J 2009; 2(1)
[http://dx.doi.org/10.2174/1874847300902010001]
[128]
Liu YP, Guo JM, Wang XP, et al. Geranylated carbazole alkaloids with potential neuroprotective activities from the stems and leaves of Clausena lansium. Bioorg Chem 2019; 92: 103278.
[http://dx.doi.org/10.1016/j.bioorg.2019.103278] [PMID: 31541802]
[129]
Ding Y, Kong D, Zhou T, et al. α-Arbutin protects against Parkinson’s disease-associated mitochondrial dysfunction in vitro and in vivo. Neuromolecular Med 2020; 22(1): 56-67.
[http://dx.doi.org/10.1007/s12017-019-08562-6] [PMID: 31401719]
[130]
Liu M, Yu S, Wang J, et al. Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson’s disease. J Ethnopharmacol 2020; 247: 112213.
[http://dx.doi.org/10.1016/j.jep.2019.112213] [PMID: 31562951]
[131]
Giuliano C, Siani F, Mus L, et al. Neuroprotective effects of lignan 7-hydroxymatairesinol (HMR/lignan) in a rodent model of Parkinson’s disease. Nutrition 2020; 69: 110494.
[http://dx.doi.org/10.1016/j.nut.2019.04.006] [PMID: 31586482]
[132]
Parkhe A, Parekh P, Nalla LV, et al. Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosci Lett 2020; 716: 134652.
[http://dx.doi.org/10.1016/j.neulet.2019.134652] [PMID: 31778768]
[133]
Nguemfo EL, Dimo T, Dongmo AB, et al. Anti-oxidative and anti-inflammatory activities of some isolated constituents from the stem bark of Allanblackia monticola Staner L.C (Guttiferae). Inflammopharmacology 2009; 17(1): 37-41.
[http://dx.doi.org/10.1007/s10787-008-8039-2] [PMID: 19127347]
[134]
Li P, Li X, Yao L, Wu Y, Li B. Soybean isoflavones prevent atrazine-induced neurodegenerative damage by inducing autophagy. Ecotoxicol Environ Saf 2020; 190: 110065.
[http://dx.doi.org/10.1016/j.ecoenv.2019.110065] [PMID: 31869719]
[135]
Paudel P, Park SE, Seong SH, Jung HA, Choi JS. Bromophenols from Symphyocladia latiuscula target human monoamine oxidase and dopaminergic receptors for the management of neurodegenerative diseases. J Agric Food Chem 2020; 68(8): 2426-36.
[http://dx.doi.org/10.1021/acs.jafc.0c00007] [PMID: 32011134]
[136]
Shen B, Lin Y, Bi C, et al. Translational informatics for Parkinson’s disease: from big biomedical data to small actionable alterations. Genomics Proteomics Bioinformatics 2019; 17(4): 415-29.
[http://dx.doi.org/10.1016/j.gpb.2018.10.007] [PMID: 31786313]
[137]
Singla RK, Dubey AK. Molecules and metabolites from natural products as inhibitors of biofilm in Candida spp. pathogens. Curr Top Med Chem 2019; 19(28): 2567-78.
[http://dx.doi.org/10.2174/1568026619666191025154834] [PMID: 31654510]
[138]
Laganà P, Anastasi G, Marano F, et al. Phenolic substances in foods: health effects as anti-inflammatory and antimicrobial agents. J AOAC Int 2019; 102(5): 1378-87.
[http://dx.doi.org/10.1093/jaoac/102.5.1378] [PMID: 31200787]
[139]
Sharma RK, Micali M, Pellerito A, et al. Studies on the determination of antioxidant activity and phenolic content of plant products in India (2000-2017). J AOAC Int 2019; 102(5): 1407-13.
[http://dx.doi.org/10.1093/jaoac/102.5.1407] [PMID: 31200784]
[140]
Singla RK, Kumar R, Khan S, Mohit , Kumari K, Garg A. Mohit, Kumari K, Garg A. Natural products: potential source of DPP-IV inhibitors. Curr Protein Pept Sci 2019; 20(12): 1218-25.
[http://dx.doi.org/10.2174/1389203720666190502154129] [PMID: 31057098]
[141]
Singla RK, Ali M, Kamal MA, Dubey AK. Isolation and characterization of nuciferoic acid, a novel keto fatty acid with hyaluronidase inhibitory activity from Cocos nucifera Linn. endocarp. Curr Top Med Chem 2018; 18(27): 2367-78.
[http://dx.doi.org/10.2174/1568026619666181224111319] [PMID: 30582479]
[142]
De B, Bhandari K, Singla RK, et al. Chemometrics optimized extraction procedures, phytosynergistic blending and in vitro screening of natural enzyme inhibitors amongst leaves of tulsi, banyan and jamun. Pharmacogn Mag 2015; 11(Suppl. 4): S522-32.
[http://dx.doi.org/10.4103/0973-1296.172956] [PMID: 27013789]
[143]
Houghton PJ, Howes MJ. Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 2005; 14(1-2): 6-22.
[http://dx.doi.org/10.1159/000085382] [PMID: 15956811]
[144]
Campos HC, da Rocha MD, Viegas FP, et al. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders I: Parkinson’s disease. CNS Neurol Disord Drug Targets 2011; 10(2): 239-50.
[http://dx.doi.org/10.2174/187152711794480483] [PMID: 20874702]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy