Review Article

CRISPR / Cas9基因组编辑工具:呼吸系统疾病治疗应用的有前途的工具

卷 20, 期 5, 2020

页: [333 - 346] 页: 14

弟呕挨: 10.2174/1566523220666201012145731

价格: $65

摘要

由于诊断工具不当,呼吸道疾病是当前时代关注的主要主题之一。基因编辑疗法,如聚类的规则间隔的回文重复序列相关的核酸酶9(CRISPR / Cas9),在肺部研究中越来越受欢迎,为潜在的机制提供了宝贵的见解。 CRISPR / Cas9可被科学界视为潜在的基因编辑工具,有助于促进呼吸健康和治疗知识的发展。作为有吸引力的治疗工具,我们在此探索CRISPR / Cas9工具在慢性呼吸道疾病(如肺癌,急性呼吸窘迫综合征(ARDS)和囊性纤维化(CF))中的应用的高级研究。我们还解决了在其他多种肺部疾病(例如哮喘,慢性阻塞性肺疾病(COPD)和特发性肺纤维化(IPF))中建立这种基因编辑工具的迫切需求。本综述介绍了CRISPR / Cas9作为通过编辑特定基因靶向上皮-间质转化和纤溶系统靶向中的应用。因此,基于CRISPR / Cas9的效率,可以将其视为呼吸健康研究中有希望的治疗工具。

关键词: CRISPR / Cas9,呼吸系统疾病,基因编辑,基因治疗,与肺有关的疾病,肺部疾病。

图形摘要

[1]
Reynolds JE III, Rommel SA. Thorax and abdomen, anatomy.encyclopedia of marine mammals. Academic Press 2018; pp. 994-1001.
[http://dx.doi.org/10.1016/B978-0-12-804327-1.00259-4]
[2]
Puttur F, Gregory LG, Lloyd CM. Airway macrophages as the guardians of tissue repair in the lung. Immunol Cell Biol 2019; 97(3): 246-57.
[http://dx.doi.org/10.1111/imcb.12235] [PMID: 30768869]
[3]
De Procaccini C, De Procaccini C, Rosa V, Perna F, et al. Complex interface between immunity and metabolism: The lung as a target organ.Mechanisms and manifestations of obesity in lung disease. Academic Press 2019; pp. 23-43.
[http://dx.doi.org/10.1016/B978-0-12-813553-2.00002-6]
[4]
Triplette M, Crothers K, Mahale P, et al. Risk of lung cancer in lung transplant recipients in the United States. Am J Transplant 2019; 19(5): 1478-90.
[http://dx.doi.org/10.1111/ajt.15181] [PMID: 30565414]
[5]
Raimundo K, Solomon JJ, Olson AL, et al. Rheumatoid arthritis-interstitial lung disease in the united states: prevalence, incidence, and healthcare costs and mortality. J Rheumatol 2019; 46(4): 360-9.
[http://dx.doi.org/10.3899/jrheum.171315] [PMID: 30442831]
[6]
Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol 2019; 55: 106-19.
[http://dx.doi.org/10.1016/j.semcancer.2018.04.001] [PMID: 29673923]
[7]
Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z. CRISPR/Cas9 - An evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 2019; 3: 8.
[http://dx.doi.org/10.1038/s41698-019-0080-7] [PMID: 30911676]
[8]
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24(4): 955-70.
[http://dx.doi.org/10.1016/j.drudis.2019.02.011] [PMID: 30849442]
[9]
Jansen R, Embden JDV, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43(6): 1565-75.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[10]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819): 1709-12.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[11]
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327(5962): 167-70.
[http://dx.doi.org/10.1126/science.1179555] [PMID: 20056882]
[12]
Mojica FJM, Montoliu L. On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol 2016; 24(10): 811-20.
[http://dx.doi.org/10.1016/j.tim.2016.06.005] [PMID: 27401123]
[13]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[14]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[15]
Park MY, Jung MH, Eo EY, et al. Generation of lung cancer cell lines harboring EGFR T790M mutation by CRISPR/Cas9-mediated genome editing. Oncotarget 2017; 8(22): 36331-8.
[http://dx.doi.org/10.18632/oncotarget.16752] [PMID: 28422737]
[16]
Maddalo D, Manchado E, Concepcion CP, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516(7531): 423-7.
[http://dx.doi.org/10.1038/nature13902] [PMID: 25337876]
[17]
Bulstrode H, Johnstone E, Marques-Torrejon MA, et al. Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev 2017; 31(8): 757-73.
[http://dx.doi.org/10.1101/gad.293027.116] [PMID: 28465359]
[18]
Hegge B, Sjøttem E, Mikkola I. Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress. BMC Cancer 2018; 18(1): 496.
[http://dx.doi.org/10.1186/s12885-018-4394-6] [PMID: 29716531]
[19]
Liu J, Sareddy GR, Zhou M, et al. Differential effects of estrogen receptor β isoforms on glioblastoma progression. Cancer Res 2018; 78(12): 3176-89.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3470] [PMID: 29661831]
[20]
Guernet A, Mungamuri SK, Cartier D, et al. CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol Cell 2016; 63(3): 526-38.
[http://dx.doi.org/10.1016/j.molcel.2016.06.017] [PMID: 27453044]
[21]
Guernet A, Aaronson SA, Anouar Y, Grumolato L. Modeling intratumor heterogeneity through CRISPR-barcodes. Mol Cell Oncol 2016; 3(6): e1227894.
[http://dx.doi.org/10.1080/23723556.2016.1227894] [PMID: 28090577]
[22]
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 2013; 339(6127): 1546-58.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[23]
Walter DM, Venancio OS, Buza EL, et al. Systematic in vivo inactivation of chromatin-regulating enzymes identifies Setd2 as a potent tumor suppressor in lung adenocarcinoma. Cancer Res 2017; 77(7): 1719-29.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2159] [PMID: 28202515]
[24]
He J, Jin Y, Zhou M, et al. Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis. Cancer Sci 2018; 109(3): 642-55.
[http://dx.doi.org/10.1111/cas.13478] [PMID: 29274137]
[25]
Anelli V, Villefranc JA, Chhangawala S, et al. Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. eLife 2017; 6: 20728.
[http://dx.doi.org/10.7554/eLife.20728] [PMID: 28350298]
[26]
Moreno AM, Mali P. Therapeutic genome engineering via CRISPR-Cas systems. Wiley Interdiscip Rev Syst Biol Med 2017; 9(4): 4.
[http://dx.doi.org/10.1002/wsbm.1380] [PMID: 28198142]
[27]
Liang X, Potter J, Kumar S, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 2015; 208: 44-53.
[http://dx.doi.org/10.1016/j.jbiotec.2015.04.024] [PMID: 26003884]
[28]
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife 2013; 2: e00471.
[http://dx.doi.org/10.7554/eLife.00471] [PMID: 23386978]
[29]
Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014; 24(6): 1012-9.
[http://dx.doi.org/10.1101/gr.171322.113] [PMID: 24696461]
[30]
Malina A, Mills JR, Cencic R, et al. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev 2013; 27(23): 2602-14.
[http://dx.doi.org/10.1101/gad.227132.113] [PMID: 24298059]
[31]
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166): 84-7.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[32]
Koonin EV, Makarova KS. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 2013; 10(5): 679-86.
[http://dx.doi.org/10.4161/rna.24022] [PMID: 23439366]
[33]
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013; 41(7): 4336-43.
[http://dx.doi.org/10.1093/nar/gkT135] [PMID: 23460208]
[34]
Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 2016; 164(1-2): 29-44.
[http://dx.doi.org/10.1016/j.cell.2015.12.035] [PMID: 26771484]
[35]
Moses C, Kaur P. Applications of CRISPR systems in respiratory health: Entering a new ‘red pen’ era in genome editing. Respirology 2019; 24(7): 628-37.
[http://dx.doi.org/10.1111/resp.13527] [PMID: 30883991]
[36]
Standage-Beier K, Brookhouser N, Balachandran P, Zhang Q, Brafman DA, Wang X. RNA-guided recombinase-Cas9 fusion targets genomic DNA deletion and integration. CRISPR J 2019; 2(4): 209-22.
[http://dx.doi.org/10.1089/crispr.2019.0013] [PMID: 31436506]
[37]
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014; 507(7490): 62-7.
[http://dx.doi.org/10.1038/nature13011] [PMID: 24476820]
[38]
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109] [PMID: 22949671]
[39]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[40]
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517(7536): 583-8.
[http://dx.doi.org/10.1038/nature14136] [PMID: 25494202]
[41]
Horlbeck MA, Gilbert LA, Villalta JE, et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 2016; 5: 19760.
[http://dx.doi.org/10.7554/eLife.19760] [PMID: 27661255]
[42]
Wu Q, Tian Y, Zhang J, et al. In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis. Proc Natl Acad Sci USA 2018; 115(17): E3978-86.
[http://dx.doi.org/10.1073/pnas.1716589115] [PMID: 29632194]
[43]
Liao S, Davoli T, Leng Y, Li MZ, Xu Q, Elledge SJ. A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. Genes Dev 2017; 31(2): 184-96.
[http://dx.doi.org/10.1101/gad.291948.116] [PMID: 28167502]
[44]
Han J, Perez JT, Chen C, et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Rep 2018; 23(2): 596-607.
[http://dx.doi.org/10.1016/j.celrep.2018.03.045] [PMID: 29642015]
[45]
Kim HS, Lee K, Bae S, et al. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection. J Biol Chem 2017; 292(25): 10664-71.
[http://dx.doi.org/10.1074/jbc.M117.782425] [PMID: 28446605]
[46]
Schiwitza A, Schildhaus HU, Zwerger B, et al. Monitoring efficacy of checkpoint inhibitor therapy in patients with non-small-cell lung cancer. Immunotherapy 2019; 11(9): 769-82.
[http://dx.doi.org/10.2217/imt-2019-0039] [PMID: 31120392]
[47]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[48]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[49]
Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014; 159(2): 440-55.
[http://dx.doi.org/10.1016/j.cell.2014.09.014] [PMID: 25263330]
[50]
Chen S, Sanjana NE, Zheng K, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 2015; 160(6): 1246-60.
[http://dx.doi.org/10.1016/j.cell.2015.02.038] [PMID: 25748654]
[51]
Constanzo JD, Tang KJ, Rindhe S, et al. PIAS1-FAK interaction promotes the survival and progression of non-small cell lung cancer. Neoplasia 2016; 18(5): 282-93.
[http://dx.doi.org/10.1016/j.neo.2016.03.003] [PMID: 27237320]
[52]
Tang KJ, Constanzo JD, Venkateswaran N, et al. Focal adhesion kinase regulates the DNA damage response and its inhibition radiosensitizes mutant KRAS lung cancer. Clin Cancer Res 2016; 22(23): 5851-63.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2603] [PMID: 27220963]
[53]
Saber A. Genomic aberrations guiding treatment of non-small cell lung cancer patients. Cancer Treat Commun 2015; 4: 23-33.
[http://dx.doi.org/10.1016/j.ctrc.2015.03.005]
[54]
Carelli S, Zadra G, Vaira V, et al. Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer 2006; 53(3): 263-71.
[http://dx.doi.org/10.1016/j.lungcan.2006.06.001] [PMID: 16842883]
[55]
Dy GK, Ylagan L, Pokharel S, et al. The prognostic significance of focal adhesion kinase expression in stage I non-small-cell lung cancer. J Thorac Oncol 2014; 9(9): 1278-84.
[http://dx.doi.org/10.1097/JTO.0000000000000248] [PMID: 25122425]
[56]
Seo S, Woo CG, Lee DH, Choi J. The clinical impact of an EML4-ALK variant on survival following crizotinib treatment in patients with advanced ALK-rearranged non-small-cell lung cancer. Ann Oncol 2017; 28(7): 1667-8.
[http://dx.doi.org/10.1093/annonc/mdx185] [PMID: 28407036]
[57]
González-Vallinas M, Rodríguez-Paredes M, Albrecht M, et al. Epigenetically regulated chromosome 14q32 miRNA cluster induces metastasis and predicts poor prognosis in lung adenocarcinoma patients. Mol Cancer Res 2018; 16(3): 390-402.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0334] [PMID: 29330288]
[58]
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002; 99(19): 12293-7.
[http://dx.doi.org/10.1073/pnas.192461099] [PMID: 12218188]
[59]
Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016; 539(7630): 479.
[http://dx.doi.org/10.1038/nature.2016.20988] [PMID: 27882996]
[60]
Song CQ, Li Y, Mou H, et al. Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice. Gastroenterology 2017; 152(5): 1161-1173.e1.
[http://dx.doi.org/10.1053/j.gastro.2016.12.002] [PMID: 27956228]
[61]
Tang JT, Wang JL, Du W, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis 2011; 32(8): 1207-15.
[http://dx.doi.org/10.1093/carcin/bgr114] [PMID: 21665895]
[62]
Cheng Z, Ma R, Tan W, Zhang L. MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp Mol Med 2014; 46: e112.
[http://dx.doi.org/10.1038/emm.2014.51] [PMID: 25190353]
[63]
McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 2014; 156(6): 1298-311.
[http://dx.doi.org/10.1016/j.cell.2014.02.031] [PMID: 24630729]
[64]
Pfister SX, Ahrabi S, Zalmas LP, et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep 2014; 7(6): 2006-18.
[http://dx.doi.org/10.1016/j.celrep.2014.05.026] [PMID: 24931610]
[65]
Medina PP, Romero OA, Kohno T, et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 2008; 29(5): 617-22.
[http://dx.doi.org/10.1002/humu.20730] [PMID: 18386774]
[66]
Chen R, Zhao WQ, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer 2020; 11(11): 3349-56.
[http://dx.doi.org/10.7150/jca.38391] [PMID: 32231741]
[67]
Orvis T, Hepperla A, Walter V, et al. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res 2014; 74(22): 6486-98.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0061] [PMID: 25115300]
[68]
Tagal V, Wei S, Zhang W, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun 2017; 8: 14098.
[http://dx.doi.org/10.1038/ncomms14098] [PMID: 28102363]
[69]
Malhotra S, Hayes D Jr, Wozniak DJ. Cystic fibrosis and pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev 2019; 32(3): 00138-18.
[http://dx.doi.org/10.1128/CMR.00138-18] [PMID: 31142499]
[70]
Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13(6): 653-8.
[http://dx.doi.org/10.1016/j.stem.2013.11.002] [PMID: 24315439]
[71]
Firth AL, Menon T, Parker GS, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 2015; 12(9): 1385-90.
[http://dx.doi.org/10.1016/j.celrep.2015.07.062] [PMID: 26299960]
[72]
Zhang S, Shrestha CL, Kopp BT. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function. Sci Rep 2018; 8(1): 17066.
[http://dx.doi.org/10.1038/s41598-018-35151-7] [PMID: 30459435]
[73]
Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020; 234119711
[http://dx.doi.org/10.1016/j.biomaterials.2019.119711]
[74]
Geurts MH, de Poel E, Amatngalim GD, et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell 2020; 26(4): 503-510.e7.
[http://dx.doi.org/10.1016/j.stem.2020.01.019] [PMID: 32084388]
[75]
Vaidyanathan S, Salahudeen AA, Sellers ZM, et al. High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients’ rescues cftr function in differentiated epithelia. Cell Stem Cell 2020; 26(2): 161-71.
[http://dx.doi.org/10.1016/j.stem.2019.11.002] [PMID: 31839569]
[76]
Avgerinou A, Ofrim M, Woodall M, et al. A proof-of-principle ex vivo gene therapy for cystic fibrosis: CFTR gene correction with CRISPR/cas9 of primary CF airway epithelial cells. Pediatr Pulmonol 2019; 54(2): 210.
[77]
Ruan J, Hirai H, Yang D, et al. Efficient gene editing at major CFTR mutation loci. Mol Ther Nucleic Acids 2019; 16(16): 73-81.
[http://dx.doi.org/10.1016/j.omtn.2019.02.006] [PMID: 30852378]
[78]
Xu Q, Hou YX, Chang XB. CRISPR/Cas9-mediated three nucleotide insertion corrects a deletion mutation in MRP1/ABCC1 and restores its proper folding and function. Mol Ther Nucleic Acids 2017; 7(7): 429-38.
[http://dx.doi.org/10.1016/j.omtn.2017.05.005] [PMID: 28624219]
[79]
Hao S, Roesch EA, Perez A, et al. Inactivation of CFTR by CRISPR/Cas9 alters transcriptional regulation of inflammatory pathways and other networks. J Cyst Fibros 2020; 19(1): 34-9.
[http://dx.doi.org/10.1016/j.jcf.2019.05.003] [PMID: 31126900]
[80]
Zhou ZP, Yang LL, Cao H, et al. In vitro validation of a CRISPR-mediated CFTR correction strategy for preclinical translation in pigs. Hum Gene Ther 2019; 30(9): 1101-16.
[http://dx.doi.org/10.1089/hum.2019.074] [PMID: 31099266]
[81]
Xia E, Duan R, Shi F, Seigel KE, Grasemann H, Hu J. Overcoming the undesirable CRISPR-Cas9 expression in gene correction. Mol Ther Nucleic Acids 2018; 13: 699-709.
[http://dx.doi.org/10.1016/j.omtn.2018.10.015] [PMID: 30513454]
[82]
Fan Z, Perisse IV, Cotton CU, et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 2018; 3(19): 123529.
[http://dx.doi.org/10.1172/jci.insight.123529] [PMID: 30282831]
[83]
Bellec J, Bacchetta M, Losa D, Anegon I, Chanson M, Nguyen TH. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells. Curr Gene Ther 2015; 15(5): 447-59.
[http://dx.doi.org/10.2174/1566523215666150812115939] [PMID: 26264708]
[84]
Bhandary YP, Shetty SK, Marudamuthu AS, et al. Regulation of lung injury and fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1. Am J Pathol 2013; 183(1): 131-43.
[http://dx.doi.org/10.1016/j.ajpath.2013.03.022] [PMID: 23665346]
[85]
Shaikh SB, Prabhu A, Bhandary YP. Interleukin-17A a potential therapeutic target in chronic lung diseases. Endocr Metab Immune Disord Drug Targets 2019; 19(7): 921-8.
[http://dx.doi.org/10.2174/1871530319666190116115226] [PMID: 30652654]
[86]
Cockrell AS, Yount BL, Scobey T, et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat Microbiol 2016; 2: 16226.
[http://dx.doi.org/10.1038/nmicrobiol.2016.226] [PMID: 27892925]
[87]
Chan JF, Yao Y, Yeung ML, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 2015; 212(12): 1904-13.
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[88]
Alcorn JL. Innate immunity and pulmonary inflammation: a balance between protection and disease.Translational Inflammation. Academic Press 2019; pp. 153-75.
[89]
Goodman MA, Moradi Manesh D, Malik P, Rothenberg ME. CRISPR/Cas9 in allergic and immunologic diseases. Expert Rev Clin Immunol 2017; 13(1): 5-9.
[http://dx.doi.org/10.1080/1744666X.2017.1241711] [PMID: 27687572]
[90]
Dixit A, Parnas O, Li B, et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 2016; 167(7): 1853-66.
[http://dx.doi.org/10.1016/j.cell.2016.11.038] [PMID: 27984732]
[91]
Datlinger P, Rendeiro AF, Schmidl C, et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 2017; 14(3): 297-301.
[http://dx.doi.org/10.1038/nmeth.4177] [PMID: 28099430]
[92]
Yilmaz G, Salihoglu Z. Does mean platelet volume/platelet count ratio and red rlood cell distribution width predict in-hospital mortality in patients admitted for acute exacerbation of chronic obstructive pulmonary disease? J Clin Microbiol 2019; 30: 18-25.
[93]
Bhandary YP, Shetty SK, Marudamuthu AS, et al. Plasminogen activator inhibitor-1 in cigarette smoke exposure and influenza A virus infection-induced lung injury. PLoS One 2015; 10(5): e0123187.
[http://dx.doi.org/10.1371/journal.pone.0123187] [PMID: 25932922]
[94]
Chu HW, Rios C, Huang C, et al. CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther 2015; 22(10): 822-9.
[http://dx.doi.org/10.1038/gt.2015.53] [PMID: 26043872]
[95]
Gao X, Bali AS, Randell SH, Hogan BL. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J Cell Biol 2015; 211(3): 669-82.
[http://dx.doi.org/10.1083/jcb.201506014] [PMID: 26527742]
[96]
Stolzenburg LR, Harris A, Winkle M, et al. Microvesicle-mediated delivery of miR-1343: impact on markers of fibrosis. Cell Tissue Res 2018; 371(2): 325-38.
[http://dx.doi.org/10.1007/s00441-017-2697-6] [PMID: 29022142]
[97]
Shaikh SB, Prabhu A, Bhandary YP. Targeting anti-aging protein sirtuin (Sirt) in the diagnosis of idiopathic pulmonary fibrosis. J Cell Biochem 2018; 120: 6878-85.
[http://dx.doi.org/10.1002/jcb.28033] [PMID: 30390331]
[98]
Woodcock HV, Eley JD, Guillotin D, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun 2019; 10(1): 6.
[http://dx.doi.org/10.1038/s41467-018-07858-8] [PMID: 30602778]
[99]
Chen G, Ribeiro CMP, Sun L, et al. XBP1S regulates MUC5B in a promoter variant–dependent pathway in idiopathic pulmonary fibrosis airway epithelia. Am J Respir Crit Care Med 2019; 200(2): 220-34.
[http://dx.doi.org/10.1164/rccm.201810-1972OC] [PMID: 30973754]
[100]
Song X, Xu P, Meng C, et al. lncITPF promotes pulmonary fibrosis by targeting hnRNP-L depending on its host gene ITGBL1. Mol Ther 2019; 27(2): 380-93.
[http://dx.doi.org/10.1016/j.ymthe.2018.08.026] [PMID: 30528088]
[101]
Marudamuthu AS, Bhandary YP, Shetty SK, et al. Role of the urokinase-fibrinolytic system in epithelial-mesenchymal transition during lung injury. Am J Pathol 2015; 185(1): 55-68.
[http://dx.doi.org/10.1016/j.ajpath.2014.08.027] [PMID: 25447049]
[102]
Wu Q, Jiang D, Matsuda JL, Ternyak K, Zhang B, Chu HW. Cigarette smoke induces human airway epithelial senescence via growth differentiation factor 15 production. Am J Respir Cell Mol Biol 2016; 55(3): 429-38.
[http://dx.doi.org/10.1165/rcmb.2015-0143OC] [PMID: 27093475]
[103]
Zhang YH, Wu LZ, Liang HL, et al. Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system. Am J Transl Res 2017; 9(2): 355-65.
[PMID: 28337265]
[104]
Bhandary YP. p53-Fibrinolytic system and acute lung injury. Biologia 2016; 71: 1098-102.
[http://dx.doi.org/10.1515/biolog-2016-0141]
[105]
Geiger S, Hirsch D, Hermann FG. Cell therapy for lung disease. Eur Respir Rev 2017; 26(144): 170044.
[http://dx.doi.org/10.1183/16000617.0044-2017] [PMID: 28659506]
[106]
Asokan A. CRISPR genome editing in stem cells turns to gold. Nat Mater 2019; 18(10): 1038-9.
[http://dx.doi.org/10.1038/s41563-019-0491-4] [PMID: 31537943]
[107]
Yang G, Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regen (Lond) 2019; 8(2): 33-41.
[http://dx.doi.org/10.1016/j.cr.2019.08.001] [PMID: 31666940]
[108]
Shui B, Hernandez Matias L, Guo Y, Peng Y. The rise of CRISPR/Cas for genome editing in stem cells. Stem Cells Int 2016; 2016: 8140168.
[http://dx.doi.org/10.1155/2016/8140168] [PMID: 26880991]
[109]
Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 2015; 16(2): 142-7.
[http://dx.doi.org/10.1016/j.stem.2015.01.003] [PMID: 25658371]
[110]
Chen KY, Knoepfler PS. To CRISPR and beyond: the evolution of genome editing in stem cells. Regen Med 2016; 11(8): 801-16.
[http://dx.doi.org/10.2217/rme-2016-0107] [PMID: 27905217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy