Review Article

Stem Cell Transplantation Improves Ovarian Function through Paracrine Mechanisms

Author(s): Wenlin Jiao, Xin Mi, Yingying Qin and Shidou Zhao*

Volume 20, Issue 5, 2020

Page: [347 - 355] Pages: 9

DOI: 10.2174/1566523220666200928142333

Price: $65

Abstract

The ovary serves as the source of oocytes for the maintenance of female fertility and is a major supplier of sex hormones for endocrine homeostasis. Various circumstances such as genetic defects, autoimmune disorders, natural aging and environmental toxins can damage the ovaries leading to diminished ovarian function, and there are currently no effective treatment regimens for such loss of function. Stem cells show promise for treating many refractory diseases, and stem cell transplantation has been shown to be effective and safe as a new therapeutic method for ovarian injuries and ovarian aging in both animal models and women with premature ovarian insufficiency. However, the specific mechanisms that underlie the observed positive outcomes of improving ovarian function are not well understood. Evidence is mounting that stem cell-derived conditioned medium, exosomes, and trophic growth factors can also inhibit ovarian damage and alleviate the age-related fertility decline in female mice, indicating that stem cells exert the paracrine effects. Further studies to elucidate the cellular and molecular mechanisms, including signaling pathways, for improving ovarian function and promoting the secretory capacity of stem cells will fill the bench-to-bedside gap of stem cell therapy in the clinic. Furthermore, in-depth analyses of the stem cell secretome and identification of the key effective components will underlie a new paradigm in cell-free therapeutic strategies for ovarian insufficiency and ovarian aging.

Keywords: Stem cells, paracrine function, secretome, ovary, MSCs, POF.

Graphical Abstract

[1]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[2]
Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KVJD. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16(3): 381-90.
[PMID: 5336210]
[3]
Friedenstein AJ, Chailakhjan RK, Lalykina KSJCP. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3(4): 393-403.
[http://dx.doi.org/10.1111/j.1365-2184.1970.tb00347.x] [PMID: 5523063]
[4]
Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2009; 28(3): 585-96.
[http://dx.doi.org/http://dx.doi.org/10.1002/stem.269] [PMID: 19967788]
[5]
Pastore LM, Christianson MS, Stelling J, Kearns WG, Segars JH. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J Assist Reprod Genet 2018; 35(1): 17-23.
[http://dx.doi.org/10.1007/s10815-017-1058-4] [PMID: 28971280]
[6]
Na J, Kim GJ. Recent trends in stem cell therapy for premature ovarian insufficiency and its therapeutic potential: a review. J Ovarian Res 2020; 13(1): 74.
[http://dx.doi.org/10.1186/s13048-020-00671-2] [PMID: 32576209]
[7]
Zhao YX, Chen SR, Su PP, et al. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases. Stem Cells Int 2019; 2019: 9071720.
[http://dx.doi.org/10.1155/2019/9071720] [PMID: 31885630]
[8]
Vanni VS, Viganò P, Papaleo E, Mangili G, Candiani M, Giorgione V. Advances in improving fertility in women through stem cell-based clinical platforms. Expert Opin Biol Ther 2017; 17(5): 585-93.
[http://dx.doi.org/10.1080/14712598.2017.1305352] [PMID: 28351161]
[9]
Yamashiro C, Sasaki K, Yokobayashi S, Kojima Y, Saitou M. Generation of human oogonia from induced pluripotent stem cells in culture. Nat Protoc 2020; 15(4): 1560-83.
[http://dx.doi.org/10.1038/s41596-020-0297-5] [PMID: 32231324]
[10]
Jung D, Xiong J, Ye M, Qin X, Li L, Cheng S, et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Comm 2017; 8: 15680.
[http://dx.doi.org/http://dx.doi.org/10.1038/ncomms15680]
[11]
Lan CW, Chen MJ, Jan PS, Chen HF, Ho HN. Differentiation of human embryonic stem cells into functional ovarian granulosa-like cells. J Clin Endocrinol Metab 2013; 98(9): 3713-23.
[http://dx.doi.org/10.1210/jc.2012-4302] [PMID: 23884780]
[12]
Park BW, Pan B, Toms D, et al. Ovarian-cell-like cells from skin stem cells restored estradiol production and estrus cycling in ovariectomized mice. Stem Cells Dev 2014; 23(14): 1647-58.
[http://dx.doi.org/10.1089/scd.2014.0029] [PMID: 24593690]
[13]
Manshadi MD, Navid S, Hoshino Y, Daneshi E, Noory P, Abbasi M. The effects of human menstrual blood stem cells-derived granulosa cells on ovarian follicle formation in a rat model of premature ovarian failure. Microsc Res Tech 2019; 82(6): 635-42.
[http://dx.doi.org/10.1002/jemt.23120] [PMID: 30582244]
[14]
Ghadami M, El-Demerdash E, Zhang D, et al. Bone marrow transplantation restores follicular maturation and steroid hormones production in a mouse model for primary ovarian failure. PLoS One 2012; 7(3): e32462.
[http://dx.doi.org/10.1371/journal.pone.0032462] [PMID: 22412875]
[15]
Ling L, Feng X, Wei T, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther 2019; 10(1): 46.
[http://dx.doi.org/10.1186/s13287-019-1136-x] [PMID: 30683144]
[16]
Feng X, Ling L, Zhang W, et al. Effects of human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation in situ on primary ovarian insufficiency in SD rats. Reprod Sci 2020; 27(7): 1502-12.
[http://dx.doi.org/10.1007/s43032-020-00147-0] [PMID: 31953773]
[17]
Zhang Q, Bu S, Sun J, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Res Ther 2017; 8(1): 270.
[http://dx.doi.org/10.1186/s13287-017-0721-0] [PMID: 29179771]
[18]
Santiquet N, Vallières L, Pothier F, Sirard MA, Robert C, Richard F. Transplanted bone marrow cells do not provide new oocytes but rescue fertility in female mice following treatment with chemotherapeutic agents. Cell Reprogram 2012; 14(2): 123-9.
[http://dx.doi.org/10.1089/cell.2011.0066] [PMID: 22471934]
[19]
Reig A, Mamillapalli R, Coolidge A, Johnson J, Taylor HSJRS. Uterine cells improved ovarian function in a murine model of ovarian insufficiency. Reprod Sci 2019; 26(12): 1633-9.
[http://dx.doi.org/10.1177/1933719119875818] [PMID: 31530098]
[20]
Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 2016; 18(1): 13-24.
[http://dx.doi.org/10.1016/j.jcyt.2015.10.008] [PMID: 26631828]
[21]
Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 2013; 95(12): 2196-211.
[http://dx.doi.org/10.1016/j.biochi.2013.07.015] [PMID: 23880644]
[22]
Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21(R1): R125-34.
[http://dx.doi.org/10.1093/hmg/dds317] [PMID: 22872698]
[23]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[24]
Khanmohammadi N, Sameni HR, Mohammadi M, et al. Effect of transplantation of bone marrow stromal cell- conditioned medium on ovarian function, morphology and cell death in cyclophosphamide-treated rats. Cell J 2018; 20(1): 10-8.
[PMID: 29308613]
[25]
Yang W, Zhang J, Xu B, et al. HucMSC-derived exosomes mitigate the age-related retardation of fertility in female mice. Mol Ther 2020; 28(4): 1200-13.
[http://dx.doi.org/10.1016/j.ymthe.2020.02.003] [PMID: 32097602]
[26]
Ding L, Yan G, Wang B, et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Sci China Life Sci 2018; 61(12): 1554-65.
[http://dx.doi.org/10.1007/s11427-017-9272-2] [PMID: 29546669]
[27]
Liu M, Qiu Y, Xue Z, et al. Small extracellular vesicles derived from embryonic stem cells restore ovarian function of premature ovarian failure through PI3K/AKT signaling pathway. Stem Cell Res Ther 2020; 11(1): 3.
[http://dx.doi.org/10.1186/s13287-019-1508-2] [PMID: 31900201]
[28]
Yang Z, Du X, Wang C, et al. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice. Stem Cell Res Ther 2019; 10(1): 250.
[http://dx.doi.org/10.1186/s13287-019-1327-5] [PMID: 31412919]
[29]
Wang Z, Wang Y, Yang T, Li J, Yang X. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther 2017; 8(1): 11.
[http://dx.doi.org/10.1186/s13287-016-0458-1] [PMID: 28114977]
[30]
Kim GA, Lee Y, Kim HJ, et al. Intravenous human endothelial progenitor cell administration into aged mice enhances embryo development and oocyte quality by reducing inflammation, endoplasmic reticulum stress and apoptosis. J Vet Med Sci 2018; 80(12): 1905-13.
[http://dx.doi.org/10.1292/jvms.18-0242] [PMID: 30369585]
[31]
Yao X, Guo Y, Wang Q, et al. The paracrine effect of transplanted human amniotic epithelial cells on ovarian function improvement in a mouse model of chemotherapy-induced primary ovarian insufficiency. Stem Cells Int 2016; 2016: 4148923.
[http://dx.doi.org/10.1155/2016/4148923] [PMID: 26664408]
[32]
Jafarzadeh H, Nazarian H, Ghaffari Novin M, Shams Mofarahe Z, Eini F, Piryaei A. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell-conditioned media. J Cell Biochem 2018; 119(12): 10365-75.
[http://dx.doi.org/10.1002/jcb.27380] [PMID: 30171726]
[33]
Liu C, Yin H, Jiang H, et al. Extracellular vesicles derived from mesenchymal stem cells recover fertility of premature ovarian insufficiency mice and the effects on their offspring. Cell Transplant 2020; 29: 963689720923575.
[http://dx.doi.org/10.1177/0963689720923575] [PMID: 32363925]
[34]
Huang B, Ding C, Zou Q, Lu J, Wang W, Li H. Human amniotic fluid mesenchymal stem cells improve ovarian function during physiological aging by resisting DNA damage. Front Pharmacol 2020; 11: 272.
[http://dx.doi.org/10.3389/fphar.2020.00272] [PMID: 32273842]
[35]
Sun L, Li D, Song K, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep 2017; 7(1): 2552.
[http://dx.doi.org/10.1038/s41598-017-02786-x] [PMID: 28566720]
[36]
Huang B, Lu J, Ding C, Zou Q, Wang W, Li H. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD. Stem Cell Res Ther 2018; 9(1): 216.
[http://dx.doi.org/10.1186/s13287-018-0953-7] [PMID: 30092819]
[37]
Yang M, Lin L, Sha C, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. Lab Invest 2020; 100(3): 342-52.
[http://dx.doi.org/10.1038/s41374-019-0321-y] [PMID: 31537899]
[38]
Sun B, Ma Y, Wang F, Hu L, Sun Y. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res Ther 2019; 10(1): 360.
[http://dx.doi.org/10.1186/s13287-019-1442-3] [PMID: 31783913]
[39]
Ding C, Zou Q, Wu Y, et al. EGF released from human placental mesenchymal stem cells improves premature ovarian insufficiency via NRF2/HO-1 activation. Aging (Albany NY) 2020; 12(3): 2992-3009.
[http://dx.doi.org/10.18632/aging.102794] [PMID: 32040445]
[40]
Ding C, Zou Q, Wang F, et al. HGF and BFGF secretion by human adipose-derived stem cells improves ovarian function during natural aging via activation of the sirt1/foxo1 signaling pathway. Cell Physiol Biochem 2018; 45(4): 1316-32.
[http://dx.doi.org/10.1159/000487559] [PMID: 29462806]
[41]
Li J, Mao Q, He J, She H, Zhang Z, Yin C. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther 2017; 8(1): 55.
[http://dx.doi.org/10.1186/s13287-017-0514-5] [PMID: 28279229]
[42]
Ding C, Zou Q, Wang F, et al. Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor. Stem Cell Res Ther 2018; 9(1): 55.
[http://dx.doi.org/10.1186/s13287-018-0781-9] [PMID: 29523193]
[43]
Mauro A, Martelli A, Berardinelli P, et al. Effect of antiprogesterone RU486 on VEGF expression and blood vessel remodeling on ovarian follicles before ovulation. PLoS One 2014; 9(4): e95910.
[http://dx.doi.org/10.1371/journal.pone.0095910] [PMID: 24756033]
[44]
Jia Y, Shi X, Xie Y, Xie X, Wang Y, Li S. Human umbilical cord stem cell conditioned medium versus serum-free culture medium in the treatment of cryopreserved human ovarian tissues in in-vitro culture: a randomized controlled trial. Stem Cell Res Ther 2017; 8(1): 152.
[http://dx.doi.org/10.1186/s13287-017-0604-4] [PMID: 28646900]
[45]
Park HS, Ashour D, Elsharoud A, et al. Towards cell free therapy of premature ovarian insufficiency: Human bone marrow mesenchymal stem cells secretome enhances angiogenesis in human ovarian microvascular endothelial cells. HSOA J Stem Cells Res Dev Ther 2019; 5(2): 019.
[http://dx.doi.org/10.24966/srdt-2060/100019] [PMID: 32494757]
[46]
Kuchroo P, Dave V, Vijayan A, Viswanathan C, Ghosh D. Paracrine factors secreted by umbilical cord-derived mesenchymal stem cells induce angiogenesis in vitro by a VEGF-independent pathway. Stem Cells Dev 2015; 24(4): 437-50.
[http://dx.doi.org/10.1089/scd.2014.0184] [PMID: 25229480]
[47]
Zhang Y, Xia X, Yan J, et al. Mesenchymal stem cell-derived angiogenin promotes primodial follicle survival and angiogenesis in transplanted human ovarian tissue. Reprod Biol Endocrinol 2017; 15(1): 18.
[http://dx.doi.org/10.1186/s12958-017-0235-8] [PMID: 28274269]
[48]
Warren BD, Kinsey WK, McGinnis LK, et al. Ovarian autoimmune disease: clinical concepts and animal models. Cell Mol Immunol 2014; 11(6): 510-21.
[http://dx.doi.org/10.1038/cmi.2014.97] [PMID: 25327908]
[49]
Zhang Q, Huang Y, Sun J, Gu T, Shao X, Lai D. Immunomodulatory effect of human amniotic epithelial cells on restoration of ovarian function in mice with autoimmune ovarian disease. Acta Biochim Biophys Sin (Shanghai) 2019; 51(8): 845-55.
[http://dx.doi.org/10.1093/abbs/gmz065] [PMID: 31287492]
[50]
Zhang C. The roles of different stem cells on premature ovarian failure. Curr Stem Cell Res Ther 2020; 15(6): 473-81.
[http://dx.doi.org/10.2174/1574888X14666190314123006] [PMID: 30868961]
[51]
Bárcia RN, Santos JM, Filipe M, et al. What makes umbilical cord tissue-derived mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells? Stem Cells Int 2015; 2015: 583984.
[http://dx.doi.org/10.1155/2015/583984] [PMID: 26064137]
[52]
Wang S, Zheng Y, Li J, et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 2020; 180(3): 585-600.
[http://dx.doi.org/10.1016/j.cell.2020.01.009] [PMID: 32004457]
[53]
Ding C, Zhu L, Shen H, et al. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7. Stem Cells 2020; 38(9): 1137-48.
[http://dx.doi.org/10.1002/stem.3204] [PMID: 32442343]
[54]
Ding C, Qian C, Hou S, et al. Exosomal miRNA-320a is released from hAMSCs and regulates SIRT4 to prevent reactive oxygen species generation in POI. Mol Ther Nucleic Acids 2020; 21: 37-50.
[http://dx.doi.org/10.1016/j.omtn.2020.05.013] [PMID: 32506013]
[55]
Liu R, Zhang X, Fan Z, et al. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther 2019; 10(1): 299.
[http://dx.doi.org/10.1186/s13287-019-1315-9] [PMID: 31578152]
[56]
Bezerra MES, Monte APO, Barberino RS, et al. Conditioned medium of ovine Wharton’s jelly-derived mesenchymal stem cells improves growth and reduces ROS generation of isolated secondary follicles after short-term in vitro culture. Theriogenology 2019; 125: 56-63.
[http://dx.doi.org/10.1016/j.theriogenology.2018.10.012] [PMID: 30388472]
[57]
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med 2020; 9(9): 985-1006.
[http://dx.doi.org/10.1002/sctm.19-0446] [PMID: 32497410]
[58]
Zhou F, Shi LB, Zhang SY. Ovarian Fibrosis: A Phenomenon of Concern. Chin Med J (Engl) 2017; 130(3): 365-71.
[http://dx.doi.org/10.4103/0366-6999.198931] [PMID: 28139522]
[59]
Liu B, Ding F, Hu D, et al. Human umbilical cord mesenchymal stem cell conditioned medium attenuates renal fibrosis by reducing inflammation and epithelial-to-mesenchymal transition via the TLR4/NF-κB signaling pathway in vivo and in vitro . Stem Cell Res Ther 2018; 9(1): 7.
[http://dx.doi.org/10.1186/s13287-017-0760-6] [PMID: 29329595]
[60]
Eom YW, Shim KY, Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med (Korean Assoc Intern Med) 2015; 30(5): 580-9.
[http://dx.doi.org/10.3904/kjim.2015.30.5.580] [PMID: 26354051]
[61]
El Agha E, Kramann R, Schneider RK, et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 2017; 21(2): 166-77.
[http://dx.doi.org/10.1016/j.stem.2017.07.011] [PMID: 28777943]
[62]
Edessy M, Hosni HN, Shady Y, et al. Autologous stem cells therapy, the first baby of idiopathic premature ovarian failure. Acta Med Int 2016; 3: 19-23.
[http://dx.doi.org/10.5530/ami.2016.1.7]
[63]
Gabr H, Elkheir WA, El-Gazzar A, et al. Autologous stem cell transplantation in patients with idiopathic premature ovarian failure. J Tissue Sci Eng 2016; 7: 3.
[64]
Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod 2011; 26(7): 1616-24.
[http://dx.doi.org/10.1093/humrep/der092] [PMID: 21505041]
[65]
Herraiz S, Romeu M, Buigues A, et al. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil Steril 2018; 110(3): 496-505.
[http://dx.doi.org/10.1016/j.fertnstert.2018.04.025] [PMID: 29960701]
[66]
Zafardoust S, Kazemnejad S, Darzi M, Fathi-Kazerooni M, Rastegari H, Mohammadzadeh A. Improvement of pregnancy rate and live birth rate in poor ovarian responders by intraovarian administration of autologous menstrual blood derived- mesenchymal stromal cells: Phase I/II clinical trial. Stem Cell Rev Rep 2020; 16(4): 755-63.
[http://dx.doi.org/10.1007/s12015-020-09969-6] [PMID: 32198596]
[67]
Gupta S, Lodha P, Karthick MS, Tandulwadkar SR. Role of autologous bone marrow-derived stem cell therapy for follicular recruitment in premature ovarian insufficiency: review of literature and a case report of world’s first baby with ovarian autologous stem cell therapy in a perimenopausal woman of age 45 year. J Hum Reprod Sci 2018; 11(2): 125-30.
[http://dx.doi.org/10.4103/jhrs.JHRS_57_18] [PMID: 30158807]
[68]
Sfakianoudis K, Simopoulou M, Nitsos N, et al. A case series on platelet-rich plasma revolutionary management of poor responder patients. Gynecol Obstet Invest 2019; 84(1): 99-106.
[http://dx.doi.org/10.1159/000491697] [PMID: 30134239]
[69]
Hsu CC, Hsu L, Hsu I, Chiu YJ, Dorjee S. Live birth in woman with premature ovarian insufficiency receiving ovarian administration of platelet-rich plasma (prp) in combination with gonadotropin: a case report. Front Endocrinol (Lausanne) 2020; 11: 50.
[http://dx.doi.org/10.3389/fendo.2020.00050] [PMID: 32140135]
[70]
Sills ES, Wood SH. Autologous activated platelet-rich plasma injection into adult human ovary tissue: molecular mechanism, analysis, and discussion of reproductive response. Biosci Rep 2019; 39(6): BSR20190805.
[http://dx.doi.org/10.1042/BSR20190805] [PMID: 31092698]
[71]
Sfakianoudis K, Simopoulou M, Grigoriadis S, et al. Reactivating ovarian function through autologous platelet-rich plasma intraovarian infusion: pilot data on premature ovarian insufficiency, perimenopausal, menopausal, and poor responder women. J Clin Med 2020; 9(6): 1809.
[http://dx.doi.org/10.3390/jcm9061809] [PMID: 32532000]
[72]
Meng X, Sun B, Xiao Z. Comparison in transcriptome and cytokine profiles of mesenchymal stem cells from human umbilical cord and cord blood. Gene 2019; 696: 10-20.
[http://dx.doi.org/10.1016/j.gene.2019.02.017] [PMID: 30769140]
[73]
Park CW, Kim KS, Bae S, et al. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int J Stem Cells 2009; 2(1): 59-68.
[http://dx.doi.org/10.15283/ijsc.2009.2.1.59] [PMID: 24855521]
[74]
Hong L, Yan L, Xin Z, et al. Protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium on ovarian damage. J Mol Cell Biol 2020; 12(5): 372-85.
[http://dx.doi.org/10.1093/jmcb/mjz105] [PMID: 31742349]
[75]
Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E. Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol 2009; 219(3): 563-71.
[http://dx.doi.org/10.1002/jcp.21701] [PMID: 19170074]
[76]
Damous LL, de Carvalho AETS, Nakamuta JS, et al. Cell-free therapy with the secretome of adipose tissue-derived stem cells in rats’ frozen-thawed ovarian grafts. Stem Cell Res Ther 2018; 9(1): 323.
[http://dx.doi.org/10.1186/s13287-018-1054-3] [PMID: 30463630]
[77]
Vassilieva IO, Reshetnikova GF, Shatrova AN, et al. Senescence-messaging secretome factors trigger premature senescence in human endometrium-derived stem cells. Biochem Biophys Res Commun 2018; 496(4): 1162-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.163] [PMID: 29397942]
[78]
Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med 2019; 13(4): 569-86.
[http://dx.doi.org/10.1002/term.2806] [PMID: 30644175]
[79]
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol 2018; 9: 2837.
[http://dx.doi.org/10.3389/fimmu.2018.02837] [PMID: 30564236]
[80]
Xiao GY, Cheng CC, Chiang YS, Cheng WT, Liu IH, Wu SC. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy. Sci Rep 2016; 6: 23120.
[http://dx.doi.org/10.1038/srep23120] [PMID: 26979400]
[81]
Zhang Y, Ouyang X, You S, et al. Effect of human amniotic epithelial cells on ovarian function, fertility and ovarian reserve in primary ovarian insufficiency rats and analysis of underlying mechanisms by mRNA sequencing. Am J Transl Res 2020; 12(7): 3234-54.
[PMID: 32774697]
[82]
Zhang Q, Sun J, Huang Y, et al. human amniotic epithelial cell-derived exosomes restore ovarian function by transferring microRNAs against apoptosis. Mol Ther Nucleic Acids 2019; 16: 407-18.
[http://dx.doi.org/10.1016/j.omtn.2019.03.008] [PMID: 31022607]
[83]
Yin JQ, Zhu J, Ankrum JA. Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3(2): 90-104.
[http://dx.doi.org/10.1038/s41551-018-0325-8] [PMID: 30944433]
[84]
Gonzalez-King H, García NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepúlveda P. Hypoxia Inducible Factor-1α Potentiates Jagged 1-Mediated Angiogenesis by Mesenchymal Stem Cell-Derived Exosomes. Stem Cells 2017; 35(7): 1747-59.
[http://dx.doi.org/10.1002/stem.2618] [PMID: 28376567]
[85]
Nie WB, Zhang D, Wang LS. Growth factor gene-modified mesenchymal stem cells in tissue regeneration. Drug Des Devel Ther 2020; 14: 1241-56.
[http://dx.doi.org/10.2147/DDDT.S243944] [PMID: 32273686]
[86]
Fu X, He Y, Wang X, et al. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Ther 2017; 8(1): 187.
[http://dx.doi.org/10.1186/s13287-017-0641-z] [PMID: 28807003]
[87]
Qazi TH, Mooney DJ, Duda GN, Geissler S. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials 2017; 140: 103-14.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.019] [PMID: 28644976]
[88]
Liu W, Li Y, Zeng Y, et al. Microcryogels as injectable 3-D cellular microniches for site-directed and augmented cell delivery. Acta Biomater 2014; 10(5): 1864-75.
[http://dx.doi.org/10.1016/j.actbio.2013.12.008] [PMID: 24342043]
[89]
Hou S, Ding C, Shen H, et al. Vitamin C improves the therapeutic potential of human amniotic epithelial cells in premature ovarian insufficiency disease. Stem Cell Res Ther 2020; 11(1): 159.
[http://dx.doi.org/10.1186/s13287-020-01666-y] [PMID: 32321569]
[90]
Ling L, Feng X, Wei T, et al. Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats. Stem Cell Res Ther 2017; 8(1): 283.
[http://dx.doi.org/10.1186/s13287-017-0739-3] [PMID: 29258619]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy