Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Carbonic Anhydrase Inhibition Potential and Some Bioactivities of the Peripherally Tetrasubstituted Cobalt(II), Titanium(IV), Manganese(III) Phthalocyanines

Author(s): Ayça Aktaş Karaçelik*, Murat Küçük, Derya Efe, Volkan Çakır and Zekeriya Bıyıklıoğlu

Volume 18, Issue 4, 2021

Published on: 09 October, 2020

Page: [365 - 371] Pages: 7

DOI: 10.2174/1570180817999201009162347

Price: $65

Abstract

Background: Peripherally tetrasubstituted cobalt(II), titanium(IV), manganese(III) phthalocyanines carrying redox-active metal centers were previously synthesized. Metallophthalocyanines (MPcs) exhibited the potential to use in medicinal applications due to biological activities, such as antibacterial, antioxidant and enzyme inhibition.

Objective: This study's aim was to evaluate the previously synthesized metallophthalocyanines in terms of carbonic anhydrase inhibition, antioxidant, and antimicrobial activities.

Methods: Carbonic anhydrase activity was assayed by following esterase activity. The antibacterial activity was tested by the disc diffusion method against eight bacteria. The antioxidant activity was determined by two common methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging and ferric ion (III) reducing/antioxidant power (FRAP) assays.

Results: In this study, the inhibition potential of the metallophthallocyanines against carbonic anhydrase (CA) enzyme, which is important for treatments of many disorders, was evaluated. The metallophthalocyanines showed high CA inhibitory activity with IC50 values in the range of 74-317 nM, which was similar or better when compared with the standard CA inhibitors sulfanilamide and acetazolamide. In addition, antibacterial and antioxidant activities were determined. The metallophthallocyanines exhibited moderate antibacterial activity, especially against S. aureus and S. epidermis. The antioxidant activities of the compounds in both tests were quite high, even exceeding the standards Trolox and BHT, with SC50 values of 0.0048-0.0257 and TEAC values of 1143.3- 1543.7 μM, being 2 to 73 fold better activity.

Conclusion: In conclusion, all three metallophthalocyanines exhibit excellent carbonic anhydrase and antioxidant potential and deserve further interest for the synthesis of new derivatives.

Keywords: Metallophthalocyanines, carbonic anhydrase inhibition, antibacterial, antioxidant, biological activity, enzyme.

Graphical Abstract

[1]
Tayfuroǧlu, Ö.; Kılıçarslan, F.A.; Atmaca, G.Y.; Erdogmus, A. Synthesis, Characterization of new phthalocyanines and investigation of photophysical, photochemical properties and theoretical studies. J. Porphyr. Phthalocyanines, 2018, 22, 250-265.
[http://dx.doi.org/10.1142/S1088424618500281]
[2]
van Staden, J.K.F. Application of phthalocyanines in flow- and sequential-injection analysis and microfluidics systems: A review. Talanta, 2015, 139, 75-88.
[http://dx.doi.org/10.1016/j.talanta.2015.02.026] [PMID: 25882411]
[3]
Arslan, S. Phthalocyanines: structure, synthesis, purification and applications. Batman Univ. J. Life Sci., 2016, 6, 188-197.
[4]
Sakamoto, K.; Ohno-Okumura, E. Syntheses and functional properties of phthalocyanines. Materials (Basel), 2009, 2, 1127-1179.
[http://dx.doi.org/10.3390/ma2031127]
[5]
Cid, J.J.; Yum, J.H.; Jang, S.R.; Nazeeruddin, M.K.; Martínez-Ferrero, E.; Palomares, E.; Ko, J.; Grätzel, M.; Torres, T. Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl., 2007, 46(44), 8358-8362.
[http://dx.doi.org/10.1002/anie.200703106] [PMID: 17912726]
[6]
Atilla, D.; Saydan, N.; Durmuş, M.; Gürek, A.G.; Khan, T.; Rück, A.; Walt, H.; Nyokong, T.; Ahsen, V. Synthesis and photodynamic potential of tetra- and octa-triethyleneoxysulfonyl substituted zinc phthalocyanines. J. Photochem. Photobiol. Chem., 2007, 186, 298-307.
[http://dx.doi.org/10.1016/j.jphotochem.2006.08.022]
[7]
Dumoulin, F.; Durmuş, M.; Ahsen, V.; Nyokong, T. Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord. Chem. Rev., 2010, 254, 2792-2847.
[http://dx.doi.org/10.1016/j.ccr.2010.05.002]
[8]
Çakir, V.; Demir, F.; Biyiklioǧlu, Z.; Koca, A.; Kantekin, H. Synthesis, characterization, electrochemical and spectroelectrochemical properties of metal-free and metallophthalocyanines bearing electropolymerizable dimethylamine groups. Dyes Pigments, 2013, 98, 414-421.
[http://dx.doi.org/10.1016/j.dyepig.2013.03.021]
[9]
Keleş, T.; Akyüz, D.; Biyiklioglu, Z.; Koca, A. Electropolymerization of metallophthalocyanines carrying redox active metal centers and their electrochemical pesticide sensing application. Electroanalysis, 2017, 29, 2125-2137.
[http://dx.doi.org/10.1002/elan.201700249]
[10]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[http://dx.doi.org/10.1002/med.10025] [PMID: 12500287]
[11]
Supuran, C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[12]
Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C.T. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J. Enzyme Inhib. Med. Chem., 2004, 19(3), 199-229.
[http://dx.doi.org/10.1080/14756360410001689540] [PMID: 15499993]
[13]
Sentürk, M.; Gülçin, I.; Daştan, A.; Küfrevioğlu, O.I.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg. Med. Chem., 2009, 17(8), 3207-3211.
[http://dx.doi.org/10.1016/j.bmc.2009.01.067] [PMID: 19231207]
[14]
Sentürk, M.; Gülçin, I.; Beydemir, S.; Küfrevioğlu, O.I.; Supuran, C.T. In Vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem. Biol. Drug Des., 2011, 77(6), 494-499.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01104.x] [PMID: 21332948]
[15]
Davis, R.A.; Vullo, D.; Maresca, A.; Supuran, C.T.; Poulsen, S.A. Natural product coumarins that inhibit human carbonic anhydrases. Bioorg. Med. Chem., 2013, 21(6), 1539-1543.
[http://dx.doi.org/10.1016/j.bmc.2012.07.021] [PMID: 22892213]
[16]
Sindhi, V.; Gupta, V.; Sharma, K.; Bhatnagar, S.; Kumari, R.; Dhaka, N. Potential applications of antioxidants-a review. J. Pharm. Res., 2013, 7, 828-835.
[http://dx.doi.org/10.1016/j.jopr.2013.10.001]
[17]
Robertson, C.A.; Abrahamse, H. The in vitro PDT efficacy of a novel metallophthalocyanine (MPc) derivative and established 5-ALA photosensitizing dyes against human metastatic melanoma cells. Lasers Surg. Med., 2011, 43, 868.
[http://dx.doi.org/10.1002/lsm.21131] [PMID: 21246581]
[18]
Özen, F.; Günel, A.; Baran, A. DNA-binding, enzyme inhibition, and photochemical properties of chalcone-containing metallophthalocyanine compounds. Bioorg. Chem., 2018, 81, 71-78.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.002] [PMID: 30118987]
[19]
Sahin, H.; Biyiklioglu, Z.; Cakir, D.; Cakir, V.; Kolayli, S. Anti-urease, anti-hyaluronidase, antioxidant properties of some zinc (II) phthalocyanines. Curr. Enzym. Inhib., 2018, 14, 186-195.
[http://dx.doi.org/10.2174/1573408014666180627143643]
[20]
Unluer, D.; Aktas Kamiloglu, A.; Direkel, S.; Bektas, E.; Kantekin, H.; Sancak, K. Synthesis and characterization of metallophthalocyanine with morpholine containing schiff base and determination of their antimicrobial and antioxidant activities. J. Organomet. Chem., 2019, 900120936
[http://dx.doi.org/10.1016/j.jorganchem.2019.120936]]
[21]
Amaral, G.P.; Puntel, G.O.; Dalla Corte, C.L.; Dobrachinski, F.; Barcelos, R.P.; Bastos, L.L.; Ávila, D.S.; Rocha, J.B.T.; da Silva, E.O.; Puntel, R.L.; Soares, F.A. The antioxidant properties of different phthalocyanines. Toxicol. In Vitro, 2012, 26(1), 125-132.
[http://dx.doi.org/10.1016/j.tiv.2011.10.006] [PMID: 22024102]
[22]
Pereira, J.B.; Carvalho, E.F.A.; Faustino, M.A.F.; Fernandes, R.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S.; Gomes, N.C.M.; Cunha, A.; Almeida, A.; Tomé, J.P.C. Phthalocyanine thio-pyridinium derivatives as antibacterial photosensitizers. Photochem. Photobiol., 2012, 88(3), 537-547.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01113.x] [PMID: 22332603]
[23]
Vallemolinares, R.H.; Romero, P.R.D.; Quigua, O.R.M.; Vallejo, L.W.A.; Díaz, U.C.E.; Arboleda, V.J.W. Antimicrobial activity of metallo tetra (4-Carboxyphenyl) phthalocyanine useful in photodynamic therapy. Pharmacologyonline, 2015, 2, 131-137.
[24]
Güven, M.E.; Aǧirtaş, M.S.; Özdemir, S.; Dündar, A. Synthesis, characterization, aggregation behavior, antioxidant activity, and antibacterial activity of metallophthalocyanines carrying four phthalonitriles group. Rev. Roum. Chim., 2016, 61, 205-212.
[25]
Verpoorte, J.A.; Mehta, S.; Edsall, J.T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem., 1967, 242(18), 4221-4229.
[PMID: 4964830]
[26]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[27]
Karaçelik, A.A.; Küçük, M.; İskefiyeli, Z.; Aydemir, S.; De Smet, S.; Miserez, B.; Sandra, P. Antioxidant components of Viburnum opulus L. determined by on-line HPLC-UV-ABTS radical scavenging and LC-UV-ESI-MS methods. Food Chem., 2015, 175, 106-114.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.085] [PMID: 25577058]
[28]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT- Food Sci Technol., 1995, 28, 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[29]
Gormez, A.; Bozari, S.; Yanmis, D.; Gulluce, M.; Agar, G.; Sahin, F. Antibacterial activity and chemical composition of essential oil obtained from nepeta nuda against phytopathogenic bacteria. J. Essent. Oil Res., 2013, 25, 149-153.
[http://dx.doi.org/10.1080/10412905.2012.751060]
[30]
Nyamu, S.N.; Ombaka, L.; Masika, E.; Nganga, M. Antimicrobial photodynamic activity of phthalocyanine derivatives. Adv. Chem., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/2598062]
[31]
Siegel, R.E. Emerging gram-negative antibiotic resistance: daunting challenges, declining sensitivities, and dire consequences. Respir. Care, 2008, 53(4), 471-479.
[PMID: 18364060]
[32]
Rapulenyane, N. Photophysicochemical and Photodynamic Antimicrobial Chemotherapeutic Studies of Novel Phthalocyanines Conjugated to Silver Nanoparticles., 2013.
[33]
Liu, Y.; Qin, R.; Zaat, S.A.J.; Breukink, E.; Heger, M. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J. Clin. Transl. Res., 2015, 1(3), 140-167.
[PMID: 30873451]
[34]
Beveridge, T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol., 1999, 181(16), 4725-4733.
[http://dx.doi.org/10.1128/JB.181.16.4725-4733.1999] [PMID: 10438737]
[35]
Yakan, H.; Çavuş, M.S.; Güzel, E.; Arslan, B.S.; Bakır, T.; Muğlu, H. Phthalocyanines including 2-mercaptobenzimidazole analogs: synthesis, spectroscopic characteristics, quantum-chemical studies on the relationship between electronic and antioxidant properties. J. Mol. Struct., 2020, 1202, 1-11.
[http://dx.doi.org/10.1016/j.molstruc.2019.127259]
[36]
Baran, A.; Çol, S.; Karakılıç, E.; Özen, F. photophysical, photochemical and DNA binding studies of prepared phthalocyanines. Polyhedron, 2020, 175114205
[http://dx.doi.org/10.1016/j.poly.2019.114205]]
[37]
Agirtaş, M.S.; Cabir, B.; Gümüş, S.; Özdemir, S.; Dündar, A. Synthesis and antioxidant, aggregation, and electronic properties of 6-tert-butyl-1,4-benzodioxine substituted phthalocyanines. Turk. J. Chem., 2018, 42, 100-111.
[http://dx.doi.org/10.3906/kim-1605-59]
[38]
Yıldırım, N.; Bilgiçli, A.T.; Alici, E.H.; Arabacı, G.; Yarasir, M.N. Formation, characterization, aggregation, fluorescence and antioxidant properties of novel tetrasubstituted metal-free and metallophthalocyanines bearing (4-(methylthio)phenoxy) moieties. J. Mol. Struct., 2017, 1144, 66-79.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.006]
[39]
Basappa, C.; Reddy, V.K.R.; Kotresh, H.M.N.; Musturappa, P.K.; Devendrachari, M.C.; Ganesh, S.D. Synthesis, characterization, novel interaction of DNA, antioxidant and antimicrobial studies of new water soluble metallophthalocyanines posture eight hydroxyphenyl moiety via 1,3,4-oxadiazole bridge. J. Heterocycl. Chem., 2015, 52, 1782.
[http://dx.doi.org/10.1002/jhet.2269]
[40]
Çelebi, M.; Aʇirtaş, M.S.; Dundar, A. Different peripheral substituted phthalocyanines: synthesis, characterization, aggregation behavior, antioxidant and antibacterial activity. J. Struct. Chem., 2015, 56, 1638-1645.
[http://dx.doi.org/10.1134/S0022476615080284]
[41]
Arslan, T.; Çakır, N.; Keleş, T.; Biyiklioglu, Z.; Senturk, M. Triazole substituted metal-free, metallo-phthalocyanines and their water soluble derivatives as potential cholinesterases inhibitors: Design, synthesis and in vitro inhibition study. Bioorg. Chem., 2019, 90103100
[http://dx.doi.org/10.1016/j.bioorg.2019.103100]] [PMID: 31288136]
[42]
Demirbaş, Ü.; Barut, B.; Yalçın, İ.; Değirmencioğlu, İ.; Yıldırmış, S.; Özel, A. Synthesis, characterization, and investigation of cholinesterase inhibitory properties of novel phthalocyanines. J. Heterocycl. Chem., 2019, 56, 1553-1559.
[http://dx.doi.org/10.1002/jhet.3530]
[43]
Barut, B.; Demirbaş, Ü.; Özel, A.; Kantekin, H. Novel water soluble morpholine substituted Zn(II) phthalocyanine: Synthesis, characterization, DNA/BSA binding, DNA photocleavage and topoisomerase I inhibition. Int. J. Biol. Macromol., 2017, 105(Pt 1), 499-508.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.072] [PMID: 28720547]
[44]
Kantar, C.; Mavi, V.; Baltaş, N.; Islamoǧlu, F.; Şaşmaz, S. Novel zinc(II) phthalocyanines bearing azo-containing schiff base: determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties. J. Mol. Struct., 2016, 1122, 88-99.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.055]
[45]
Arslan, T.; Biyiklioglu, Z.; Şentürk, M. The synthesis of axially disubstituted silicon phthalocyanines, their quaternized derivatives and first inhibitory effect on human cytosolic carbonic anhydrase isozymes hCA I and II. RSC Advances, 2018, 8, 10172-10178.
[http://dx.doi.org/10.1039/C7RA13674A]
[46]
Güzel, E.; Koçyiğit, Ü.M.; Arslan, B.S.; Ataş, M.; Taslimi, P.; Gökalp, F.; Nebioğlu, M.; Şişman, İ.; Gulçin, İ. Aminopyrazole-substituted metallophthalocyanines: Preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Arch. Pharm. (Weinheim), 2019, 352(2)e1800292
[http://dx.doi.org/10.1002/ardp.201800292]] [PMID: 30600535]
[47]
Özil, M.; Balaydın, H.T.; Şentürk, M. Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorg. Chem., 2019, 86, 705-713.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.045] [PMID: 30836234]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy