Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Virtual Screening of Chinese Medicine Small Molecule Compounds Targeting SARS-CoV-2 3CL Protease (3CL pro)

Author(s): Qingxiu He, Xin Chen, Xi Yang, Guangpin Li, Haiqiong Guo, Han Chu, Zhihua Lin* and Yuanqiang Wang*

Volume 18, Issue 4, 2021

Published on: 01 October, 2020

Page: [355 - 364] Pages: 10

DOI: 10.2174/1570180817999201001161017

Price: $65

Abstract

Background: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has attracted worldwide attention due to its high infectivity and pathogenicity.

Objective: The purpose of this study is to develop drugs with therapeutic potentials for COVID-19.

Methods: we selected the crystal structure of 3CL pro to perform virtual screening against natural products in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Then, molecular dynamics (MD) simulation was carried out to explore the binding mode between compounds and 3CL pro.

Results and Discussion: A total of 6 candidates with good theoretical binding affinity to 3CL pro were identified. The binding mode after MD shows that hydrogen bonding and hydrophobic interaction play an important role in the binding process. Finally, based on the free binding energy analysis, the candidate natural product Gypenoside LXXV may bind to 3CL pro with high binding affinity.

Conclusion: The natural product Gypenoside LXXV may have good potential anti-SARS-COV-2 activity.

Keywords: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Chinese medicine small molecule compounds, virtual screening, molecular docking, molecular dynamics simulation, binding free energy, TCMSP.

Graphical Abstract

[1]
Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223), 470-473.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[2]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[3]
Phan, L.T.; Nguyen, T.V.; Luong, Q.C.; Nguyen, T.V.; Nguyen, H.T.; Le, H.Q.; Nguyen, T.T.; Cao, T.M.; Pham, Q.D. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N. Engl. J. Med., 2020, 382(9), 872-874.
[http://dx.doi.org/10.1056/NEJMc2001272] [PMID: 31991079]
[4]
Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; Seilmaier, M.; Drosten, C.; Vollmar, P.; Zwirglmaier, K.; Zange, S.; Wölfel, R.; Hoelscher, M. Transmission of 2019-nCov infection from an asymptomatic contact in Germany. N. Engl. J. Med., 2020, 382(10), 970-971.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[5]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. Washington State 2019-nCoV case investigation team. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[6]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[7]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[8]
Bassetti, M.; Vena, A.; Giacobbe, D.R. The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. Eur. J. Clin. Invest., 2020, 50(3)e13209
[http://dx.doi.org/10.1111/eci.13209]] [PMID: 32003000]
[9]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[10]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[11]
Yu-shi, ZHANG; Wei-hong, CONG; Jing-jing, ZHANG; Fei-fei, GUO; Hong-mei, L Research progress of intervention of Chinese herbal medicine and its active components on human coronavirus., China J. Chinese Materia Medica, 2020, 6(1001-5302), 1263-1271..
[12]
Li, R.; Liu, T.; Liu, M.; Chen, F.; Liu, S.; Yang, J. Anti-influenza a virus activity of dendrobine and its mechanism of action. J. Agric. Food Chem., 2017, 65(18), 3665-3674.
[http://dx.doi.org/10.1021/acs.jafc.7b00276] [PMID: 28417634]
[13]
Liu, Q.; Li, W.; Huang, L.; Asada, Y.; Morris-Natschke, S.L.; Chen, C.H.; Lee, K.H.; Koike, K. Identification, structural modification, and dichotomous effects on human immunodeficiency virus type 1 (HIV-1) replication of ingenane esters from Euphorbia kansui. Eur. J. Med. Chem., 2018, 156, 618-627.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.020] [PMID: 30031972]
[14]
Guochun, J.; Mendes, E.A.; Kaiser, P.; Wong, D.P.; Cai, I.; Fenton, A.; Melcher, G.P.; Hildreth, J.E.K.; Thompson, G.R.; Wong, J.K.; Dandekar, S. Synergistic reactivation of latent HIV expression by ingenol-3-angelate, PEP005, targeted NF-kB signaling in combination with JQ1 Induced p-TEFb activation. PLoS Pathog., 2015, 11(7)e1005066
[15]
Pandeló José, D.; Bartholomeeusen, K.; da Cunha, R.D.; Abreu, C.M.; Glinski, J.; da Costa, T.B.; Bacchi Rabay, A.F.M.; Pianowski Filho, L.F.; Dudycz, L.W.; Ranga, U.; Peterlin, B.M.; Pianowski, L.F.; Tanuri, A.; Aguiar, R.S. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology, 2014, 462-463, 328-339.
[http://dx.doi.org/10.1016/j.virol.2014.05.033] [PMID: 25014309]
[16]
Weng, J.R.; Lin, C.S.; Lai, H.C.; Lin, Y.P.; Wang, C.Y.; Tsai, Y.C.; Wu, K.C.; Huang, S.H.; Lin, C.W. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res., 2019, 273197767
[http://dx.doi.org/10.1016/j.virusres.2019.197767]] [PMID: 31560964]
[17]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[18]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3)2000045
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045]] [PMID: 31992387]
[19]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[20]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13-13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[21]
Feng, Z.; Pearce, L.V.; Zhang, Y.; Xing, C.; Herold, B.K.A.; Ma, S.; Hu, Z.; Turcios, N.A.; Yang, P.; Tong, Q.; McCall, A.K.; Blumberg, P.M.; Xie, X.Q. Multi-Functional Diarylurea Small Molecule Inhibitors of TRPV1 with Therapeutic Potential for Neuroinflammation. AAPS J., 2016, 18(4), 898-913.
[http://dx.doi.org/10.1208/s12248-016-9888-z] [PMID: 27000851]
[22]
Feng, Z.; Kochanek, S.; Close, D.; Wang, L.; Srinivasan, A.; Almehizia, A.A.; Iyer, P.; Xie, X.Q.; Johnston, P.A.; Gold, B. Design and activity of AP endonuclease-1 inhibitors. J. Chem. Biol., 2015, 8(3), 79-93.
[http://dx.doi.org/10.1007/s12154-015-0131-7] [PMID: 26101550]
[23]
Sheng, S.; Wang, J.; Wang, L.; Liu, H.; Li, P.; Liu, M.; Long, C.; Xie, C.; Xie, X.; Su, W. Network pharmacology analyses of the antithrombotic pharmacological mechanism of Fufang Xueshuantong Capsule with experimental support using disseminated intravascular coagulation rats. J. Ethnopharmacol., 2014, 154(3), 735-744.
[http://dx.doi.org/10.1016/j.jep.2014.04.048] [PMID: 24832112]
[24]
Chen, J.Z.; Wang, J.; Xie, X.Q. GPCR structure-based virtual screening approach for CB2 antagonist search. J. Chem. Inf. Model., 2007, 47(4), 1626-1637.
[http://dx.doi.org/10.1021/ci7000814] [PMID: 17580929]
[25]
Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[26]
Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput., 2012, 8(5), 1542-1555.
[http://dx.doi.org/10.1021/ct200909j] [PMID: 22582031]
[27]
Loncharich, R.J.; Brooks, B.R.; Pastor, R.W. Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide. Biopolymers, 1992, 32(5), 523-535.
[http://dx.doi.org/10.1002/bip.360320508] [PMID: 1515543]
[28]
Izaguirre, J.A.; Catarello, D.P.; Wozniak, J.M.; Skeel, R.D. Langevin stabilization of molecular dynamics. J. Chem. Phys., 2001, 114(5), 2090-2098.
[http://dx.doi.org/10.1063/1.1332996]
[29]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[30]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[31]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[32]
Wang, Y.Q.; Lin, W.W.; Wu, N.; Wang, S.Y.; Chen, M.Z.; Lin, Z.H.; Xie, X-Q.; Feng, Z.W. Structural insight into the serotonin (5-HT) receptor family by molecular docking, molecular dynamics simulation and systems pharmacology analysis. Acta Pharmacol. Sin., 2019, 40(9), 1138-1156.
[http://dx.doi.org/10.1038/s41401-019-0217-9] [PMID: 30814658]
[33]
Wang, J.; Hou, T. Develop and test a solvent accessible surface area-based model in conformational entropy calculations. J. Chem. Inf. Model., 2012, 52(5), 1199-1212.
[http://dx.doi.org/10.1021/ci300064d] [PMID: 22497310]
[34]
Sun, H.; Duan, L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; Zhang, J.Z.H.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Phys. Chem. Chem. Phys., 2018, 20(21), 14450-14460.
[http://dx.doi.org/10.1039/C7CP07623A] [PMID: 29785435]
[35]
Chen, F.; Liu, H.; Sun, H.; Pan, P.; Li, Y.; Li, D.; Hou, T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys. Chem. Chem. Phys., 2016, 18(32), 22129-22139.
[http://dx.doi.org/10.1039/C6CP03670H] [PMID: 27444142]
[36]
Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P.; Guan, Y.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys., 2014, 16(40), 22035-22045.
[http://dx.doi.org/10.1039/C4CP03179B] [PMID: 25205360]
[37]
Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys., 2014, 16(31), 16719-16729.
[http://dx.doi.org/10.1039/C4CP01388C] [PMID: 24999761]
[38]
HanChu. Qing-xiuHe; JuanWang; YongHu; Yuan-qiangWang; Zhi-hua Lin. In silico design novel dihydropyrimio[4, 5- d]pyrimidine derivatives as inhibitors for colony-stimulating factor-1 receptor based on 3D-QSAR, molecular docking and molecular dynamics simulation J. Mol. Struc., 2020, 1220, 0022-2860..
[39]
Hu, J.; Feng, Z.; Ma, S.; Zhang, Y.; Tong, Q.; Alqarni, M.H.; Gou, X.; Xie, X-Q. Difference and influence of inactive and active states of cannabinoid receptor subtype CB2: From conformation to drug discovery. J. Chem. Inf. Model., 2016, 56(6), 1152-1163.
[http://dx.doi.org/10.1021/acs.jcim.5b00739] [PMID: 27186994]
[40]
Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X.; Zhu, W.J.B. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv, 2020, 1921627 . doi:
[http://dx.doi.org/10.1101/2020.01.27.921627]]
[41]
Liu, Z.; An, X.; Si, J.; Cao, L.; Shen, L. Active constituents of Dryopteris crassirhizoma Nakai Med. J. West. China, 2011, 23(12), 2300-2302.
[42]
Ma, S. C.; Du, J.; But, P. H.; Deng, X. L.; Zhang, Y. W.; Ooi, E. C.; Xu, H. X.; Lee, H. S.; Song, F. L. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J. Ethnopharmacol. 2002, 79(2), 0-211..
[http://dx.doi.org/10.1016/S0378-8741(01)00389-0]
[43]
Ko, H.C.; Wei, B.L.; Chiou, W.F. The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells. J. Ethnopharmacol., 2006, 107(2), 205-210.
[http://dx.doi.org/10.1016/j.jep.2006.03.004]
[44]
Huang, X.; Chaogui, Z. A study on inhibiting effects of Plantago Asiatica on respiratory syncytial virus in vitro. J. Hubei Uni. Nationalities Med. Ed., 2015, 32(2), 1-3.
[45]
Xu, Q.; Yang, J.; Li, Q.; Xie, G.; Qin, M. Pharmacological Activities of Luteolin from Buddleja officinalis Maxim. Zhongguo Yesheng Zhiwu Ziyuan, 2019, 38(4), 53-57, 62.
[46]
Commission, C.P. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing,. , 2015.
[47]
Sk, M. F.; Roy, R.; Jonniya, N. A.; Poddar, S.; Kar, P. J. J. o. B. S. Elucidating biophysical basis of binding of inhibitors to SARSCoV- 2 main protease by using molecular dynamics simulations andfree energy calculations. J. Biomol. Struc. Dyn., 2020, Online ahead of print. doi: 10.1080/07391102.2020.1768149..
[48]
Hoffmann, M.; Kleineweber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.; Nitsche, A.J.C. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 81(2), 271-280.e8.
[49]
Iwatayoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N.J.J.O.V. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 2019, 93(6), e01815-e01818.

© 2024 Bentham Science Publishers | Privacy Policy