[1]
Chylińska, J.B.; Janowiec, M.; Urbański, T. Antibacterial activity of dihydro-1,3-oxazine derivatives condensed with aromatic rings in positions 5,6. Br. J. Pharmacol., 1971, 43(3), 649-657. [http://dx.doi.org/10.1111/j.1476-5381.1971.tb07194.x]. [PMID: 5003353].
[2]
Latif, N.; Mishriky, N.; Assad, F.M. Carbonyl and thiocarbonyl compounds. XIX. Intramolecular cyclization of (2-nitroetheny1)aryl N-arylcarbamates: synthesis of newer series of 3,4-dihydro-2H-1,3-oxazin-2-ones and their antimicrobial activities. Aust. J. Chem., 1982, 35, 1037-1043. [http://dx.doi.org/10.1071/CH9821037].
[3]
Mathew, B.P.; Kumar, A.; Sharma, S.; Shukla, P.K.; Nath, M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1502-1507. [http://dx.doi.org/10.1016/j.ejmech.2009.12.058]. [PMID: 20116901].
[4]
Xiao-ping, L.; Ying, W.; Hui-yu, L.; Ai-hua, S.; Wah-keung, T.K.; Ting-xia, D.T.; Chun, H. Synthesis and anti-inflammatory activity of a novel series of 9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]oxazin-4-one derivatives. Chem. Res. Chin. Univ., 2010, 26, 268.
[5]
Kuehne, M.E.; Konopka, E.A. Dihydro-1,3-oxazines as antitumor agents. J. Med. Pharm. Chem., 1962, 5, 257-280. [http://dx.doi.org/10.1021/jm01237a005]. [PMID: 14051903].
[6]
Kuehne, M.E.; Konopka, E.A.; Lambert, B.F. Steroidal dihydro-1,3-oxazines as antitumor agents. J. Med. Pharm. Chem., 1962, 5, 281-296. [http://dx.doi.org/10.1021/jm01237a006]. [PMID: 14051904].
[7]
Chylinska, J.B.; Urbanski, T.; Mordarski, M. Dihydro-1,3-oxazine derivatives and their antitumor activity. J. Med. Chem., 1963, 6, 484-487. [http://dx.doi.org/10.1021/jm00341a004]. [PMID: 14173566].
[8]
Hsu, L.Y.; Lin, C.H. Synthesis and biological evaluation of 3-hydroxymethylpyrimido[1,6-c][1,3]oxazine derivatives. Heterocycles, 1996, 43, 2687-2699. [http://dx.doi.org/10.3987/COM-96-7607].
[9]
Pedersen, O.S.; Pedersen, E.B. The flourishing syntheses of non-nucleoside reverse transcriptase inhibitors. Synthesis, 2000, 2000(4), 479-495. [http://dx.doi.org/10.1055/s-2000-6357].
[10]
Cocuzza, A.J.; Chidester, D.R.; Cordova, B.C.; Jeffrey, S.; Parsons, R.L.; Bacheler, L.T.; Erickson-Viitanen, S.; Trainor, G.L.; Ko, S.S. Synthesis and evaluation of efavirenz (Sustiva) analogues as HIV-1 reverse transcriptase inhibitors: replacement of the cyclopropylacetylene side chain. Bioorg. Med. Chem. Lett., 2001, 11(9), 1177-1179. [http://dx.doi.org/10.1016/S0960-894X(01)00192-5]. [PMID: 11354371].
[11]
Phongtamrug, S.; Pulpoka, B.; Chirachanchai, S. Inclusion compounds formed from N,N-bis(2-hydroxybenzyl)alkylamine derivatives and transition metal ions via molecular assembly. Supramol. Chem., 2004, 16, 269-278. [http://dx.doi.org/10.1080/1061027042000204029].
[12]
Nair, C.P.R. Advances in addition-cure phenolic resins. Prog. Polym. Sci., 2004, 29, 401-498. [http://dx.doi.org/10.1016/j.progpolymsci.2004.01.004].
[13]
Kasapoglu, F.; Cianga, I.; Yagci, Y.; Takeichi, T. Photoinitiated cationic polymerization of monofunctional benzoxazine. J. Polym. Sci. A Polym. Chem., 2003, 41, 3320-3328. [http://dx.doi.org/10.1002/pola.10913].
[14]
Agag, T.; Takeichi, T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules, 2003, 36, 6010-6017. [http://dx.doi.org/10.1021/ma021775q].
[15]
Liu, Y.L.; Yu, J.M. Cocuring behaviors of benzoxazine and maleimide derivatives and the thermal properties of the cured products. J. Polym. Sci. A Polym. Chem., 2006, 44, 1890-1899. [http://dx.doi.org/10.1002/pola.21290].
[16]
Ning, X.; Ishida, H. Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J. Polym. Sci. A Polym. Chem., 1994, 32, 1121-1129. [http://dx.doi.org/10.1002/pola.1994.080320614].
[17]
Woodgate, P.D.; Homer, G.M.; Maynard, N.P.; Rickard, C.E.F. Synthesis of dioxazaborocines from N-substituted-bis(2-hydroxyaryl)aminomethyl-amines. J. Organomet. Chem., 1999, 592, 180-193. [http://dx.doi.org/10.1016/S0022-328X(99)00510-0].
[18]
Burke, W.J.; Bishop, J.L.; Glennie, E.L.M.; Jr, W.N.B. A new aminoalkylation reaction. Condensation of phenols with dihydro-1,3-oxazines. J. Org. Chem., 1965, 30, 3423-3427. [http://dx.doi.org/10.1021/jo01021a037].
[19]
Kim, M.; Kim, H.; Kim, H.; Chin, J. Synthesis of enantiopure mixed alkyl-aryl vicinal diamines by the Diaza-Cope rearrangement: a synthesis of (+)-CP-99,994. J. Org. Chem., 2017, 82(23), 12050-12058. [http://dx.doi.org/10.1021/acs.joc.7b01751]. [PMID: 29027460].
[20]
Lyle, R.E.; Walsh, D.A. Amine-boranes: II. A novel synthesis of the 1,3,2-benzoxazaborine ring system. J. Organomet. Chem., 1974, 67, 363-367. [http://dx.doi.org/10.1016/S0022-328X(00)88181-4].
[21]
Chirachanchai, S.; Laobuthee, A.; Phongtamburg, S.; Siripatanasarakit, W.; Ishida, H. A novel ion extraction material using host-guest properties of oligobenzoxazine local structure and benzoxazine monomer molecular assembly. J. Appl. Polym. Sci., 2000, 77, 2561-2568. [http://dx.doi.org/10.1002/1097-4628(20000919)77:12<2561:AID-APP10>3.0.CO;2-U].
[22]
Kumar, K.S.S.; Nair, C.P.R. Polybenzoxazines: Chemistry and Properties; Smithers Rapra Technology, 2010.
[23]
Liu, X.; Gu, Y. Study on the volumetric change during ring-opening polymerization of benzoxazines. Acta Polym. Sinica, 2000, 5, 612.
[24]
Leung, D.K.; Andrews, P.R.; Craik, D.J.; Iskander, M.N.; Winkler, D.A. Design, synthesis and testing of transition state analogues of alanine racemase as antibacterials. Aust. J. Chem., 1985, 38, 297. [http://dx.doi.org/10.1071/CH9850297].
[25]
Walker, J.F. Formaldehyde; Reinhold Publishing: New York, 1964, pp. 552-569.
[26]
Jensen, N.P.; Chang, M.N. Hydroxybenzylamino-aryl compounds, process for preparing and pharmaceutical compositions containing the same., European Patent EP0081782A1, June 22,. 1983.
[30]
Moloney, G.P.; Craik, D.J.; Iskander, M.N. Carbon-13 NMR spectral analysis of oxazine derivatives and precursors. Magn. Reson. Chem., 1990, 28, 824-829. [http://dx.doi.org/10.1002/mrc.1260280917].
[31]
Chylinska, J.B.; Urbanski, T. The stereochemistry of some dihydro-1,3-oxazine derivatives. J. Heterocycl. Chem., 1964, 1, 93-95. [http://dx.doi.org/10.1002/jhet.5570010208].
[32]
Andrews, P.R.; Cody, V.; Gulbis, J.M.; Iskander, M.N.; Jeffrey, A.I.; Mackay, M.F.; Paola, C.D.; Sadek, M. Structure and conformations of GABA-transaminase inhibitors. II. Transition-state analogs. Aust. J. Chem., 1986, 39, 1575-1585. [http://dx.doi.org/10.1071/CH9861575].
[33]
Liu, X.; Gu, Y. Effects of molecular structure parameters on ring-opening reaction of benzoxazines. Sci. China B Chem., 2001, 44, 552-560. [http://dx.doi.org/10.1007/BF02880686].
[34]
Moloney, G.P.; Craik, D.J.; Iskander, M.N. Qualitative analysis of the stability of the oxazine ring of various benzoxazine and pyridooxazine derivatives with proton nuclear magnetic resonance spectroscopy. J. Pharm. Sci., 1992, 81(7), 692-697. [http://dx.doi.org/10.1002/jps.2600810721]. [PMID: 1403706].
[35]
Tzschoppe, D.; Vebrel, J.; Schwob, J.M.; Roche, M.; Riess, G. Réactivité des Dihydro-3,4-2H-benzoxazines-1,3 Avec les Amines Mise en Évidence D’Un Equilibre Impliquant L’Ouverture de L’Hétérocycle. Bull. Soc. Chim. Belg., 1986, 95, 45-48.
[36]
Burke, W.J. 3,4-Dihydro-1,3-2H-benzoxazines., Reaction of p-substituted phenols with N,N-dimethyl-olamines. J. Am. Chem. Soc., 1949, 71, 609-612. [http://dx.doi.org/10.1021/ja01170a063].
[37]
Burke, W.J.; Weatherbee, C. 3,4-Dihydro-1,3-2H-benzoxazines. Reaction of polyhydroxybenzenes with N-methyl-olamines. J. Am. Chem. Soc., 1950, 72, 4691-4694. [http://dx.doi.org/10.1021/ja01166a094].
[38]
Burke, W.J.; Hammer, C.R.; Weatherbee, C. Bis-m-oxazines from hydroquinone. J. Org. Chem., 1961, 26, 4403-4407. [http://dx.doi.org/10.1021/jo01069a053].
[39]
Fields, D.L.; Miller, J.B.; Reynolds, D.D. Mannich-type condensation of hydroquinone, formaldehyde and primary amines. J. Org. Chem., 1962, 27, 2749-2753. [http://dx.doi.org/10.1021/jo01055a011].
[40]
Burke, W.J.; Kolbezen, M.J.; Stephens, C.W. Condensation of naphthols with formaldehyde and primary amines. J. Am. Chem. Soc., 1952, 74, 3601-3605. [http://dx.doi.org/10.1021/ja01134a039].
[41]
Burke, W.J.; Reynolds, R.J. Condensation of 2-naphthol with acetaldehyde ammonia. J. Am. Chem. Soc., 1954, 76, 1291-1293. [http://dx.doi.org/10.1021/ja01634a027].
[42]
Burke, W.J.; Murdock, K.C.; Ec, G. Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines. J. Am. Chem. Soc., 1954, 76, 1677-1679. [http://dx.doi.org/10.1021/ja01635a065].
[43]
Desai, R.B. Mannich reaction with hydroxycoumarins. J. Org. Chem., 1961, 26, 5251-5253. [http://dx.doi.org/10.1021/jo01070a543].
[44]
Schmidt, C.; Thondorf, I.; Kolehmainen, E.; Bohmer, V.; Vogt, W.; Rissanen, K. One-step synthesis of resorcarene dimers composed of two tetra-benzoxazine units. Tetrahedron Lett., 1998, 39, 8833-8836. [http://dx.doi.org/10.1016/S0040-4039(98)02046-2].
[45]
Higham, C.S.; Dowling, D.P.; Shaw, J.L.; Cetin, A.; Zieglerb, C.J.; Farrell, J.R. Multidentate aminophenol ligands prepared with Mannich condensations. Tetrahedron Lett., 2006, 47, 4419-4423. [http://dx.doi.org/10.1016/j.tetlet.2006.04.077].
[46]
Agag, T.; Takeichi, T. High-molecular-weight AB-type benzoxazines as new precursors for high-performance thermosets. J. Polym. Sci. A Polym. Chem., 2007, 45, 1878-1888. [http://dx.doi.org/10.1002/pola.21953].
[47]
Burke, W.J.; Smith, R.P.; Weatherbee, C.N. N-bis-(hydroxybenzyl)-amines: synthesis from phenols, formaldehyde and primary amines. J. Am. Chem. Soc., 1952, 74, 602-605. [http://dx.doi.org/10.1021/ja01123a007].
[48]
Shozo, M.; Naoki, K. Production of 3-aryldihydro-1,3-benzoxazine compound. Jpn. Patent JP2000169456A, June 20,. 2000.
[49]
Burke, W.J.; Glennie, E.L.M.; Weatherbee, C. Condensation of halophenols with formaldehyde and primary amines. J. Org. Chem., 1964, 29, 909-912. [http://dx.doi.org/10.1021/jo01027a038].
[50]
Horswill, E.C.; Lindsay, D.A.; Ingold, K.U. Condensation of some substituted phenols and anilines with formaldehyde. Formation of 2-phenyl-1,3-benzoxazines and N-(2-hydroxybenzy1)-anilines. Can. J. Chem., 1970, 48, 579-583. [http://dx.doi.org/10.1139/v70-095].
[51]
Brownstein, S.; Horswill, E.C.; Ingold, K.U. Barriers to rotation in ortho-alkylphenyl substituted 1,3-benzoxazines. Can. J. Chem., 1969, 47, 3243-3246. [http://dx.doi.org/10.1139/v69-532].
[52]
Brunovska, Z.; Liu, J.P.; Ishida, H. 1,3,5-Triphenylhexahydro-1,3,5-triazine – active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers. Macromol. Chem. Phys., 1999, 200, 1745-1752. [http://dx.doi.org/10.1002/(SICI)1521-3935(19990701)200:7<1745:AID-MACP1745>3.0.CO;2-D].
[53]
Ishida, H. Process for preparation of benzoxazine compounds in solventless systems. U.S. Patent 5,543,516, August 6,. 1996.
[54]
Shinde, P.V.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. Polyethylene glycol (PEG) mediated expeditious synthetic route to 1,3-oxazine derivatives. Chin. Chem. Lett., 2011, 22, 915-918. [http://dx.doi.org/10.1016/j.cclet.2011.01.011].
[55]
Mathew, B.P.; Nath, M. One-pot three-component synthesis of dihydrobenzo- and naphtho[e]-1,3-oxazines in water. J. Heterocycl. Chem., 2009, 46, 1003-1006. [http://dx.doi.org/10.1002/jhet.147].
[56]
Calo, E.; Maffezzoli, A.; Mele, G.; Martina, F.; Mazzetto, S.E.; Tarzia, A.; Stifani, C. Synthesis of novel cardanol-based benzoxazine monomer and environmentally sustain-able production of polymers and bio-composites. Green Chem., 2007, 9, 754-759. [http://dx.doi.org/10.1039/b617180j].
[57]
Kategaonkar, A.H.; Sonar, S.S.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Ionic liquid catalyzed multicomponent synthesis of 3,4-dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine derivatives. Org. Commun., 2010, 3, 1.
[58]
Mukhopadhyay, C.; Rana, S.; Butcher, R.J. An ionic liquid [secbmim]+Br- as a “dual reagent catalyst” for the multicomponent synthesis of (quinolinyl- and isoquinolinyl- amino) alkylnaphthols, their bis- analogs and a facile route to naphthoxazines. ARKIVOC, 2010, 2010, 291-304.
[59]
Tumtin, S.; Phucho, I.T.; Nongpiur, A.; Nongrum, R.; Vishwakarma, J.N.; Myrboh, B.; Nongkhlaw, R.L. One pot synthesis of [1,3]-oxazine and [1,3]-thiazine derivatives under thermal and microwave conditions. J. Heterocycl. Chem., 2010, 47, 125.
[60]
Gupta, N.; Sharma, S.; Raina, A.; Dingroo, N.A.; Bhushan, S.; Sangwan, P.L. Synthesis and anti-proliferative evaluation of novel 3,4-dihydro-2H-1,3-oxazine derivatives of bakuchiol. RSC Advances, 2016, 6, 106150-106159. [http://dx.doi.org/10.1039/C6RA23757F].
[61]
Bikas, R.; Emami, M.; Lepokura, K.S.; Noshiranzadeh, N. Preparing Mn(III) salen-type Schiff’s base complexes using 1,3-oxazines obtained by Mannich condensation: towards removing ortho-hydroxyaldehydes. New J. Chem., 2017, 41, 9710-9717. [http://dx.doi.org/10.1039/C7NJ01562C].
[62]
Khanna, G.; Saluja, P.; Khurana, J.M. A facile and convenient approach for the synthesis of novel sesamol-oxazine and quinoline-oxazine hybrids. Aust. J. Chem., 2017, 70, 1285-1290. [http://dx.doi.org/10.1071/CH17272].
[63]
Mathew, B.P.; Aggarwal, N.; Kumar, R.; Nath, M. Synthesis and anti-bacterial activity of novel dihydrochromeno[8,7-e][1,3]oxazine-2(8H)-thiones. J. Sulfur Chem., 2014, 35, 31-41. [http://dx.doi.org/10.1080/17415993.2013.769543].
[64]
Mathew, B.P.; Tandon, R.; Batra, N.; Agarwal, D.; Bose, M.; Gupta, R.D.; Nath, M. Environmentally benign synthesis and anti-mycobacterial evaluation of 9,10-dihydro-4-methyl-chromeno[8,7-e][1,3]oxazin-2(8H)-one derivatives. Indian J. Chem., 2017, 56B, 1237-1242.
[65]
Mathew, B.P.; Batra, N.; Nath, M. A convenient one-pot aqueous phase synthesis and properties of naphtho[ e]bis[1,3]oxazines. Curr. Green Chem., 2016, 3, 360-365. [http://dx.doi.org/10.2174/2213346104666170215152404].
[66]
Zhang, M.Z.; Zhang, R.R.; Yin, W.Z.; Yu, X.; Zhang, Y.L.; Liu, P.; Gu, Y.C.; Zhang, W.H. Microwave-assisted synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives. Mol. Divers., 2016, 20(3), 611-618. [http://dx.doi.org/10.1007/s11030-016-9662-2]. [PMID: 26880591].
[67]
Xu, Di; Lin, Y.; Chen. Y.; Zhang, J.; Cao, W.; Chen, J. Synthesis and characterization of oxadisilole-fused-3,4-dihydro-2H-naphtho[2,1-e]-1,3-oxazines and 3,4-dihydro-2H-anthra[2,1-e]-1,3-oxazines. Tetrahedron, 2013, 69, 6144-6149. [http://dx.doi.org/10.1016/j.tet.2013.05.052].
[68]
Deck, L.M.; Paine, R.T.; Bright, E.R.; Ouizem, S.; Dickie, D.A. Synthesis of methylpyridine and methylpyridine N-oxide decorated benzoxazine and naphthoxazine platforms. Tetrahedron Lett., 2014, 55, 2434-2437. [http://dx.doi.org/10.1016/j.tetlet.2014.02.129 ].
[69]
Bansal, P.; Jasuja, N.D.; Sharma, G. Novel and efficient microwave-assisted three component reaction for the synthesis of oxazine derivatives. Orient. J. Chem., 2016, 32, 2131-2138. [http://dx.doi.org/10.13005/ojc/320442].
[70]
Talele, H.R.; Sahoo, S.; Bedekar, A.V. Synthesis of chiral helical 1,3-oxazines. Org. Lett., 2012, 14(12), 3166-3169. [http://dx.doi.org/10.1021/ol301267r]. [PMID: 22671695].
[71]
Talele, H.R.; Bedekar, A.V. Synthesis of chiral bis-oxazines: a preliminary assessment of helical conformational framework. Org. Biomol. Chem., 2012, 10(43), 8579-8582. [http://dx.doi.org/10.1039/c2ob26669e]. [PMID: 23042208].
[72]
Shafiee, M.; Khosropour, A.R.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Khavasi, H.R. Synthesis of trans-1,3-diaryl-2-(5-methylisoxazol-3-yl)-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines via bismuth(III)-catalyzed one-pot pseudo-four component reaction. Mol. Divers., 2012, 16(4), 727-735. [http://dx.doi.org/10.1007/s11030-012-9408-8]. [PMID: 23090419].
[74]
Sharma, V.; Amarnath, N.; Shukla, S.; Ayana, R.; Kumar, N.; Yadav, N.; Kannan, D.; Sehrawat, S.; Pati, S.; Lochab, B.; Singh, S. Benzoxazine derivatives of phytophenols show anti-plasmodial activity via sodium homeostasis disruption. Bioorg. Med. Chem. Lett., 2018, 28(9), 1629-1637. [http://dx.doi.org/10.1016/j.bmcl.2018.03.047]. [PMID: 29615339].
[75]
Azad, S.; Mirjalili, B.B.F. One-pot solvent-free synthesis of 2,3-dihydro-2-substituted-1H-naphtho[1,2-e][1,3]oxazine derivatives using Fe3O4@nano-cellulose/TiCl as a bio-based and recyclable magnetic nano-catalyst. Mol. Divers., 2019, 23(2), 413-420. [http://dx.doi.org/10.1007/s11030-018-9884-6]. [PMID: 30315396].
[76]
Babaei, E. Mirjalili, Bi Bi F. One pot aqueous media synthesis of 1,3-oxazine derivatives catalyzed by reusable nano-Al2O3/BF3/Fe3O4 at room temperature. Polycycl. Aromat. Compd., 2019, 2019, 2-8. [http://dx.doi.org/10.1080/10406638.2019.1600561].
[77]
Nongrum, R.; Kharkongor, M.; Nongthombam, G.S.; Rani, J.W.S.; Rahman, N.; Kharmawlong, G.K.; Nongkhlaw, R. [1,3]Oxazines: green synthesis by sonication using a magnetically separable basic nano catalyst and investigation of its activity against the toxic effect of a pesticide on the morphology of blood cells. Environ. Chem. Lett., 2019, 17, 1325-1331. [http://dx.doi.org/10.1007/s10311-019-00857-1].
[78]
Jadhav, A.M.; Balwe, S.G.; Cho, B.G.; Lim, K.T.; Jeong, Y.T. L-proline catalyzed unprecedented synthesis of novel naphtho-bis[1,3]oxazines under solvent-free conditions. Synth. Commun., 2020, 50, 1-10. [http://dx.doi.org/10.1080/00397911.2020.1719423].
[79]
May, E.L. 3,4-Dihydro-1,3-oxazines from dicyclohexylcarbodiimide. J. Med. Chem., 1967, 10(3), 505-506. [http://dx.doi.org/10.1021/jm00315a055]. [PMID: 22185171].
[80]
Shakil, N.A.; Dhawan, A.; Sharma, N.K.; Kumar, V.; Kumar, S.; Bose, M.; Raj, H.G.; Olsen, C.E.; Cholli, A.L.; Samuelson, L.A.; Kumar, J.; Watterson, A.C.; Parmar, V.S.; Prasad, A.K. Synthetic, biocatalytic acetylation and anti-tuberculosis activity evaluation studies on (+)-4-alkyl-3,4-dihydro-3-ω-hydroxyalkyl-2H-1,3-benzoxazines. Indian J. Chem., 2003, 42B, 1958-1969.
[81]
Jogleker, S.J.; Samant, S.D. New route for the preparation of 2H-3-aryl-3, 4-dihydro-1, 3-benzoxazines and 2H-3-aryl-3, 4-dihydro-4-methyl-1, 3-benzoxazines. J. Indian Chem. Soc., 1988, 65, 110-111. [http://dx.doi.org/10.1002/chin.198840188 ].
[82]
Tang, Z.; Zhu, Z.; Xia, Z.; Liu, H.; Chen, J.; Xiao, W.; Ou, X. Synthesis and fungicidal activity of novel 2,3-disubstituted-1,3-benzoxazines. Molecules, 2012, 17(7), 8174-8185. [http://dx.doi.org/10.3390/molecules17078174]. [PMID: 22772812].
[83]
Anwar, H.F.; Skattebol, L.; Hansen, T.V. Synthesis of substituted salicylamines and dihydro-2H-1,3-benzoxazines. Tetrahedron, 2007, 63, 9997-10002. [http://dx.doi.org/10.1016/j.tet.2007.07.064].
[84]
Reddy, C.S.; Raghu, M. Synthesis of some new N,N′-diarylsubstituted methylene-bis-dihydro-2H-1,3-benzoxazines. Chin. Chem. Lett., 2008, 19, 1407-1410. [http://dx.doi.org/10.1016/j.cclet.2008.07.001].
[85]
Rivera, A.; Gallo, G.I.; Gayon, M.E. 1,3-Bis(2′-hydroxybenzyl)imida-zolidines as novel precursors of 3,3′-ethylene-bis(3,4-dihydro-2H-1,3-benzoxazine). Synth. Commun., 1994, 24, 2081-2089. [http://dx.doi.org/10.1080/00397919408010219].
[86]
Katritzky, A.R.; Xu, Y-J.; Jain, R. A novel dilithiation approach to 3,4-dihydro-2H-1,3-benzothiazines, 3,4-dihydro-2H-1,3-benzoxazines, and 2,3,4,-5-tetrahydro-1,3-benzothiazepines. J. Org. Chem., 2002, 67(23), 8234-8236. [http://dx.doi.org/10.1021/jo020176e]. [PMID: 12423158].
[87]
Colin, J.L.; Loubinoux, B. Nouvelle voie d’acces aux dihydro-3,4-2H-benzoxazines-1,3. Tetrahedron Lett., 1982, 23, 4245-4246. [http://dx.doi.org/10.1016/S0040-4039(00)88715-8].
[88]
Barber, H.J.; Fuller, R.F.; Green, M.B.; Zwartouw, H.T. New ω-substituted anisoles: III. Aryloxymethyl halides: their preparation and reactions. J. Appl. Chem. (Lond.), 1953, 3, 266-274. [http://dx.doi.org/10.1002/jctb.5010030605].
[89]
Aversa, M.C.; Giannetto, P.; Caristi, C.; Ferlazzo, A. Behaviour of an N-(o-hydroxybenzyl)-β-amino-acid in the presence of dehydrating agents. Synthesis of a 3,4-dihydro-2H-1,3-benzoxazine. J. Chem. Soc. Chem. Commun., 1982, 1982, 469-470. [http://dx.doi.org/10.1039/C39820000469].
[90]
McDonagh, A.F.; Smith, H.E. Ring-chain tautomerism of derivatives of o-hydroxybenzylamine with aldehydes and ketones. J. Org. Chem., 1968, 33, 1-8. [http://dx.doi.org/10.1021/jo01265a001].
[91]
Tramontini, M. Advances in the chemistry of Mannich bases. Synthesis, 1973, (12), 703-775. [http://dx.doi.org/10.1055/s-1973-22294].
[92]
Kanatomi, H.; Murase, I. Reaction of salicylamine with α-dicarbonyl compounds. I. Transamination reaction. Bull. Chem. Soc. Jpn., 1969, 42, 1329-1332. [http://dx.doi.org/10.1246/bcsj.42.1329].
[93]
Kanatomi, H.; Murase, I. Reaction of salicylamine with α-dicarbonyl compounds. II. Formation of 2,2′-bibenz-1,3-oxazines. Bull. Chem. Soc. Jpn., 1969, 43, 226-231. [http://dx.doi.org/10.1246/bcsj.43.226].
[94]
Dargaville, T.R.; Bruyn, P.J.D.; Lim, A.S.C.; Looney, M.G.; Potter, A.C.; Solomon, D.H.; Zhang, X. Chemistry of novolac resins. II. Reaction of model phenols with hexamethylene-tetramine. J. Polym. Sci. A Polym. Chem., 1997, 35, 1389-1398. [http://dx.doi.org/10.1002/(SICI)1099-0518(199706)35:8<1389:AID-POLA7>3.0.CO;2-V].
[95]
Espinosa, M.A.; Cadiz, V.; Galia, M. Synthesis and characterization of benzoxazine-based phenolic resins: crosslinking study. J. Appl. Polym. Sci., 2003, 90, 470-481. [http://dx.doi.org/10.1002/app.12678].
[96]
Li, S.F. Synthesis of benzoxazine-based phenolic resin containing furan groups. Chin. Chem. Lett., 2010, 21, 868-871. [http://dx.doi.org/10.1016/j.cclet.2010.01.007].
[97]
Luk’yanov, B.S.; Ryabukhin, Y.I.; Dorofeenko, G.N.; Nivorozhkin, L.E.; Minkin, V.I. Photochromic and thermochromic spirans. Chem. Heterocycl. Compd., 1978, 14, 122-127. [http://dx.doi.org/10.1007/BF00945321].
[99]
Bulanov, A.O.; Safoklov, B.B.; Luk’yanov, B.S.; Tkachev, V.V.; Minkin, V.I.; Aldoshin, S.M.; Alekseenko, Y.S. Photochromic and thermochromic spiropyrans. 22. Spiropyrans of the 4-oxo-3,4-dihydro-3H-1,3-benzoxazine series containing π-accepting substituents at position 8′. Chem. Heterocycl. Compd., 2003, 39, 315-317. [http://dx.doi.org/10.1023/A:1023906608643].
[100]
Lukyanov, B.S.; Metelitsa, A.V.; Lukyanova, M.B.; Mukhanov, E.L.; Borisenko, N.I.; Alekseenko, Y.S.; Bezugliy, S.O. Photochromism of the spiropyran thin solid films. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2005, 431, 351-356. [http://dx.doi.org/10.1080/15421400590946730].
[101]
Alekseenko, Y.S.; Bulanov, A.O.; Sayapin, Y.A.; Alekseenko, A.S.; Lukyanov, B.S.; Safoklov, B.B. New photochromic bispiropyran. Chem. Heterocycl. Compd., 2002, 38, 1152-1153. [http://dx.doi.org/10.1023/A:1021242323405].
[102]
Mukhanov, E.L.; Alekseenko, Y.S.; Lukyanov, B.S.; Yabukhin, Y.I.; Ryashchin, O.N.; Lukyanova, M.B. Novel spiropyrans of the benzoxazinone series containing a condensed benzo ring in the hetarene moiety. Chem. Heterocycl. Compd., 2006, 42, 408-409. [http://dx.doi.org/10.1007/s10593-006-0101-7].
[103]
Mukhanov, E.L.; Ryashin, O.N.; Alekseenko, Y.S. New asymmetrical bispiro-pyran 4th National Crystal Chemical Conference, , p. 125.Chernogolovka, Russia June 2006
[104]
Kukharev, B.F.; Stankevich, V.K.; Klimenko, G.R.; Bayandin, V.V. Condensation of oxazolidines with 2-hydroxybenzaldehydes. Mendeleev Commun., 2001, 11, 143-144. [http://dx.doi.org/10.1070/MC2001v011n04ABEH001467].
[105]
Kukharev, B.F.; Stankevich, V.K.; Klimenko, G.R.; Kukhareva, V.A.; Kovalyuk, E.N.; Bayandin, V.V. Synthesis and corrosion-protective properties of 2,3,5,10b-tetrahydrooxazolo[3,2-c][1,3]benzoxazine. Russ. J. Appl. Chem., 2004, 77, 851-852. [http://dx.doi.org/10.1023/B:RJAC.0000038830.44234.79].
[106]
Szatamari, I.; Martinek, T.A.; Lazar, L.; Fulop, F. Substituent effects in the ring-chain tautomerism of 1,3-diaryl-2,3-dihydro-1H-naphth[1,2-e][1,3]-oxazines. Tetrahedron, 2003, 59, 2877-2884. [http://dx.doi.org/10.1016/S0040-4020(03)00331-4].
[107]
Szatmári, I.; Martinek, T.A.; Lázár, L.; Koch, A.; Kleinpeter, E.; Neuvonen, K.; Fülöp, F. Stereoelectronic effects in ring-chain tautomerism of 1,3-diarylnaphth[1,2-e][1,3]oxazines and 3-alkyl-1-arylnaphth[1,2-e][1,3]oxa-zines. J. Org. Chem., 2004, 69(11), 3645-3653. [http://dx.doi.org/10.1021/jo0355810]. [PMID: 15152992].
[108]
Heydenreich, M.; Koch, A.; Klod, S.; Szatamari, I.; Fulop, F.; Kleinpeter, E. Synthesis and conformational analysis of naphtha[1′,2′:5,6][1,3]oxazino[3,2-c][1,3]benzoxazine and naphtha[1′,2′:5,6][1,3]oxazino[3,4-c][1,3]benzo-xazine derivatives. Tetrahedron, 2006, 62, 11081-11089. [http://dx.doi.org/10.1016/j.tet.2006.09.037].
[109]
Meyers, A.I.; Downing, S.V.; Weiser, M.J. Asymmetric synthesis of 2-alkyl-perhydroazepines from [5,3,0]-bicyclic lactams. J. Org. Chem., 2001, 66(4), 1413-1419. [http://dx.doi.org/10.1021/jo001548r]. [PMID: 11312974].
[110]
Szatamari, I.; Hetényi, A.; Lazar, L.; Fulop, F. Transformation reactions of the betti base analog aminonaphthols. J. Heterocycl. Chem., 2004, 41, 367-373. [http://dx.doi.org/10.1002/jhet.5570410310].
[111]
Lazar, L.; Fulop, F. Recent developments in the ring-chain tautomerism of 1,3-heterocycles. Eur. J. Org. Chem., 2003, 2003(16), 3025-3042. [http://dx.doi.org/10.1002/ejoc.200300142].
[112]
Sharma, S.; Nath, M. Synthesis of meso-substituted dihydro-1,3-oxazinoporphyrins. Beilstein J. Org. Chem., 2013, 9, 496-502. [http://dx.doi.org/10.3762/bjoc.9.53]. [PMID: 23616789].
[113]
Waghmode, N.A.; Kalbandhe, A.H.; Thorat, P.B.; Karade, N.N. Metal-free new synthesis of 1,3-naphthaoxazines via intramolecular cross dehydrogenative-coupling reaction of 1-(α-aminoalkyl)-2-naphthols using hypervalent iodine(III) reagent. Tet. Lett, 2016, 57, 680-683.
[114]
Deb, M.L.; Pegu, C.D.; Borpatra, P.J.; Baruah, P.K. Metal-free intramolecular α–sp3 C-H oxygenation of tert-amine: an efficient approach to 1,3-oxazines. Tet. Lett, 2016, 57, 5479-5483. [http://dx.doi.org/10.1016/j.tetlet.2016.10.086].
[115]
Singh, D.; Pandey, S.; Chouhan, P.S.; Kant, R.; Chauhan, P.M.S. Copper-mediated intramolecular oxidative α-functionalization of Ugi precursor: an efficient synthesis of highly functionalized 2H-benzo[e][1,3]oxazin-4(3H)-one derivatives. ChemistrySelect, 2020, 5, 6780-6785. [http://dx.doi.org/10.1002/slct.202001165].
[116]
Carramiñana, V.; Ochoa de Retana, A.M.; de Los Santos, J.M.; Palacios, F. First synthesis of merged hybrids phosphorylated azirino[2,1-b]benzo[e][1,3]oxazine derivatives as anticancer agents. Eur. J. Med. Chem., 2020, 185111771 [http://dx.doi.org/10.1016/j.ejmech.2019.111771]. [PMID: 31671309].
[117]
Deb, M.L.; Pegu, C.D.; Borpatra, P.J.; Saikia, P.J.; Baruah, P.K. Catalyst-free multi-component cascade C–H-functionalization in water using molecular oxygen: an approach to 1,3-oxazines. Green Chem., 2017, 19, 4036-4042. [http://dx.doi.org/10.1039/C7GC01494E].
[118]
Zhang, G.Y.; Xiang, Y.; Guan, Z.; He, Y.H. Enzyme and photoredox sequential catalysis for the synthesis of 1,3-oxazine derivatives in one pot. Catal. Sci. Technol., 2017, 7, 1937-1942. [http://dx.doi.org/10.1039/C6CY02682F].
[119]
Borpatra, P.J.; Deb, M.L.; Baruah, P.K. Visible light-promoted metal-free intramolecular cross dehydrogenative coupling approach to 1,3-oxazines. Tetrahedron Lett., 2017, 58, 4006-4010. [http://dx.doi.org/10.1016/j.tetlet.2017.09.018].
[120]
Wang, C-Y.; Han, J-B.; Wang, L.; Tang, X-Y. Lewis acid catalyzed [4+2] cycloaddition of N-tosylhydrazones with ortho-quinone methides. J. Org. Chem., 2019, 84(21), 14258-14269. [http://dx.doi.org/10.1021/acs.joc.9b02040]. [PMID: 31599153].
[121]
Duffin, W.M.; Rollo, I.M. Antimalarial activity of hydroxy-substituted naphthalene compounds. Br. J. Pharmacol. Chemother., 1957, 12(2), 171-175. [http://dx.doi.org/10.1111/j.1476-5381.1957.tb00116.x]. [PMID: 13446369].
[122]
Bajwa, G.S.; Hartman, K.E.; Joullié, M.M. Antimalarial, I. Heterocyclic analogs of N-substituted naphthalenebisoxazines. J. Med. Chem., 1973, 16(2), 134-138. [http://dx.doi.org/10.1021/jm00260a012]. [PMID: 4566627].
[123]
March, L.C.; Romanchick, W.A.; Bajwa, G.S.; Joullié, M.M. Antimalarial, II. Dihydro-1,3-oxazinoquinolines and dihydro-1,3-pyridobenzoxazines. J. Med. Chem., 1973, 16(4), 337-342. [http://dx.doi.org/10.1021/jm00262a006]. [PMID: 4577306].
[124]
Mbaba, M.; Dingle, L.M.K.; Cash, D.; Mare, J.A.; Laming, D.; Taylor, D.; Hoppe, H.C.; Edkins, A.L.; Khanye, S.D. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives. Eur. J. Med. Chem., 2020, 187111924 [http://dx.doi.org/10.1016/j.ejmech.2019.111924]. [PMID: 31855792].
[125]
Czarnocki, W.; Ledochowski, Z.; Radzikowski, C.; Urbanski, T. Biological activity of benzoxazine-1, 3 derivatives, particularly against experimental sarcoma. Nature, 1956, 178(4546), 1351-1352. [http://dx.doi.org/10.1038/1781351a0]. [PMID: 13387710].
[126]
Urbanski, T.; Gurne, D.; Slopek, S.; Mordarska, H.; Mordarski, M. Anti-neoplastic activity of tetrahydro-1, 3-oxazine derivatives. Nature, 1960, 187, 426-427. [http://dx.doi.org/10.1038/187426a0]. [PMID: 13840449].
[127]
Benameur, L.; Bouaziz, Z.; Nebois, P.; Bartoli, M.H.; Boitard, M.; Fillion, H. Synthesis of furonaphth[1,3]oxazine and furo[1,3]oxazinoquinoline derivatives as precursors for an o-quinonemethide structure and potential antitumor agents. Chem. Pharm. Bull. (Tokyo), 1996, 44(3), 605-608. [http://dx.doi.org/10.1248/cpb.44.605]. [PMID: 8882458].
[128]
Botla, V.; Pilli, N.; Koude, D.; Misra, S.; Malapaka, C. Molecular engineering of tetracyclic 2,3-dihydro-1H-benzo[2,3]-benzofuro[4,5-e][1,3]oxazine derivatives: Evaluation for potential anticancer agents. Arch. Pharm. (Weinheim), 2017, 350(10)e1700169 [http://dx.doi.org/10.1002/ardp.201700169]. [PMID: 28834614].
[129]
Waisser, K.; Hladuvková, J.; Gregor, J.; Rada, T.; Kubicová, L.; Klimesová, V.; Kaustová, J. Relationships between the chemical structure of antimycobacterial substances and their activity against atypical strains. Part 14: 3-Aryl-6,8-dihalogeno-2H-1,3-benzoxazine-2,4(3H)-diones. Arch. Pharm. (Weinheim), 1998, 331(1), 3-6. [http://dx.doi.org/10.1002/(SICI)1521-4184(199801)331:1<3:AID-ARDP3>3.0.CO;2-2]. [PMID: 9507695].
[130]
Waisser, K.; Gregor, J.; Kubicová, L.; Klimesová, V.; Kunes, J.; Machácek, M.; Kaustová, J. New groups of antimycobacterial agents: 6-chloro-3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 6-chloro-3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones. Eur. J. Med. Chem., 2000, 35(7-8), 733-741. [http://dx.doi.org/10.1016/S0223-5234(00)00174-4]. [PMID: 10960190].
[131]
Waisser, K.; Petrlíková, E.; Perina, M.; Klimesová, V.; Kunes, J.; Palát, K., Jr; Kaustová, J.; Dahse, H.M.; Möllmann, U. A note to the biological activity of benzoxazine derivatives containing the thioxo group. Eur. J. Med. Chem., 2010, 45(7), 2719-2725. [http://dx.doi.org/10.1016/j.ejmech.2010.02.037]. [PMID: 20226572].
[132]
Houston, S.; Fanning, A. Current and potential treatment of tuberculosis. Drugs, 1994, 48(5), 689-708. [http://dx.doi.org/10.2165/00003495-199448050-00004]. [PMID: 7530627].
[133]
Winder, F.G.; Collins, P.B.; Whelan, D. Effects of ethionamide and isoxyl on mycolic acid synthesis in Mycobacterium tuberculosis BCG. J. Gen. Microbiol., 1971, 66(3), 379-380. [http://dx.doi.org/10.1099/00221287-66-3-379]. [PMID: 4999216].
[134]
Wang, F.; Langley, R.; Gulten, G.; Dover, L.G.; Besra, G.S.; Jacobs, W.R., Jr; Sacchettini, J.C. Mechanism of thioamide drug action against tuberculosis and leprosy. J. Exp. Med., 2007, 204(1), 73-78. [http://dx.doi.org/10.1084/jem.20062100]. [PMID: 17227913].
[135]
Takayama, K.; Wang, C.; Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2005, 18(1), 81-101. [http://dx.doi.org/10.1128/CMR.18.1.81-101.2005]. [PMID: 15653820].
[136]
Raman, K.; Rajagopalan, P.; Chandra, N. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLOS Comput. Biol., 2005, 1(5)e46 [http://dx.doi.org/10.1371/journal.pcbi.0010046]. [PMID: 16261191].
[137]
Poradosu, E.; Gazit, A.; Reuveni, H.; Levitzki, A. α-cyanocinnamide derivatives: a new family of non-peptide, non-sulfhydryl inhibitors of Ras farnesylation. Bioorg. Med. Chem., 1999, 7(8), 1727-1736. [http://dx.doi.org/10.1016/S0968-0896(99)00118-2]. [PMID: 10482464].
[138]
Moloney, G.P.; Martin, G.R.; Mathews, N.; MacLennan, S.; Dodsworth, S.; Sang, P.Y.; Knight, C.; Maxwell, M.; Glen, R.C. Synthesis and serotonergic activity of 2-oxadiazolyl-5-substituted-N,N-dimethyltry-ptamines: novel antagonists for the vascular 5-HT1B-like receptor. J. Chem. Soc., Perkin Trans. 1, 1999, 1999(19), 2725-2733. [http://dx.doi.org/10.1039/a903325d].
[139]
Rajanarendar, E.; Mohan, G.; Reddy, A.S.R. Synthesis and antimicrobial activity of new isoxazolyl-1,3-benzoxazines. Indian J. Chem., 2008, 47B, 112.
[140]
Vibhute, A.Y.; Sayyad, M.A.; Mokle, S.S.; Khansole, S.V.; Vibhute, Y.B.; Gurav, V.M. Synthesis and antibacterial evaluation of some new 1,3-benzoxazines. Pharma Chem., 2009, 1, 86.
[141]
Shakil, N.A.; Pandey, A.; Singh, M.K.; Kumar, J.; Awasthi, S.K. Pankaj, Srivastava, C.; Pandey, R.P. Synthesis and bioefficacy evaluation of new 3-substituted-3,4-dihydro-1,3-benz-oxazines. J. Environ. Sci. Health B, 2010, 45, 108-115. [http://dx.doi.org/10.1080/03601230903471852]. [PMID: 20390939].
[142]
Manikannan, R.; Muthusubramanian, S. Synthesis and biological activity of 6-alkyl/chloro-3-4-(6-alkyl/chloro-2H-benzo[e][1,3]-oxazin-3(4H)-yl)phenyl-3,4-dihydro-2H-benzo[e][1,3]oxazines. Indian J. Chem., 2010, 49B, 1083. [http://dx.doi.org/10.1002/chin.201048158].
[143]
Mayekar, A.N.; Yathirajan, H.S.; Narayana, B.; Sarojini, B.K.; Kumari, N.S.; Harrison, W.T.A. Synthesis and antimicrobial study of new 8-bromo-1,3-diaryl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines. Int. J. Chem., 2011, 3, 74. [http://dx.doi.org/10.5539/ijc.v3n1p74].
[144]
Tang, Z.; Chen, W.; Zhu, Z.; Liu, H. Synthesis of 2,3-diaryl-3,4-dihydro-2H-1,3-benzoxazines and their fungicidal activities. J. Heterocycl. Chem., 2011, 48, 255-260. [http://dx.doi.org/10.1002/jhet.533].
[145]
Prasad, D.; Rohilla, R.K.; Roy, N.; Nath, M. Synthesis and antibacterial evaluation of of benzazoles tethered 1,3-oxazines. Indian J. Chem., 2012, 51B, 739-745.
[146]
Pindel, A.A.; Harych, A.M.; Gębarowska, E.; Gębarowski, T.; Jędrzkiewicz, D.; Pląskowska, E.; Zalewski, D.; Gulia, N.; Szafert, S.; Ejfler, J. Design and functionalization of bioactive benzoxazines. An unexpected ortho-substitution effect. New J. Chem., 2019, 43, 12042-12053. [http://dx.doi.org/10.1039/C8NJ06440G].
[147]
Desai, N.C.; Bhatt, N.B.; Joshi, S.B. Synthesis and antimicrobial importance of oxazine bearing pyridine scaffold. Indian J. Chem., 2019, 58B, 527-540.
[148]
Desai, N.C.; Bhatt, N.B.; Joshi, S.B.; Jadeja, K.A.; Khedkar, V.M. Synthesis, antimicrobial activity and 3D-QSAR study of hybrid oxazine clubbed pyridine scaffolds. ChemistrySelect, 2019, 4, 7541-7550. [http://dx.doi.org/10.1002/slct.201901391].
[149]
Thompson, A.M.; O’Connor, P.D.; Marshall, A.J.; Blaser, A.; Yardley, V.; Maes, L.; Gupta, S.; Launay, D.; Braillard, S.; Chatelain, E.; Wan, B.; Franzblau, S.G.; Ma, Z.; Cooper, C.B.; Denny, W.A. Development of (6 R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5H-imidazo[2,1-b][1,3]-oxazine (DNDI-8219): a new lead for visceral leishmaniasis. J. Med. Chem., 2018, 61(6), 2329-2352. [http://dx.doi.org/10.1021/acs.jmedchem.7b01581]. [PMID: 29461823].
[150]
Madhavan, G.R.; Chakrabarti, R.; Reddy, K.A.; Rajesh, B.M.; Balraju, V.; Rao, P.B.; Rajagopalan, R.; Iqbal, J. Dual PPAR-α and -γ activators derived from novel benzoxazinone containing thiazolidinediones having antidiabetic and hypolipidemic potential. Bioorg. Med. Chem., 2006, 14(2), 584-591. [http://dx.doi.org/10.1016/j.bmc.2005.08.043]. [PMID: 16198573].
[151]
Akhter, M.; Habibullah, S.; Hasan, S.M.; Alam, M.M.; Akhter, N.; Shaquiquzzaman, M. Synthesis of some new 3,4-dihydro-2H-1,3-benzoxazines under microwave irradiation in solvent-free conditions and their biological activity. Med. Chem. Res., 2010, 2010, 1147-1153.
[152]
Gawali, R.; Trivedi, J.; Bhansali, S.; Bhosale, R.; Sarkar, D.; Mitra, D. Design, synthesis, docking studies and biological screening of 2-thiazolyl substituted -2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines as potent HIV-1 reverse transcriptase inhibitors. Eur. J. Med. Chem., 2018, 157, 310-319. [http://dx.doi.org/10.1016/j.ejmech.2018.07.067]. [PMID: 30099253].
[153]
Böhme, T.M.; Augelli-Szafran, C.E.; Hallak, H.; Pugsley, T.; Serpa, K.; Schwarz, R.D. Synthesis and pharmacology of benzoxazines as highly selective antagonists at M4 muscarinic receptors. J. Med. Chem., 2002, 45(14), 3094-3102. [http://dx.doi.org/10.1021/jm011116o]. [PMID: 12086495].
[154]
Ghosh, N.N.; Kiskan, B.; Yagci, Y. Polybenzoxazines-new high performance thermosetting resins: synthesis and properties. Prog. Polym. Sci., 2007, 32, 1344-1391. [http://dx.doi.org/10.1016/j.progpolymsci.2007.07.002].
[155]
Yagci, Y.; Kiskan, B.; Ghosh, N.N. Recent advancement on polybenzoxazine-A newly developed high performance thermoset. J. Polym. Sci. A Polym. Chem., 2009, 47, 5565-5576. [http://dx.doi.org/10.1002/pola.23597].
[156]
Chen, W.; He, J.; Li, L. Characterization of polybenzoxazine and its electrochemical polymerization mechanism. Front. Chem. China, 2009, 4, 390. [http://dx.doi.org/10.1007/s11458-009-0105-9].
[157]
Ishida, H.; Rodriguez, Y. Catalyzing the curing reaction of a new benzoxazine-based phenolic resin. J. Appl. Polym. Sci., 1995, 58, 1751. [http://dx.doi.org/10.1002/app.1995.070581013].
[158]
Wang, Y.X.; Ishida, H. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines. Macromolecules, 2000, 33, 2839-2847. [http://dx.doi.org/10.1021/ma9909096].
[159]
Kiskan, B. Adapting benzoxazine chemistry for unconventional applications. React. Funct. Polym., 2018, 129, 76-88. [http://dx.doi.org/10.1016/j.reactfunctpolym.2017.06.009].
[160]
Kiskan, B.; Yagci, Y. Benzoxazine resins as smart materials and future per- spectives.In: Thermosets: Structure, Properties, and Applications; Guo, Q., Ed.; Elsevier, 2018, pp. 543-576. [http://dx.doi.org/10.1016/B978-0-08-101021-1.00017-4]
[161]
Liu, Y.L.; Chou, C.I. High performance benzoxazine monomers and polymers containing furan groups. J. Polym. Sci. A Polym. Chem., 2005, 43, 5267-5282. [http://dx.doi.org/10.1002/pola.21023].
[162]
Allen, D.J.; Ishida, H. Physical and mechanical properties of flexible polybenzoxazine resins: effect of aliphatic diamine chain length. J. Appl. Polym. Sci., 2006, 101, 2798-2809. [http://dx.doi.org/10.1002/app.22501].
[163]
Russell, V.M.; Koenig, J.L.; Low, H.Y.; Ishida, H. Study of the characterization and curing of benzoxazines using C-13 solid-state nuclear magnetic resonance. J. Appl. Polym. Sci., 1998, 70, 1413-1425. [http://dx.doi.org/10.1002/(SICI)1097-4628(19981114)70:7<1413:AID-APP16>3.0.CO;2-0].
[164]
Audebert, P.; Roche, M.; Pagetti, J. Electrochemical properties of some benzoxazines: conditions for electropoly-merization in alkaline medium. J. Electroanal. Chem. (Lausanne Switz.), 1995, 383, 139-143. [http://dx.doi.org/10.1016/0022-0728(94)03657-O].
[165]
Brunovska, Z.; Ishida, H. Thermal study on the copolymers of phthalonitrile and phenylnitrile-functional benzoxazines. J. Appl. Polym. Sci., 1999, 73, 2937-2949. [http://dx.doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2937:AID-APP18>3.0.CO;2-E].
[166]
Kim, H.J.; Brunovska, Z.; Ishida, H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer (Guildf.), 1999, 40, 6565-6573. [http://dx.doi.org/10.1016/S0032-3861(99)00046-4].
[167]
Agag, T.; Takeichi, T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines. Macromolecules, 2001, 34, 7257-7263. [http://dx.doi.org/10.1021/ma0107915].
[168]
Ishida, H.; Ohba, S. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer (Guildf.), 2005, 46, 5588-5595. [http://dx.doi.org/10.1016/j.polymer.2005.04.080].
[169]
Andreu, R.; Espinosa, M.A.; Galia, M.; Cadiz, B.; Ronda, J.C.; Reina, J.A. Synthesis of novel benzoxazines containing glycidyl groups: a study of the crosslinking behaviour. J. Polym. Sci. A Polym. Chem., 2006, 44, 1529-1540. [http://dx.doi.org/10.1002/pola.21255].
[170]
Chernykh, A.; Agag, T.; Ishida, H. Novel benzoxazine monomer containing diacetylene linkage: an approach to benzoxazine thermosets with low polymerization temperature without added initiators or catalyst. Polymer (Guildf.), 2009, 50, 3153-3157. [http://dx.doi.org/10.1016/j.polymer.2009.04.061].
[171]
Lin, H.C.; Chang, H.L.; Wang, C.F.; Huang, C.F.; Chang, F.C. Polybenzoxazine–silica hybrid surface with environmentally responsive wettability behavior.In: Superhydrophobic Surfaces; CRC Press, 2009, pp. 347-356.
[172]
Pakkethati, K.; Boonmalert, A.; Chaisuwan, T.; Wongkasemjit, S. Development of polybenzoxazine membranes for ethanol-water separation via pervaporation. Desalination, 2011, 267, 73-81. [http://dx.doi.org/10.1016/j.desal.2010.09.008].
[173]
Kiskan, B.; Demirel, A.L.; Kamer, O.; Yagci, Y. Synthesis and characterization of nanomagnetite thermosets based on benzoxazines. J. Polym. Sci. A Polym. Chem., 2008, 46, 6780-6788. [http://dx.doi.org/10.1002/pola.23023].
[174]
Shukla, S.; Ghosh, A.; Sen, U.K.; Roy, P.K.; Mitra, S.; Lochab, B. Cardanol benzoxazine-sulfur copolymers for Li-S batteries: symbiosis of sustainability and performance. ChemistrySelect, 2016, 3, 594-600. [http://dx.doi.org/10.1002/slct.201600050].
[175]
Je, S.H.; Hwang, T.H.; Talapaneni, S.N.; Buyukcakir, O.; Kim, H.J.; Yu, S.; Woo, S-G.; Jang, M.C.; Son, B.K.; Coskun, A.; Choi, J.W. Rational sulfur cathode design for lithium−sulfur batteries: sulfur-embedded benzoxazine polymers. ACS Energy Lett., 2016, 1, 566-572. [http://dx.doi.org/10.1021/acsenergylett.6b00245].