[1]
Sultan, S.; Shah, B.A. Carbon‐carbon and carbon‐heteroatom bond formation reactions using unsaturated carbon compounds. Chem. Rec., 2019, 19, 644-660.
[2]
Brahmachari, G.; Banerjee, B. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: an overview. Curr. Organocatal., 2016, 3, 93-124.
[3]
Banerjee, B. Sc(OTf)3 catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: a review. ARKIVOC, 2017, i, 1-25.
[4]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic acid (CSA): an efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5, 150-167.
[5]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: an efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect, 2018, 3, 12918-12936.
[6]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)Indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23, 1778-1788.
[7]
Singh, A.; Kaur, G.; Kaur, A.; Gupta, V.K.; Banerjee, B. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Curr. Green Chem., 2020, 7, 128-140.
[8]
Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V.K.; Banerjee, B. Mandelic acid catalyzed one-pot threecomponent synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun., 2020, 50, 1545-1560.
[9]
Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V.K.; Banerjee, B. Mandelic acid: an efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr. Organocatal., 2021, 8, 1-13.
[10]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: an efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2018, 83, 1071-1097.
[11]
Kaur, G.; Devi, P.; Thakur, S.; Kumar, A.; Chandel, R.; Banerjee, B. Magnetically separable transition metal ferrites: versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2019, 4, 2181-2199.
[12]
Banerjee, B.; Tajti, A.; Keglevich, G. Ultrasound-assisted synthesis of organophosphorus compounds. In: Organophosphorus Chemistry: Novel Developments; Keglevich, G., Ed.; De Gruyter: Berlin, 2018, pp. 248-263.
[13]
Banerjee, B. Recent developments on organo-bycyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[14]
Banerjee, B. Ultrasound and nano-catalysts: an ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4, 2484-2500.
[15]
Kaur, G.; Sharma, A.; Banerjee, B. Ultrasound and ionic liquid: an ideal combination for organic transformations. ChemistrySelect, 2018, 3, 5283-5295.
[16]
Ujwaldev, S.M.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Sonochemistry in transition metal catalyzed cross coupling reactions: recent developments. Curr. Org. Chem., 2019, 23, 3137-3153.
[17]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2019, 23, 3154-3190.
[18]
Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Arvind, S. Catalytic applications of saccharin and its derivatives in organic synthesis. Curr. Org. Chem., 2019, 23, 3191-3205.
[19]
Sonawane, A.D.; Koketsu, M. Recent advances on C-Se bond forming reactions at low and room temperature. Curr. Org. Chem., 2019, 23, 3206-3225.
[20]
Abd-Elmonem, M.; Mekheimer, R.A.; Hayallah, A.M.; Elsoud, F.A.A.; Sadek, K.U. Recent advances in the utility of glycerol as a benign and biodegradable medium in heterocyclic synthesis. Curr. Org. Chem., 2019, 23, 3226-3246.
[21]
Molnar, M.; Lončarić, M.; Kovač, M. Green chemistry approaches to the synthesis of coumarin derivatives. Curr. Org. Chem., 2020, 24, 4-43.
[22]
Mondal, A.; Mukhopadhyay, C. Constructions of Carbon-Carbon and Carbon-heteroatom bonds: enabled by green visible light. Curr. Org. Chem., 2020, 24, 44-73.
[23]
Li, X.; Liu, T.; Zhang, B.; Zhang, D.; Shi, H.; Yu, Z.; Tao, S.; Du, Y. Formation of C-C bonds mediated by hypervalent iodine reagents under metal-free conditions. Curr. Org. Chem., 2020, 24, 74-103.
[24]
Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S.B. A review of recent advances in the green synthesis of azole- and pyran-based fused heterocycles using MCRs and sustainable catalysts. Curr. Org. Chem., 2021, 25(1), 4-39.
[25]
Ejaz, S.; Zubair, M.; Rizwan, K.; Karakaya, I.; Rasheed, T.; Rasoo, N. An updated coverage on the synthesis of benzo[b]thiophenes via transition-metalcatalyzed reactions: a review. Curr. Org. Chem., 2021, 25(1), 40-67.
[26]
Yang, Y.O.; Wang, X.; Xiao, J.; Li, Y.; Sun, F.; Du, Y. Formation of Carbon-Nitrogen bond mediated by hypervalent iodine reagents under metal-free conditions. Curr. Org. Chem., 2021, 25(1), 68-132.
[27]
Lathwal, A.; Mathew, B.P.; Nath, M. Syntheses, biological and material significance of dihydro[1,3]oxazine derivatives: an overview. Curr. Org. Chem., 2021, 25(1), 133-174.