Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Clinical Interpretation of Drug Susceptibility Tests in Tuberculosis

Author(s): Rafael Laniado-Laborín*

Volume 16, Issue 2, 2020

Page: [102 - 112] Pages: 11

DOI: 10.2174/1573398X16999201007164411

Price: $65

Abstract

Prompt and accurate diagnosis of drug resistance is essential for optimal treatment of drug-resistant tuberculosis. However, only 20% of the more than half a million patients eligible for the treatment of MDR-TB/RR-TB receive an appropriate drug regimen. Drug-resistant TB regimens must include a sufficient number of effective medications, a significant challenge for clinicians worldwide, as most are forced to make therapeutic decisions without any, or very little information on drug susceptibility testing. Although phenotypic DST is still commonly regarded as the gold standard for determining M. tuberculosis susceptibility to antituberculosis drugs, it has several limitations, mainly its prolonged turnaround time. Molecular methods based on M. tuberculosis genomic DNA sequencing have been developed during the past two decades, to identify the most common mutations involved in drug resistance. The Xpert ® MTB/RIF is a real-time polymerase chain reaction that offers results in less than two hours and has an overall sensitivity for rifampin resistance of 96% and 98% specificity. Line probe assays (LPAs) are commercial DNA strip-based tests for detecting the most frequent mutations responsible for resistance to rifampin, isoniazid, fluoroquinolones, and second-line injectable drugs.

Discrepancies between phenotypic and genotyping methods are a problem that the clinician will face in everyday practice. However, any resistance result (with any type of test) in a person with risk factors for harboring resistant microorganisms should be considered appropriate while the results of complementary tests are available.

Keywords: Tuberculosis, diagnosis, phenotypic, molecular, heteroresistance, disputed mutations, inferred mutations.

Next »
Graphical Abstract

[1]
WHO consolidated guidelines on tuberculosis. Module 3: diagnosis – rapid diagnostics for tuberculosis detection 2020. Available from: https://www.who.int/publications/i/item/who-consolidated-guidelines-on-tuberculosis-module-3-diagnosis---rapid-diagnostics-for-tuberculosis-detection
[2]
Global tuberculosis report 2019. Geneva: World Health Organization 2019. Available from:https://www.who.int/publications/i/item/global-tuberculosis-report-2019
[3]
Swai HF, Mugusi FM, Mbwambo JK. Sputum smear negative pulmonary tuberculosis: sensitivity and specificity of diagnostic algorithm. BMC Res Notes 2011; 4: 475.
[http://dx.doi.org/10.1186/1756-0500-4-475]
[4]
Desikan P. Sputum smear microscopy in tuberculosis: is it still relevant? Indian J Med Res 2013; 137(3): 442-4.
[5]
WHO. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. World Health Organization 2020. Available from: https://apps.who.int/iris/handle/10665/330395
[6]
Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J 2017; 50(6): 1701354.
[http://dx.doi.org/10.1183/13993003.01354-2017]
[7]
Ahuja SD, Ashkin D, Avendano M, et al. Collaborative group for meta-analysis of individual patient data in MDR-TB. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med 2012; 9(8): e1001300.
[http://dx.doi.org/10.1371/journal.pmed.1001300]
[8]
Domínguez J, Boettger EC, Cirillo D, et al. TBNET; RESIST-TB networks. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement. Int J Tuberc Lung Dis 2016; 20(1): 24-42.
[http://dx.doi.org/10.5588/ijtld.15.0221]
[9]
Schön T, Miotto P, Köser CU, Viveiros M, Böttger E, Cambau E. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect 2017; 23(3): 154-60.
[http://dx.doi.org/10.1016/j.cmi.2016.10.022]
[10]
Mitchison DA. Drug resistance in tuberculosis. Eur Respir J 2005; 25(2): 376-9.
[http://dx.doi.org/10.1183/09031936.05.00075704]
[11]
Cirillo DM, Miotto P, Tortoli E. Evolution of phenotypic and molecular drug susceptibility testing Strain variation in the mycobacterium tuberculosis complex: its role in biology, epidemiology and control advances in experimental medicine and biology. Springer 2017; pp. 221-46.
[12]
Zürcher K, Ballif M, Fenner L, et al. International epidemiology Databases to Evaluate AIDS (IeDEA) consortium. Drug susceptibility testing and mortality in patients treated for tuberculosis in high-burden countries: a multicentre cohort study. Lancet Infect Dis 2019; 19(3): 298-307.
[http://dx.doi.org/10.1016/S1473-3099(18)30673-X]
[13]
Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009; 25(4): 195-203.
[http://dx.doi.org/10.1016/j.nbt.2008.12.009]
[14]
Merker M, Kohl TA, Roetzer A, et al. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One 2013; 8(12): e82551.
[http://dx.doi.org/10.1371/journal.pone.0082551]
[15]
Sun G, Luo T, Yang C, et al. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J Infect Dis 2012; 206(11): 1724-33.
[http://dx.doi.org/10.1093/infdis/jis601]
[16]
Ramachandran R, Muniyandi M. Rapid molecular diagnostics for multi-drug resistant tuberculosis in India. Expert Rev Anti Infect Ther 2018; 16(3): 197-204.
[http://dx.doi.org/10.1080/14787210.2018.1438262]
[17]
Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. World Health Organization 2013. Available from: https://apps.who.int/iris/handle/10665/112472
[18]
Organization Xpert MTB/RIF implementation manual: technical and operational ‘how-to’; practical considerations. World Health Organization 2014. Available from: https://apps.who.int/iris/bitstream/handle/10665/112469/9789241506700_eng.pdf?sequence=1
[19]
World Health Organization. Molecular line probe assay for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Policy statement. World Health Organization 2008. Available from: https://www.who.int/tb/features_archive/policy_statement.pdf
[20]
Steingart KR, Sohn H, Schiller I, et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2013; (1): CD009593.
[http://dx.doi.org/10.1002/14651858.CD009593.pub2]
[21]
Miller LP, Crawford JT, Shinnick TM. The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1994; 38(4): 805-11.
[http://dx.doi.org/10.1128/AAC.38.4.805]
[22]
Lawn SD, Nicol MP. Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol 2011; 6(9): 1067-82.
[http://dx.doi.org/10.2217/fmb.11.84]
[23]
Reddy R, Alvarez-Uria G. Molecular Epidemiology of rifampicin resistance in Mycobacterium tuberculosis using the GeneXpert MTB/RIF assay from a rural setting in India. J Pathogens 2017; 20176738095
[http://dx.doi.org/10.1155/2017/6738095]
[24]
Ssengooba W, Respeito D, Mambuque E, et al. Do Xpert MTB/RIF cycle threshold values provide information about patient delays for tuberculosis diagnosis? PLoS One 2016; 11(9): e0162833.
[http://dx.doi.org/10.1371/journal.pone.0162833]
[25]
Blakemore R, Nabeta P, Davidow AL, et al. A multisite assessment of the quantitative capabilities of the Xpert MTB/RIF assay. Am J Respir Crit Care Med 2011; 184(9): 1076-84.
[http://dx.doi.org/10.1164/rccm.201103-0536OC]
[26]
Helb D, Jones M, Story E, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 2010; 48(1): 229-37.
[http://dx.doi.org/10.1128/JCM.01463-09]
[27]
Hanrahan CF, Theron G, Bassett J, et al. Xpert MTB/RIF as a measure of sputum bacillary burden. Variation by HIV status and immunosuppression. Am J Respir Crit Care Med 2014; 189(11): 1426-34.
[http://dx.doi.org/10.1164/rccm.201312-2140OC]
[28]
Alemu A, Tadesse M, Seid G, et al. Does Xpert® MTB/RIF assay give rifampicin resistance results without identified mutation? Review of cases from Addis Ababa, Ethiopia. BMC Infect Dis 2020; 20(1): 87.
[http://dx.doi.org/10.1186/s12879-020-4817-2]
[29]
Piubello A, Aït-Khaled N, Caminero JA, et al. Guía Práctica para el Manejo de la Tuberculosis Resistente. París, Francia: Unión Internacional contra la Tuberculosis y Enfermedades Respiratorias 2018. Available from: https://theunion.org/sites/default/files/2020-08/Manejo-de-la-Tuberculosis-Septima-edicion.pdf
[30]
Opota O, Mazza-Stalder J, Greub G, Jaton K. The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clin Microbiol Infect 2019; 25(11): 1370-6.
[http://dx.doi.org/10.1016/j.cmi.2019.03.021]
[31]
Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis 2018; 18(1): 76-84.
[http://dx.doi.org/10.1016/S1473-3099(17)30691-6]
[32]
García-Basteiro AL, DiNardo A, Saavedra B, et al. Point of care diagnostics for tuberculosis. Pulmonology 2018; 24(2): 73-85.
[http://dx.doi.org/10.1016/j.rppnen.2017.12.002]
[33]
World Health Organization meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTF/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health Organization 2017. Available from: https://apps.who.int/iris/bitstream/handle/10665/254792/WHO-HTM-TB-2017.04-eng.pdf?sequence=1
[34]
World Health Organization. Frequently asked questions about the WHO Technical Expert Consultation findings on Xpert® MTB/RIF Ultra 2017. Available from: https://www.who.int/tb/areas-of-work/laboratory/diagnostics/XpertUltraFAQs.pdf?ua=1
[35]
Chakravorty S, Simmons AM, Rowneki M, et al. The new Xpert MTB/RIF Ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio 2017; 8(4): e00812-7.
[http://dx.doi.org/10.1128/mBio.00812-17]
[36]
Nicol MP, Workman L, Prins M, et al. Accuracy of Xpert Mtb/Rif Ultra for the diagnosis of pulmonary tuberculosis in children. Pediatr Infect Dis J 2018; 37(10): e261-3.
[http://dx.doi.org/10.1097/INF.0000000000001960]
[37]
Nathan CB, Edwin N, Emily EE, Fiona VC, Philip VB, Adolf B. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: a prospective cohort study. Lancet Infect Dis 2018; 18: 68-75.
[http://dx.doi.org/10.1016/S1473-3099(17)30474-7]
[38]
Friedrich SO, Rachow A, Saathoff E, et al. Pan African Consortium for the Evaluation of Anti-tuberculosis Antibiotics (PanACEA). Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med 2013; 1(6): 462-70.
[http://dx.doi.org/10.1016/S2213-2600(13)70119-X]
[39]
Machado D, Couto I, Viveiros M. Advances in the molecular diagnosis of tuberculosis: from probes to genomes. Infect Genet Evol 2019; 72: 93-112.
[http://dx.doi.org/10.1016/j.meegid.2018.11.021]
[40]
GLI. Line probe assays for drug resistant tuberculosis detection interpretation and reporting guide for laboratory staff and clinicians 2018. Available from: http://www.stoptb.org/wg/gli/assets/documents/LPA_test_web_ready.pdf
[41]
Nathavitharana RR, Hillemann D, Schumacher SG, et al. Multicenter noninferiority evaluation of hain genotype MTBDRplus version 2 and nipro NTM+MDRTB line probe assays for detection of rifampin and isoniazid resistance. J Clin Microbiol 2016; 54(6): 1624-30.
[http://dx.doi.org/10.1128/JCM.00251-16]
[42]
Nathavitharana RR, Cudahy PGT, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J 2017.
[http://dx.doi.org/10.1183/13993003.01075-2016]
[43]
World Health Organization. The use of molecular line probe assays for the detection of resistance to isoniazid and rifampicin: policy update. World Health Organization 2016. Available from: https://www.who.int/tb/publications/molecular-test-resistance/en/
[44]
World Health Organization. The use of molecular line probe assays for the detection of mutations associated with resistance to fluoroquinolones (FQs) and second-line injectable drugs (SLIDs). World Health Organization 2016. Available from: https://www.who.int/tb/publications/policy-guidance-molecular-line/en/
[45]
Miotto P, Piana F, Cirillo DM, Migliori GB. Genotype MTBDRplus: a further step toward rapid identification of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol 2008; 46(1): 393-4.
[http://dx.doi.org/10.1128/JCM.01066-07]
[46]
Alonso M, Palacios JJ, Herranz M, et al. Isolation of Mycobacterium tuberculosis strains with a silent mutation in rpoB leading to potential misassignment of resistance category. J Clin Microbiol 2011; 49(7): 2688-90.
[http://dx.doi.org/10.1128/JCM.00659-11]
[47]
Stucki D, Gagneux S. Single nucleotide polymorphisms in Mycobacterium tuberculosis and the need for a curated database. Tuberculosis (Edinb) 2013; 93(1): 30-9.
[http://dx.doi.org/10.1016/j.tube.2012.11.002]
[48]
Ocheretina O, Escuyer VE, Mabou M-M, et al. Correlation between genotypic and phenotypic testing for resistance to rifampin in Mycobacterium tuberculosis clinical isolates in Haiti: investigation of cases with discrepant susceptibility results. PLoS One 2014; 9(3): e90569.
[http://dx.doi.org/10.1371/journal.pone.0090569]
[49]
Van Rie A, Whitfield MG, De-Vos E, et al. Discordances between molecular assays for rifampicin resistance in Mycobacterium tuberculosis : frequency, mechanisms and clinical impact. J Antimicrob Chemother 2020; 75(5): 1123-9.
[http://dx.doi.org/10.1093/jac/dkz564]
[50]
Rinder H, Mieskes KT, Löscher T. Heteroresistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 2001; 5(4): 339-45.
[51]
Operario DJ, Koeppel AF, Turner SD, et al. Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis. PLoS One 2017; 12(5): e0176522.
[http://dx.doi.org/10.1371/journal.pone.0176522]
[52]
Kamela CS. How well do routine molecular diagnostics detect rifampin heteroresistance in Mycobacterium tuberculosis? J Clin Microbiol 2019; 57(11): e007171-19.
[http://dx.doi.org/10.1128%2FJCM.00717-19]
[53]
Kargarpour Kamakoli M, Sadegh HR, Farmanfarmaei G, et al. Evaluation of the impact of polyclonal infection and heteroresistance on treatment of tuberculosis patients. Sci Rep 2017; 7: 41410.
[http://dx.doi.org/10.1038/srep41410]
[54]
Folkvardsen DB, Thomsen VO, Rigouts L, et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J Clin Microbiol 2013; 51(12): 4220-2.
[http://dx.doi.org/10.1128/JCM.01602-13]
[55]
Tolani MP, D’souza DT, Mistry NF. Drug resistance mutations and heteroresistance detected using the GenoType MTBDR plus assay and their implication for treatment outcomes in patients from Mumbai, India. BMC Infect Dis 2012; 12: 9.
[http://dx.doi.org/10.1186/1471-2334-12-9]
[56]
Hu Y, Zhao Q, Werngren J, Hoffner S, Diwan VK, Xu B. Drug resistance characteristics and cluster analysis of M. tuberculosis in Chinese patients with multiple episodes of antituberculosis treatment. BMC Infect Dis 2016; 16(1)
[http://dx.doi.org/10.1186/s12879-015-1331-z]
[57]
Singhal R, Anthwal D, Kumar G, et al. Genotypic characterization of ‘inferred’ rifampin mutations in GenoType MTBDRplus assay and its association with phenotypic susceptibility testing of Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 2020; 96(4): 114995.
[http://dx.doi.org/10.1016/j.diagmicrobio.2020.114995]
[58]
Miotto P, Cabibbe AM, Borroni E, Degano M, Cirillo DM. Role of disputed mutations in the rpoB gene in interpretation of automated liquid MGIT culture results for rifampin susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 2018; 56(5): e01599-17.
[http://dx.doi.org/10.1128/JCM.01599-17]
[59]
Van DA, Aung KJM, Hossain A, et al. Disputed rpoB mutations can frequently cause important rifampicin resistance among new tuberculosis patients. Int J Tuberc Lung Dis 2015; 19(2): 185-90.
[http://dx.doi.org/10.5588/ijtld.14.0651]
[60]
Van DA, Barrera L, Bastian I, et al. Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results. J Clin Microbiol 2009; 47(11): 3501-6.
[http://dx.doi.org/10.1128/JCM.01209-09]
[61]
Borrell S, Gagneux S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis 2009; 13(12): 1456-66.
[62]
Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 2006; 312(5782): 1944-6.
[http://dx.doi.org/10.1126/science.1124410]
[63]
Van DA, Aung KJM, Bola V, et al. Rifampin drug resistance tests for tuberculosis: challenging the gold standard. J Clin Microbiol 2013; 51(8): 2633-40.
[http://dx.doi.org/10.1128/JCM.00553-13]
[64]
Jamieson FB, Guthrie JL, Neemuchwala A, Lastovetska O, Melano RG, Mehaffy C. Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis. J Clin Microbiol 2014; 52(6): 2157-62.
[http://dx.doi.org/10.1128/JCM.00691-14]
[65]
Comas I, Borrell S, Roetzer A, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 2011; 44(1): 106-10.
[http://dx.doi.org/10.1038/ng.1038]
[66]
de Vos M, Müller B, Borrell S, et al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 2013; 57(2): 827-32.
[http://dx.doi.org/10.1128/AAC.01541-12]
[67]
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393(6685): 537-44.
[http://dx.doi.org/10.1038/31159]
[68]
Walker TM, Kohl TA, Omar SV, Hedge J, Del OEC, Bradley P, et al. Whole genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 2015; 15(10): 1193-202.
[http://dx.doi.org/10.1016/S1473-3099(15)00062-6]
[69]
Pankhurst LJ, Del Ojo Elias C, Votintseva AA, et al. COMPASS-TB study group. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 2016; 4(1): 49-58.
[http://dx.doi.org/10.1016/S2213-2600(15)00466-X]
[70]
McNerney R, Clark TG, Campino S, et al. Removing the bottleneck in whole genome sequencing of Mycobacterium tuberculosis for rapid drug resistance analysis: a call to action. Int J Infect Dis 2017; 56: 130-5.
[http://dx.doi.org/10.1016/j.ijid.2016.11.422]
[71]
Feuerriegel S, Schleusener V, Beckert P, et al. PhyResSE: a Web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data. J Clin Microbiol 2015; 53(6): 1908-14.
[http://dx.doi.org/10.1128/JCM.00025-15]
[72]
Iwai H, Kato-Miyazawa M, Kirikae T, Miyoshi-Akiyama T. CASTB (the comprehensive analysis server for the Mycobacterium tuberculosis complex): a publicly accessible web server for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical isolates. Tuberculosis (Edinb) 2015; 95(6): 843-4.
[http://dx.doi.org/10.1016/j.tube.2015.09.002]
[73]
The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technicalguide. Geneva: World Health Organization 2018. Available from: https://apps.who.int/iris/handle/10665/274443
[74]
Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo DM, Nikolayevskyy V. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect 2017; 23(2): 61-8.
[http://dx.doi.org/10.1016/j.cmi.2016.09.008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy