Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

低氧预处理可改善AβPP/ PS1转基因小鼠的淀粉样β病理和长期认知功能下降。

卷 17, 期 7, 2020

页: [626 - 634] 页: 9

弟呕挨: 10.2174/1567205017666201007121730

价格: $65

摘要

背景与目的:基于中枢神经系统(CNS)缺氧和缺血性疾病的模型,已经建立了低氧预处理(HPC)来触发神经保护的内源性机制。但是,其对阿尔茨海默氏病(AD)的作用仍缺乏实质性证据和深入研究。本研究旨在研究HPC对AβPP/ PS1转基因小鼠AD相关记忆力下降和淀粉样β(Aβ)病理学的影响。 方法:将7周龄的AβPP/ PS1转基因小鼠随机分为HPC组和非HPC组。 HPC组接受早期和重复性HPC治疗4周,而非HPC组则在常氧条件下生长。然后将所有动物饲养到28周龄,之后进行莫里斯水迷宫测试以检查动物的空间记忆。测量了Aβ病理学指标(可溶性Aβ水平和Aβ斑块数量)和相关蛋白的表达,以探索潜在的机制。 结果:结果表明,HPC改善了AβPP/ PS1小鼠的记忆力下降和Aβ病理。在HPC组中,淀粉样β蛋白前体蛋白(AβPP)和β位APP裂解酶1(BACE1)的蛋白水平降低,而低氧诱导因子1α(HIF-1α)的蛋白水平升高。 结论:HPC可能是一种有前途的AD干预策略。它的潜在保护作用可能是通过下调AβPP和BACE1的表达从而抑制Aβ病理学来实现的。值得注意的是,HIF-1α可能在介导HPC继发的神经适应性变化中起关键作用。

关键词: 缺氧预处理,阿尔茨海默氏病,Aβ病理学,缺氧诱导因子1α,痴呆,保护因子。

[1]
American Psychiatric Association Diagnostic and statistical manual of mental disorders Fifth Edition (DSM-5) Arlington (VA): American Psychiatric Publishing . 2013; pp. 602-11.
[2]
Shah H, Albanese E, Duggan C, et al. Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol 2016; 15(12): 1285-94.
[http://dx.doi.org/10.1016/S1474-4422(16)30235-6] [PMID: 27751558]
[3]
Jack CR Jr, Bennett DA, Blennow K, et al. Contributors. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[4]
Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. BioMed Res Int 2018; 20183740461
[http://dx.doi.org/10.1155/2018/3740461] [PMID: 29707568]
[5]
Li S, Hafeez A, Noorulla F, et al. Preconditioning in neuroprotection: From hypoxia to ischemia. Prog Neurobiol 2017; 157: 79-91.
[http://dx.doi.org/10.1016/j.pneurobio.2017.01.001] [PMID: 28110083]
[6]
Baillieul S, Chacaroun S, Doutreleau S, Detante O, Pépin JL, Verges S. Hypoxic conditioning and the central nervous system: A new therapeutic opportunity for brain and spinal cord injuries? Exp Biol Med (Maywood) 2017; 242(11): 1198-206.
[http://dx.doi.org/10.1177/1535370217712691] [PMID: 28585890]
[7]
Stetler RA, Leak RK, Gan Y, et al. Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Prog Neurobiol 2014; 114: 58-83.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.005] [PMID: 24389580]
[8]
Gonzalez-Rothi EJ, Lee KZ, Dale EA, Reier PJ, Mitchell GS, Fuller DD. Intermittent hypoxia and neurorehabilitation. J Appl Physiol 2015; 119(12): 1455-65.
[http://dx.doi.org/10.1152/japplphysiol.00235.2015] [PMID: 25997947]
[9]
Schega L, Peter B, Brigadski T, et al. Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. J Sci Med Sport 2016; 19(11): 941-5.
[http://dx.doi.org/10.1016/j.jsams.2016.02.012] [PMID: 27134133]
[10]
Sardeli AV, Ferreira MLV. Low-load resistance exercise improves cognitive function in older adults. Rev Bras Med Esporte 2018; 24: 125-9.
[http://dx.doi.org/10.1590/1517-869220182402179200]
[11]
Mecocci P, Boccardi V, Cecchetti R, et al. A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. J Alzheimers Dis 2018; 62(3): 1319-35.
[http://dx.doi.org/10.3233/JAD-170732] [PMID: 29562533]
[12]
Serebrovska ZO, Serebrovska TV, Kholin VA, et al. Intermittent hypoxia-hyperoxia training improves cognitive function and decreases circulating biomarkers of Alzheimer’s disease in patients with mild cognitive impairment: A pilot study. Int J Mol Sci 2019; 20(21): 5405.
[http://dx.doi.org/10.3390/ijms20215405] [PMID: 31671598]
[13]
Manukhina EB, Goryacheva AV, Barskov IV, et al. Prevention of neurodegenerative damage to the brain in rats in experimental Alzheimer’s disease by adaptation to hypoxia. Neurosci Behav Physiol 2010; 40(7): 737-43.
[http://dx.doi.org/10.1007/s11055-010-9320-6] [PMID: 20635216]
[14]
Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J 2018; 32(2): 654-68.
[http://dx.doi.org/10.1096/fj.201700600R] [PMID: 28970251]
[15]
Meng SX, Wang B, Li WT. Intermittent hypoxia improves cognition and reduces anxiety-related behavior in APP/PS1 mice. Brain Behav 2020; 10(2)e01513
[http://dx.doi.org/10.1002/brb3.1513] [PMID: 31877583]
[16]
Koelsch G. BACE1 Function and inhibition: Implications of intervention in the amyloid pathway of Alzheimer’s disease pathology. Molecules 2017; 22(10)E1723
[http://dx.doi.org/10.3390/molecules22101723] [PMID: 29027981]
[17]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[18]
Nalivaeva NN, Turner AJ. Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy. Br J Pharmacol 2019; 176(18): 3447-63.
[http://dx.doi.org/10.1111/bph.14593] [PMID: 30710367]
[19]
Zhang F, Niu L, Li S, Le W. Pathological impacts of chronic hypoxia on Alzheimer’s disease. ACS Chem Neurosci 2019; 10(2): 902-9.
[http://dx.doi.org/10.1021/acschemneuro.8b00442] [PMID: 30412668]
[20]
Sun X, He G, Qing H, et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci USA 2006; 103(49): 18727-32.
[http://dx.doi.org/10.1073/pnas.0606298103] [PMID: 17121991]
[21]
Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 307(2): L129-40.
[http://dx.doi.org/10.1152/ajplung.00089.2014] [PMID: 24838748]
[22]
Verges S, Chacaroun S, Godin-Ribuot D, Baillieul S. hypoxic conditioning as a new therapeutic modality. Front Pediatr 2015; 3: 58.
[http://dx.doi.org/10.3389/fped.2015.00058] [PMID: 26157787]
[23]
Zhang F, Zhong R, Qi H, et al. Impacts of acute hypoxia on Alzheimer’s disease-like pathologies in APPswe/PS1dE9 mice and their wild type littermates. Front Neurosci 2018; 12: 314.
[http://dx.doi.org/10.3389/fnins.2018.00314] [PMID: 29867325]
[24]
Stowe AM, Altay T, Freie AB, Gidday JM. Repetitive hypoxia extends endogenous neurovascular protection for stroke. Ann Neurol 2011; 69(6): 975-85.
[http://dx.doi.org/10.1002/ana.22367] [PMID: 21437933]
[25]
Gustavsson M, Anderson MF, Mallard C, Hagberg H. Hypoxic preconditioning confers long-term reduction of brain injury and improvement of neurological ability in immature rats. Pediatr Res 2005; 57(2): 305-9.
[http://dx.doi.org/10.1203/01.PDR.0000151122.58665.70] [PMID: 15611346]
[26]
Martin N, Bossenmeyer-Pourié C, Koziel V, et al. Non-injurious neonatal hypoxia confers resistance to brain senescence in aged male rats. PLoS One 2012; 7(11)e48828
[http://dx.doi.org/10.1371/journal.pone.0048828] [PMID: 23173039]
[27]
Bickler PE, Fahlman CS, Gray JJ. Hypoxic preconditioning failure in aging hippocampal neurons: Impaired gene expression and rescue with intracellular calcium chelation. J Neurosci Res 2010; 88(16): 3520-9.
[http://dx.doi.org/10.1002/jnr.22508] [PMID: 20936695]
[28]
Ashok BS, Ajith TA, Sivanesan S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease. Clin Exp Pharmacol Physiol 2017; 44(3): 327-34.
[http://dx.doi.org/10.1111/1440-1681.12717] [PMID: 28004401]
[29]
Guo C, Wang T, Zheng W, Shan ZY, Teng WP, Wang ZY. Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 2013; 34(2): 562-75.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.05.009] [PMID: 22717236]
[30]
Guo C, Zhang YX, Wang T, et al. Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1α pathway on the brain of APP/PS1 transgenic mice. Front Aging Neurosci 2015; 7: 104-4.
[http://dx.doi.org/10.3389/fnagi.2015.00104] [PMID: 26082716]
[31]
Lu N, Li X, Tan R, et al. HIF-1α/beclin1-mediated autophagy is involved in neuroprotection induced by hypoxic preconditioning. J Mol Neurosci 2018; 66(2): 238-50.
[http://dx.doi.org/10.1007/s12031-018-1162-7] [PMID: 30203298]
[32]
Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283(16): 10892-903.
[http://dx.doi.org/10.1074/jbc.M800102200] [PMID: 18281291]
[33]
Gong G, Hu L, Liu Y, et al. Upregulation of HIF-1α protein induces mitochondrial autophagy in primary cortical cell cultures through the inhibition of the mTOR pathway. Int J Mol Med 2014; 34(4): 1133-40.
[http://dx.doi.org/10.3892/ijmm.2014.1850] [PMID: 25017576]
[34]
Li Q, Liu Y, Sun M. Autophagy and Alzheimer’s disease. Cell Mol Neurobiol 2017; 37(3): 377-88.
[http://dx.doi.org/10.1007/s10571-016-0386-8] [PMID: 27260250]
[35]
Schubert D, Soucek T, Blouw B. The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur J Neurosci 2009; 29(7): 1323-34.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06712.x] [PMID: 19519624]
[36]
Chai X, Kong W, Liu L, Yu W, Zhang Z, Sun Y. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis. Neural Regen Res 2014; 9(11): 1145-53.
[http://dx.doi.org/10.4103/1673-5374.135317] [PMID: 25206774]
[37]
Echeverria V, Barreto GE, Avila-Rodriguezc M, Tarasov VV, Aliev G. Is VEGF a key target of cotinine and other potential therapies against Alzheimer disease? Curr Alzheimer Res 2017; 14(11): 1155-63.
[http://dx.doi.org/10.2174/1567205014666170329113007] [PMID: 28356047]
[38]
Bassil F, Fernagut PO, Bezard E, Meissner WG. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: Targets for disease modification? Prog Neurobiol 2014; 118: 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.005] [PMID: 24582776]
[39]
Merelli A, Rodríguez JCG, Folch J, Regueiro MR, Camins A, Lazarowski A. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr Neuropharmacol 2018; 16(10): 1484-98.
[http://dx.doi.org/10.2174/1570159X16666180110130253] [PMID: 29318974]
[40]
Reiserer RS, Harrison FE, Syverud DC, Mcdonald MP. Impaired spatial learning in the APPSwe+ PSEN1ΔE9 bigenic mouse model of Alzheimer’s disease genes brain. Behaviour 2007; 6(1): 54-65.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy