Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Proteomic Analysis of Huntington’s Disease

Author(s): Shobhit Kumar*, Priyanka Singh, Shrestha Sharma, Javed Ali, Sanjula Baboota and Faheem Hyder Pottoo

Volume 21, Issue 12, 2020

Page: [1218 - 1222] Pages: 5

DOI: 10.2174/1389203721666201006160327

Price: $65

Abstract

Huntington’s disease (HD) is a neurodegenerative disease that is genetically inherited through an autosomal dominant gene located on chromosome 4. HD is caused by DNA mutation (generally 37 or more repetition of CAG nucleotides) that leads to an excessive stretch of glutamine residues. However, the main pathogenesis pathway resulted by polyglutamine expansion in mutant HD is unknown. The characteristics of this disease mostly appear in adults. Patients who suffer from this disease have shown an inability to control physical movements, emotional problems, speech disturbance, dementia, loss of thinking ability and death occurs between 15-20 years from the time of symptomatic onset. This review article suggested that investigation of mutation in the HD gene can be done by proteomic analysis such as mass spectroscopy, gel electrophoresis, western blotting, chromatographic based technology, and X-ray crystallography. The primary aim of proteomics is to focus on the molecular changes occurring in HD, there by enhancing the effectiveness of treatment.

Keywords: Electrophoresis, huntington’s disease, mass spectroscopy, western blotting, mutation, proteomics.

[1]
Peltonen, L.; Jalanko, A.; Varilo, T. Molecular genetics of the Finnish disease heritage. Hum. Mol. Genet., 1999, 8(10), 1913-1923.
[http://dx.doi.org/10.1093/hmg/8.10.1913] [PMID: 10469845]
[2]
DiFiglia, M.; Sapp, E.; Chase, K.; Schwarz, C.; Meloni, A.; Young, C.; Martin, E.; Vonsattel, J.P.; Carraway, R.; Reeves, S.A. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 1995, 14(5), 1075-1081.
[http://dx.doi.org/10.1016/0896-6273(95)90346-1] [PMID: 7748555]
[3]
La Spada, A.R. A novel therapy for Huntington’s disease. Cerebrum, 2018, 2018, 11-18.
[PMID: 30746028]
[4]
Sorolla, M.A.; Reverter-Branchat, G.; Tamarit, J.; Ferrer, I.; Ros, J.; Cabiscol, E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic. Biol. Med., 2008, 45(5), 667-678.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.014] [PMID: 18588971]
[5]
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[6]
Gil, J.M.; Rego, A.C. Mechanisms of neurodegeneration in Huntington’s disease. Eur. J. Neurosci., 2008, 27(11), 2803-2820.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06310.x] [PMID: 18588526]
[7]
Wang, L.H.; Qin, Z.H. Animal models of Huntington’s disease: implications in uncovering pathogenic mechanisms and developing therapies. Acta Pharmacol. Sin., 2006, 27(10), 1287-1302.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00410.x] [PMID: 17007735]
[8]
Hung, C.L.; Maiuri, T.; Bowie, L.E.; Gotesman, R.; Son, S.; Falcone, M.; Giordano, J.V.; Gillis, T.; Mattis, V.; Lau, T.; Kwan, V.; Wheeler, V.; Schertzer, J.; Singh, K.; Truant, R. A patient-derived cellular model for Huntington’s disease reveals phenotypes at clinically relevant CAG lengths. Mol. Biol. Cell, 2018, 29(23), 2809-2820.
[http://dx.doi.org/10.1091/mbc.E18-09-0590] [PMID: 30256717]
[9]
Rigamonti, D.; Bauer, J.H.; De-Fraja, C.; Conti, L.; Sipione, S.; Sciorati, C.; Clementi, E.; Hackam, A.; Hayden, M.R.; Li, Y.; Cooper, J.K.; Ross, C.A.; Govoni, S.; Vincenz, C.; Cattaneo, E. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci., 2000, 20(10), 3705-3713.
[http://dx.doi.org/10.1523/JNEUROSCI.20-10-03705.2000] [PMID: 10804212]
[10]
Mangiarini, L.; Sathasivam, K.; Seller, M.; Cozens, B.; Harper, A.; Hetherington, C.; Lawton, M.; Trottier, Y.; Lehrach, H.; Davies, S.W.; Bates, G.P. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 1996, 87(3), 493-506.
[http://dx.doi.org/10.1016/S0092-8674(00)81369-0] [PMID: 8898202]
[11]
Yamamoto, A.; Lucas, J.J.; Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell, 2000, 101(1), 57-66.
[http://dx.doi.org/10.1016/S0092-8674(00)80623-6] [PMID: 10778856]
[12]
Menalled, L.B. Knock-in mouse models of Huntington’s disease. NeuroRx, 2005, 2(3), 465-470.
[http://dx.doi.org/10.1602/neurorx.2.3.465] [PMID: 16389309]
[13]
Zuccato, C.; Valenza, M.; Cattaneo, E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol. Rev., 2010, 90(3), 905-981.
[http://dx.doi.org/10.1152/physrev.00041.2009] [PMID: 20664076]
[14]
Vonsattel, J.P.; Myers, R.H.; Stevens, T.J.; Ferrante, R.J.; Bird, E.D.; Richardson, E.P., Jr. Neuropathological classification of huntington’s disease. J. Neuropathol. Exp. Neurol., 1985, 44(6), 559-577.
[http://dx.doi.org/10.1097/00005072-198511000-00003] [PMID: 2932539]
[15]
Tabrizi, S.J.; Langbehn, D.R.; Leavitt, B.R.; Roos, R.A.; Durr, A.; Craufurd, D.; Kennard, C.; Hicks, S.L.; Fox, N.C.; Scahill, R.I.; Borowsky, B.; Tobin, A.J.; Rosas, H.D.; Johnson, H.; Reilmann, R.; Landwehrmeyer, B.; Stout, J.C. TRACK-HD investigators. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol., 2009, 8(9), 791-801.
[http://dx.doi.org/10.1016/S1474-4422(09)70170-X] [PMID: 19646924]
[16]
Deng, Y.P.; Albin, R.L.; Penney, J.B.; Young, A.B.; Anderson, K.D.; Reiner, A. Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J. Chem. Neuroanat., 2004, 27(3), 143-164.
[http://dx.doi.org/10.1016/j.jchemneu.2004.02.005] [PMID: 15183201]
[17]
Kroksveen, A.C.; Opsahl, J.A.; Aye, T.T.; Ulvik, R.J.; Berven, F.S. Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J. Proteomics, 2011, 74(4), 371-388.
[http://dx.doi.org/10.1016/j.jprot.2010.11.010] [PMID: 21111852]
[18]
Verrastro, I.; Pasha, S.; Jensen, K.T.; Pitt, A.R.; Spickett, C.M. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules, 2015, 5(2), 378-411.
[http://dx.doi.org/10.3390/biom5020378] [PMID: 25874603]
[19]
McQuade, L.R.; Balachandran, A.; Scott, H.A.; Khaira, S.; Baker, M.S.; Schmidt, U. Proteomics of Huntington’s disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances. J. Proteome Res., 2014, 13(12), 5648-5659.
[http://dx.doi.org/10.1021/pr500649m] [PMID: 25316320]
[20]
Schönberger, S.J.; Jezdic, D.; Faull, R.L.; Cooper, G.J. Proteomic analysis of the human brain in Huntington’s Disease indicates pathogenesis by molecular processes linked to other neurodegenerative diseases and to type-2 diabetes. J. Huntingtons Dis., 2013, 2(1), 89-99.
[http://dx.doi.org/10.3233/JHD-120044] [PMID: 25063432]
[21]
Hosp, F.; Gutiérrez-Ángel, S.; Schaefer, M.H.; Cox, J.; Meissner, F.; Hipp, M.S.; Hartl, F.U.; Klein, R.; Dudanova, I.; Mann, M. Spatiotemporal proteomic profiling of Huntington’s disease inclusions reveals widespread loss of protein function. Cell Rep., 2017, 21(8), 2291-2303.
[http://dx.doi.org/10.1016/j.celrep.2017.10.097] [PMID: 29166617]
[22]
Magdah, J. Proteomics analysis for therapeutic options of neurodegeneration: A review. ProteomicsBioinform., 2017, 10, 5.
[23]
Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and theirapplications. J. Chromatogr. Sci., 2017, 55(2), 182-196.
[http://dx.doi.org/10.1093/chromsci/bmw167] [PMID: 28087761]
[24]
Barbosa, E.B.; Vidotto, A.; Polachini, G.M.; Henrique, T.; Marqui, A.B.; Tajara, E.H. Proteomics: methodologies and applications to the study of human diseases. Rev. Assoc. Med. Bras., 2012, 58(3), 366-375.
[PMID: 22735231]
[25]
Pontes, A.H.; de Sousa, M.V. Mass Spectrometry-based approaches tounderstand the molecular basis of memory. Front Chem., 2016, 4, 40.
[http://dx.doi.org/10.3389/fchem.2016.00040] [PMID: 27790611]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy