Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Medicinal Plants and Bioactive Compounds for Diabetes Management: Important Advances in Drug Discovery

Author(s): Kondeti R. Shanmugam*, Bhasha Shanmugam, Ganjikunta V. Subbaiah, Sahukari Ravi and Kesireddy S. Reddy

Volume 27, Issue 6, 2021

Published on: 28 September, 2020

Page: [763 - 774] Pages: 12

DOI: 10.2174/1381612826666200928160357

Price: $65

Abstract

Background: Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress is made in the field of herbal medicine and diabetic research.

Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries.

Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds was collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review.

Results: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries, herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, gymnea, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possess anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in the prevention and management of diabetes.

Conclusion: Moreover, our review suggests that bioactive compounds have the therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.

Keywords: Diabetes, medicinal plants, bioactive compounds, drug discovery, bioactive compounds, anti-diabetic drugs.

[1]
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27(5): 1047-53.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[2]
King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21(9): 1414-31.
[http://dx.doi.org/10.2337/diacare.21.9.1414] [PMID: 9727886]
[3]
Shanmugam KR, Mallikarjuna K, Nishanth K, Kuo CH, Reddy KS. Protective effect of dietary ginger on antioxidant enzymes and oxidative damage in experimental diabetic rat tissues. Food Chem 2011; 124(4): 1436-42.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.104]
[4]
Shanmugam KR, Mallikarjuna K, Kesireddy N, Sathyavelu Reddy K. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol 2011; 49(4): 893-7.
[http://dx.doi.org/10.1016/j.fct.2010.12.013] [PMID: 21184796]
[5]
Vincent HK, Morgan JW, Vincent KR. Obesity exacerbates oxidative stress levels after acute exercise. Med Sci Sports Exerc 2004; 36(5): 772-9.
[http://dx.doi.org/10.1249/01.MSS.0000126576.53038.E9] [PMID: 15126709]
[6]
Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[7]
Moussa SA. Oxidative stress in diabetes mellitus. Rom J Biophys 2008; 18(3): 225-36.
[8]
Erejuwa OO. Oxidative stress in diabetes mellitus: is there a role for hypoglycemic drugs and/or antioxidants. Oxidative Stress Dis 2012; 25: 217-46.
[9]
Garud MS, Kulkarni YA. Hyperglycemia to nephropathy via transforming growth factor beta. Curr Diabetes Rev 2014; 10(3): 182-9.
[http://dx.doi.org/10.2174/1573399810666140606103645] [PMID: 24919657]
[10]
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020; 16(7): 377-90.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[11]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[12]
Bilal M, Iqbal MS, Shah SB, Rasheed T, Iqbal HMN. Diabetic Complications and Insight into Antidiabetic Potentialities of Ethno- Medicinal Plants: A Review. Recent Pat Inflamm Allergy Drug Discov 2018; 12(1): 7-23.
[http://dx.doi.org/10.2174/1872213X12666180221161410] [PMID: 29473531]
[13]
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops - A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2019; 59(12): 1949-75.
[http://dx.doi.org/10.1080/10408398.2018.1434480] [PMID: 29388805]
[14]
Baranowska M, Bartoszek A. Antioxidant and antimicrobial properties of bioactive phytochemicals from cranberry Postepy Hig Med Dosw 2016; 70: 1460-8.
[http://dx.doi.org/10.5604/17322693.1227896]
[15]
Son Y, Lee JH, Cheong YK, Chung HT, Pae HO. Antidiabetic potential of the heme oxygenase-1 inducer curcumin analogues. BioMed Res Int 2013; 2013: 918039.
[http://dx.doi.org/10.1155/2013/918039] [PMID: 24191253]
[16]
Li Y, Zhang Y, Liu DB, Liu HY, Hou WG, Dong YS. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model. Int J Med Sci 2013; 10(4): 377-81.
[http://dx.doi.org/10.7150/ijms.5224] [PMID: 23471081]
[17]
Al-Ali K, Abdel Fatah HS, El-Badry YA. Dual Effect of Curcumin-Zinc Complex in Controlling Diabetes Mellitus in Experimentally Induced Diabetic Rats. Biol Pharm Bull 2016; 39(11): 1774-80.
[http://dx.doi.org/10.1248/bpb.b16-00137] [PMID: 27803448]
[18]
Gill AO, Holley RA. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 2004; 70(10): 5750-5.
[http://dx.doi.org/10.1128/AEM.70.10.5750-5755.2004] [PMID: 15466510]
[19]
Kamatou GP, Vermaak I, Viljoen AM. Eugenol--from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule Molecules 2012; 17(6): 6953-81.
[20]
Hertog MG, Bueno-de-Mesquita HB, Fehily AM, Sweetnam PM, Elwood PC, Kromhout D. Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol Biomarkers Prev 1996; 5(9): 673-7.
[PMID: 8877056]
[21]
Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011; 7(6): 327-40.
[http://dx.doi.org/10.1038/nrneph.2011.51] [PMID: 21537349]
[22]
Shanmugam B, Shanmugam KR, Ravi S, et al. Exploratory Studies of (-)-Epicatechin, a Bioactive Compound of Phyllanthus niruri, on the Antioxidant Enzymes and Oxidative Stress Markers in D-galactosamine-induced Hepatitis in Rats: A Study with Reference to Clinical Prospective Pharmacogn Mag 2017.
[23]
Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 2018; 210: 296-310.
[http://dx.doi.org/10.1016/j.jep.2017.08.035] [PMID: 28864169]
[24]
Medina-Bolivar F, Condori J, Rimando AM, et al. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 2007; 68(14): 1992-2003.
[http://dx.doi.org/10.1016/j.phytochem.2007.04.039] [PMID: 17574636]
[25]
Wang Z, Huang Y, Zou J, Cao K, Xu Y, Wu JM. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int J Mol Med 2002; 9(1): 77-9.
[http://dx.doi.org/10.3892/ijmm.9.1.77] [PMID: 11745001]
[26]
de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 2007; 35(Pt 5): 1156-60.
[http://dx.doi.org/10.1042/BST0351156] [PMID: 17956300]
[27]
de Sá Coutinho D, Pacheco MT, Frozza RL, Bernardi A. Published 1812; 2018(Jun): 20.
[28]
Xing C, Wang Y, Dai X, et al. The protective effects of resveratrol on antioxidant function and the mRNA expression of inflammatory cytokines in the ovaries of hens with fatty liver hemorrhagic syndrome. Poult Sci 2020; 99(2): 1019-27.
[http://dx.doi.org/10.1016/j.psj.2019.10.009] [PMID: 32036959]
[29]
Simental-Mendía LE, Guerrero-Romero F. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: A randomized double-blind, placebo-controlled trial. Nutrition 2019; 58: 7-10.
[http://dx.doi.org/10.1016/j.nut.2018.06.015] [PMID: 30278430]
[30]
Magyar K, Halmosi R, Palfi A, et al. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc 2012; 50(3): 179-87.
[http://dx.doi.org/10.3233/CH-2011-1424] [PMID: 22240353]
[31]
Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta 2015; 1852(6): 1145-54.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.013] [PMID: 25445538]
[32]
Lee SM, Yang H, Tartar DM, et al. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia 2011; 54(5): 1136-46.
[http://dx.doi.org/10.1007/s00125-011-2064-1] [PMID: 21340626]
[33]
Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 1999; 47(6): 2274-9.
[http://dx.doi.org/10.1021/jf9811065] [PMID: 10794622]
[34]
Zang Y, Zhang L, Igarashi K, Yu C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct 2015; 6(3): 834-41.
[http://dx.doi.org/10.1039/C4FO00844H] [PMID: 25599885]
[35]
Kumari M, Jain S. Tannins: An Antinutrient with Positive Effect to Manage Diabetes. Res J Recent Sci 2012; 1(12): 70-3.
[36]
Doss A, Mubarack HM, Dhanabalan R. Antibacterial activity of tannins from the leaves of Solanum trilobatum Linn. Ind J Sci and Tech 2009; 2(2): 41-3.
[http://dx.doi.org/10.17485/ijst/2009/v2i2.5]
[37]
Buzzini P, Arapitsas P, Goretti M, et al. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev Med Chem 2008; 8(12): 1179-87.
[http://dx.doi.org/10.2174/138955708786140990] [PMID: 18855732]
[38]
Kunyanga CN, Imungi JK, Okoth M, Momanyi C, Biesalski HK, Vadivel V. Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya. J Food Sci 2011; 76(4): C560-7.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02116.x] [PMID: 22417336]
[39]
Velayutham R, Sankaradoss N, Ahamed KF. Protective effect of tannins from Ficus racemosa in hypercholesterolemia and diabetes induced vascular tissue damage in rats. Asian Pac J Trop Med 2012; 5(5): 367-73.
[http://dx.doi.org/10.1016/S1995-7645(12)60061-3] [PMID: 22546653]
[40]
Alinejad B, Ghorbani A, Sadeghnia HR. Effects of combinations of curcumin, linalool, rutin, safranal, and thymoquinone on glucose/serum deprivation-induced cell death. Avicenna J Phytomed 2013; 3(4): 321-8.
[PMID: 25050289]
[41]
Celik S, Ozkaya A. Effects of intraperitoneally administered lipoic acid, vitamin E, and linalool on the level of total lipid and fatty acids in guinea pig brain with oxidative stress induced by H2O2. J Biochem Mol Biol 2002; 35(6): 547-52.
[PMID: 12470587]
[42]
Cho SY, Jun HJ, Lee JH, Jia Y, Kim KH, Lee SJ. Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanisms. FEBS Lett 2011; 585(20): 3289-96.
[http://dx.doi.org/10.1016/j.febslet.2011.09.012] [PMID: 21944868]
[43]
Anjos PJ, Lima AO, Cunha PS, et al. Cardiovascular effects induced by linalool in normotensive and hypertensive rats. Z Natforsch C J Biosci 2013; 68(5-6): 181-90.
[http://dx.doi.org/10.1515/znc-2013-5-603] [PMID: 23923614]
[44]
Wu Q, Yu L, Qiu J, et al. Linalool attenuates lung inflammation induced by Pasteurella multocida via activating Nrf-2 signaling pathway. Int Immunopharmacol 2014; 21(2): 456-63.
[http://dx.doi.org/10.1016/j.intimp.2014.05.030] [PMID: 24925757]
[45]
Shanmugam KR, Siva M, Ravi S, Shanmugam B, Reddy KS. Bioactive compound of Ocimum sanctum carvacrol supplementation attenuates fluoride toxicity in sodium fluoride intoxicated rats: A study with respect to clinical aspect. Pharmacogn Mag 2019; 15(62): 144-9.
[46]
Kamyab AA, Eshraghian A. Anti-Inflammatory, gastrointestinal and hepatoprotective effects of Ocimum sanctum Linn: an ancient remedy with new application. Inflamm Allergy Drug Targets 2013; 12(6): 378-84.
[http://dx.doi.org/10.2174/1871528112666131125110017] [PMID: 24266685]
[47]
Putta S, Yarla NS, Kumar K E, et al. Preventive and Therapeutic Potentials of Anthocyanins in Diabetes and Associated Complications. Curr Med Chem 2018; 25(39): 5347-71.
[http://dx.doi.org/10.2174/0929867325666171206101945] [PMID: 29210634]
[48]
Turrini E, Ferruzzi L, Fimognari C. Possible Effects of Dietary Anthocyanins on Diabetes and Insulin Resistance. Curr Drug Targets 2017; 18(6): 629-40.
[http://dx.doi.org/10.2174/1389450116666151001105230] [PMID: 26424400]
[49]
Malomo SO, Ore A, Yakubu MT. In vitro and in vivo antioxidant activities of the aqueous extract of Celosia argentea leaves. Indian J Pharmacol 2011; 43(3): 278-85.
[http://dx.doi.org/10.4103/0253-7613.81519] [PMID: 21713091]
[50]
Gülçin I, Küfrevioglu OI, Oktay M, Büyükokuroglu ME. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 2004; 90(2-3): 205-15.
[http://dx.doi.org/10.1016/j.jep.2003.09.028] [PMID: 15013182]
[51]
Xu J, Wang S, Feng T, Chen Y, Yang G. Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. J Cell Mol Med 2018; 22(12): 6026-38.
[http://dx.doi.org/10.1111/jcmm.13876] [PMID: 30324705]
[52]
El Barky AR, Hussein SA, Alm-Eldeen AA, Hafez YA, Mohamed TM. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother 2016; 84: 1472-87.
[http://dx.doi.org/10.1016/j.biopha.2016.10.002] [PMID: 27810340]
[53]
Deepa P, Sowndhararajan K, Kim S, Park SJ. A role of Ficus species in the management of diabetes mellitus: A review. J Ethnopharmacol 2018; 215: 210-32.
[http://dx.doi.org/10.1016/j.jep.2017.12.045] [PMID: 29305899]
[54]
Cushnie TP, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44(5): 377-86.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[55]
Priya CL, Bhaskara Rao KV. Postprandial Antihyperglycemic And Antioxidant Activities of Acalypha indica Linn Stem Extract: An In-vivo Study. Pharmacogn Mag 2016; 12(Suppl. 4): S475-81.
[http://dx.doi.org/10.4103/0973-1296.191461] [PMID: 27761078]
[56]
Akanji MA, Olukolu SO, Kazeem MI. Leaf Extracts of Aerva lanata Inhibit the Activities of Type 2 Diabetes-Related Enzymes and Possess Antioxidant Properties Oxid Med Cell Longev 2018.
[57]
Ribeiro RdeA, de Barros F, de Melo MM, et al. Acute diuretic effects in conscious rats produced by some medicinal plants used in the state of São Paulo, Brasil. J Ethnopharmacol 1988; 24(1): 19-29.
[http://dx.doi.org/10.1016/0378-8741(88)90136-5] [PMID: 3199837]
[58]
Pantoja CV, Chiang LC, Norris BC, Concha JB. Diuretic, natriuretic and hypotensive effects produced by Allium sativum (garlic) in anaesthetized dogs. J Ethnopharmacol 1991; 31(3): 325-31.
[http://dx.doi.org/10.1016/0378-8741(91)90018-9] [PMID: 2056760]
[59]
Al-Awadi FM, Khattar MA, Gumaa KA. On the mechanism of the hypoglycaemic effect of a plant extract. Diabetologia 1985; 28(7): 432-4.
[http://dx.doi.org/10.1007/BF00280886] [PMID: 3899826]
[60]
Sripanidkulchai B, Wongpanich V, Laupattarakasem P, Suwansaksri J, Jirakulsomchok D. Diuretic effects of selected Thai indigenous medicinal plants in rats. J Ethnopharmacol 2001; 75(2-3): 185-90.
[http://dx.doi.org/10.1016/S0378-8741(01)00173-8] [PMID: 11297849]
[61]
Bilbis LS, Shehu RA, Abubakar MG. Hypoglycemic and hypolipidemic effects of aqueous extract of Arachis hypogaea in normal and alloxan-induced diabetic rats. Phytomedicine 2002; 9(6): 553-5.
[http://dx.doi.org/10.1078/09447110260573191] [PMID: 12403165]
[62]
Hebi M, Khallouki F, Haidani A EL, Eddouks M. Aqueous Extract of Argania spinosa L. Fruits Ameliorates Diabetes in Streptozotocin-Induced Diabetic Rats. Cardiovasc Hematol Agents Med Chem 2018; 16(1): 56-65.
[http://dx.doi.org/10.2174/1871525716666180103163107] [PMID: 29299990]
[63]
Subramoniam A, Pushpangadan P, Rajasekharan S, Evans DA, Latha PG, Valsaraj R. Effects of Artemisia pallens Wall. on blood glucose levels in normal and alloxan-induced diabetic rats. J Ethnopharmacol 1996; 50(1): 13-7.
[http://dx.doi.org/10.1016/0378-8741(95)01329-6] [PMID: 8778502]
[64]
Ramachandran V, Mandal D, Payyavala U, et al. Hypoglycemic, antioxidant and hypolipidemic activity of Asparagus racemosus on streptozotocin-induced diabetic in rats. Adv Appl Sci Res 2011; 2(3): 179-85.
[65]
Khosla P, Bhanwra S, Singh J, Seth S, Srivastava RK. A study of hypoglycaemic effects of Azadirachta indica (Neem) in normaland alloxan diabetic rabbits. Indian J Physiol Pharmacol 2000; 44(1): 69-74.
[PMID: 10919098]
[66]
Tunali T, Yarat A, Yanardağ R, et al. The effect of chard (Beta vulgaris L. var. cicla) on the skin of streptozotocin induced diabetic rats. Pharmazie 1998; 53(9): 638-40.
[PMID: 9770212]
[67]
Saleem R, Ahmad M, Hussain SA, et al. Hypotensive, hypoglycaemic and toxicological studies on the flavonol C-glycoside shamimin from Bombax ceiba. Planta Med 1999; 65(4): 331-4.
[http://dx.doi.org/10.1055/s-1999-14060] [PMID: 10364838]
[68]
Chauhan P, Mahajan S, Kulshrestha A, et al. Bougainvillea spectabilis Exhibits Antihyperglycemic and Antioxidant Activities in Experimental Diabetes. J Evid Based Complementary Altern Med 2016; 21(3): 177-85.
[http://dx.doi.org/10.1177/2156587215595152] [PMID: 26187284]
[69]
Kataya HA, Hamza AA. Red Cabbage (Brassica oleracea) Ameliorates Diabetic Nephropathy in Rats. Evid Based Complement Alternat Med 2008; 5(3): 281-7.
[http://dx.doi.org/10.1093/ecam/nem029] [PMID: 18830445]
[70]
Amalraj T, Ignacimuthu S. Hypoglycemic activity of Cajanus cajan (seeds) in mice. Indian J Exp Biol 1998; 36(10): 1032-3.
[PMID: 10356965]
[71]
Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018; 21(5): 439-48.
[PMID: 29922422]
[72]
Nedi T, Mekonnen N, Urga K. Diuretic effect of the crude extracts of Carissa edulis in rats. J Ethnopharmacol 2004; 95(1): 57-61.
[http://dx.doi.org/10.1016/j.jep.2004.06.017] [PMID: 15374607]
[73]
Nammi S, Boini MK, Lodagala SD, Behara RB. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement Altern Med 2003; 3: 4.
[http://dx.doi.org/10.1186/1472-6882-3-4] [PMID: 12950994]
[74]
Ranasinghe P, Jayawardana R, Galappaththy P, Constantine GR, de Vas Gunawardana N, Katulanda P. Efficacy and safety of ‘true’ cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta-analysis. Diabet Med 2012; 29(12): 1480-92.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03718.x] [PMID: 22671971]
[75]
Hossain MZ, Shibib BA, Rahman R. Hypoglycemic effects of Coccinia indica: inhibition of key gluconeogenic enzyme, glucose-6-phosphatase. Indian J Exp Biol 1992; 30(5): 418-20.
[PMID: 1334043]
[76]
Sotoudeh R, Hadjzadeh MA, Gholamnezhad Z, Aghaei A. The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha and Terminalia chebula in diabetic rats. Avicenna J Phytomed 2019; 9(5): 454-64.
[PMID: 31516859]
[77]
Udupihille M, Jiffry MT. Diuretic effect of Aerua lanata with water, normal saline and coriander as controls. Indian J Physiol Pharmacol 1986; 30(1): 91-7.
[PMID: 3818036]
[78]
Srinivasan A, Selvarajan S, Kamalanathan S, Kadhiravan T, Prasanna Lakshmi NC, Adithan S. Effect of Curcuma longa on vascular function in native Tamilians with type 2 diabetes mellitus: A randomized, double-blind, parallel arm, placebo-controlled trial. Phytother Res 2019; 33(7): 1898-911.
[http://dx.doi.org/10.1002/ptr.6381] [PMID: 31155769]
[79]
Oluwajuyitan TD, Ijarotimi OS. Nutritional, antioxidant, glycaemic index and Antihyperglycaemic properties of improved traditional plantain-based (Musa AAB) dough meal enriched with tigernut (Cyperuse sculentus) and defatted soybean (Glycine max) flour for diabetic patients Heliyon 2019; 5(4): e01504.
[80]
Navarro E, Alonso PJ, Alonso SJ, et al. Cardiovascular activity of a methanolic extract of Digitalis purpurea spp. heywoodii. J Ethnopharmacol 2000; 71(3): 437-42.
[http://dx.doi.org/10.1016/S0378-8741(00)00175-6] [PMID: 10940580]
[81]
Variya BC, Bakrania AK, Patel SS. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine 2020; 73: 152906.
[http://dx.doi.org/10.1016/j.phymed.2019.152906] [PMID: 31064680]
[82]
Gray AM, Flatt PR. Antihyperglycemic actions of Eucalyptus globulus (Eucalyptus) are associated with pancreatic and extra-pancreatic effects in mice. J Nutr 1998; 128(12): 2319-23.
[http://dx.doi.org/10.1093/jn/128.12.2319] [PMID: 9868176]
[83]
Achrekar S, Kaklij GS, Pote MS, Kelkar SM. Hypoglycemic activity of Eugenia jambolana and Ficus bengalensis: mechanism of action. In Vivo 1991; 5(2): 143-7.
[PMID: 1768783]
[84]
Augusti KT, Daniel RS, Cherian S, Sheela CG, Nair CR. Effect of leucopelargonin derivative from Ficus bengalensis Linn. on diabetic dogs. Indian J Med Res 1994; 99: 82-6.
[PMID: 8005644]
[85]
Sophia D, Manoharan S. Hypolipidemic activities of Ficus racemosa Linn. bark in alloxan induced diabetic rats Afr J Tradit Complement Altern Med 2007; 4(3): 279-88.
[86]
Tian J, Popal MS, Liu Y, et al. Ginkgo biloba Leaf Extract Attenuates Atherosclerosis in Streptozotocin-Induced Diabetic ApoE-/- Mice by Inhibiting Endoplasmic Reticulum Stress via Restoration of Autophagy through the mTOR Signaling Pathway Oxid Med Cell Longev 2019.
[87]
Shanmugasundaram ER, Rajeswari G, Baskaran K, Rajesh Kumar BR, Radha Shanmugasundaram K, Kizar Ahmath B. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. J Ethnopharmacol 1990; 30(3): 281-94.
[http://dx.doi.org/10.1016/0378-8741(90)90107-5] [PMID: 2259216]
[88]
DehghanShahreza F. Hibiscus esculentus and diabetes mellitus. J Nephropharmacol 2015; 5(2): 104-5.
[89]
Ogar I, Egbung GE, Nna VU, Iwara IA, Itam E. Anti-hyperglycemic potential of Hyptis verticillata jacq in streptozotocin-induced diabetic rats. Biomed Pharmacother 2018; 107: 1268-76.
[http://dx.doi.org/10.1016/j.biopha.2018.08.115] [PMID: 30257341]
[90]
Maghrani M, Zeggwagh NA, Michel JB, Eddouks M. Antihypertensive effect of Lepidium sativum L. in spontaneously hypertensive rats. J Ethnopharmacol 2005; 100(1-2): 193-7.
[http://dx.doi.org/10.1016/j.jep.2005.02.024] [PMID: 15955648]
[91]
Saleem M, Tanvir M, Akhtar MF, Iqbal M, Saleem A. Antidiabetic Potential of Mangifera indica L. cv. Anwar Ratol Leaves: Medicinal Application of Food Wastes Medicina (Kaunas) 2019; 55(7): 353.
[92]
Pugazhenthi S, Murthy PS. Partial purification of a hypoglycemic fraction from the unripe fruits of Momordica charantia Linn (bitter gourd). Indian J Clin Biochem 1995; 10(1): 19-22.
[http://dx.doi.org/10.1007/BF02873663]
[93]
Cáceres A, Saravia A, Rizzo S, Zabala L, De Leon E, Nave F. Pharmacologic properties of Moringa oleifera. 2: Screening for antispasmodic, antiinflammatory and diuretic activity. J Ethnopharmacol 1992; 36(3): 233-7.
[http://dx.doi.org/10.1016/0378-8741(92)90049-W] [PMID: 1434682]
[94]
Iyer UM, Mani UV. Studies on the effect of curry leaves supplementation (Murraya Koenigi) on lipid profile, glycated proteins and amino acids in non-insulin-dependent diabetic patients. Plant Foods Hum Nutr 1990; 40(4): 275-82.
[http://dx.doi.org/10.1007/BF02193851] [PMID: 2174154]
[95]
Mohebbati R, Shafei MN, Beheshti F, et al. Mixed hydroalcoholic extracts of Nigella sativa and Curcuma longa improves adriamycin-induced renal injury in rat. Saudi J Kidney Dis Transpl 2017; 28(6): 1270-81.
[http://dx.doi.org/10.4103/1319-2442.220880] [PMID: 29265038]
[96]
Husain I, Chander R, Saxena JK, Mahdi AA, Mahdi F. Antidyslipidemic Effect of Ocimum sanctum Leaf Extract in Streptozotocin Induced Diabetic Rats. Indian J Clin Biochem 2015; 30(1): 72-7.
[http://dx.doi.org/10.1007/s12291-013-0404-2] [PMID: 25646044]
[97]
Somova LI, Shode FO, Ramnanan P, Nadar A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J Ethnopharmacol 2003; 84(2-3): 299-305.
[http://dx.doi.org/10.1016/S0378-8741(02)00332-X] [PMID: 12648829]
[98]
Galati EM, Tripodo MM, Trovato A, Miceli N, Monforte MT. Biological effect of Opuntia ficus indica (L.) Mill. (Cactaceae) waste matter. Note I: diuretic activity. J Ethnopharmacol 2002; 79(1): 17-21.
[http://dx.doi.org/10.1016/S0378-8741(01)00337-3] [PMID: 11744290]
[99]
Amin KA, Awad EM, Nagy MA. Effects of panax quinquefolium on streptozotocin-induced diabetic rats: role of C-peptide, nitric oxide and oxidative stress. Int J Clin Exp Med 2011; 4(2): 136-47.
[PMID: 21686137]
[100]
Srividya N, Periwal S. Diuretic, hypotensive and hypoglycaemic effect of Phyllanthus amarus. Indian J Exp Biol 1995; 33(11): 861-4.
[PMID: 8786163]
[101]
Giribabu N, Karim K, Kilari EK, Salleh N. Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. J Ethnopharmacol 2017; 205: 123-37.
[http://dx.doi.org/10.1016/j.jep.2017.05.002] [PMID: 28483637]
[102]
Saddala RR, Thopireddy L, Ganapathi N, Kesireddy SR. Regulation of cardiac oxidative stress and lipid peroxidation in streptozotocin-induced diabetic rats treated with aqueous extract of Pimpinella tirupatiensis tuberous root. Exp Toxicol Pathol 2013; 65(1-2): 15-9.
[http://dx.doi.org/10.1016/j.etp.2011.05.003] [PMID: 21640568]
[103]
Santhakumari P, Prakasam A, Pugalendi KV. Antihyperglycemic activity of Piper betle leaf on streptozotocin-induced diabetic rats. J Med Food 2006; 9(1): 108-12.
[http://dx.doi.org/10.1089/jmf.2006.9.108] [PMID: 16579737]
[104]
Shen SC, Cheng FC, Wu NJ. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytother Res 2008; 22(11): 1458-64.
[http://dx.doi.org/10.1002/ptr.2476] [PMID: 18819164]
[105]
Manickam M, Ramanathan M, Jahromi MA, Chansouria JP, Ray AB. Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 1997; 60(6): 609-10.
[http://dx.doi.org/10.1021/np9607013] [PMID: 9214733]
[106]
Kondeti VK, Badri KR, Maddirala DR, et al. Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol 2010; 48(5): 1281-7.
[http://dx.doi.org/10.1016/j.fct.2010.02.023] [PMID: 20178824]
[107]
Banihani S, Swedan S, Alguraan Z. Pomegranate and type 2 diabetes. Nutr Res 2013; 33(5): 341-8.
[http://dx.doi.org/10.1016/j.nutres.2013.03.003] [PMID: 23684435]
[108]
Vargas R, Perez RM, Perez S, Zavala MA, Perez C. Antiurolithiatic activity of Raphanus sativus aqueous extract on rats. J Ethnopharmacol 1999; 68(1-3): 335-8.
[http://dx.doi.org/10.1016/S0378-8741(99)00105-1] [PMID: 10624898]
[109]
Vyas N, Mehra R, Makhija R. Salacia - The new multi-targeted approach in diabetics. Ayu 2016; 37(2): 92-7.
[http://dx.doi.org/10.4103/ayu.AYU_134_13] [PMID: 29200746]
[110]
Banihani SA. Tomato (Solanum lycopersicum L.) and type 2 diabetes. Int J food proper 2018; 21(1): 99-105.
[111]
Hsu CC, Guo YR, Wang ZH, Yin MC. Protective effects of an aqueous extract from pepino (Solanum muricatum Ait.) in diabetic mice. J Sci Food Agric 2011; 91(8): 1517-22.
[http://dx.doi.org/10.1002/jsfa.4345] [PMID: 21445856]
[112]
Umamageswari MS, Karthikeyan TM, Maniyar YA. Antidiabetic Activity of Aqueous Extract of Solanum nigrum Linn Berries in Alloxan Induced Diabetic Wistar Albino Rats. J Clin Diagn Res 2017; 11(7): FC16-9.
[http://dx.doi.org/10.7860/JCDR/2017/26563.10312] [PMID: 28892926]
[113]
Perera PRD, Ekanayake S, Ranaweera KKDS. Antidiabetic Compounds in Syzygium cumini Decoction and Ready to Serve Herbal Drink. Evid Based Complement Alternat Med 2017; 2017: 1083589.
[http://dx.doi.org/10.1155/2017/1083589] [PMID: 28572825]
[114]
Hook AI, Henman MGM. Evaluation of Dandelion for Diuretic Activity and Variation in Potassium Content. Int J Pharmacog 1993; 31(1): 29-34.
[http://dx.doi.org/10.3109/13880209309082914]
[115]
Nalamolu KR, Nammi S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats BMC Complement Altern Med 2006; 6: 17.
[116]
Sharma R, Amin H. GalibPrajapati PK. Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy. Asian Pac J Trop Biomed 2015; 5(1): 68-78.
[http://dx.doi.org/10.1016/S2221-1691(15)30173-8]
[117]
Al-Ali M, Wahbi S, Twaij H, Al-Badr A. Tribulus terrestris: preliminary study of its diuretic and contractile effects and comparison with Zea mays. J Ethnopharmacol 2003; 85(2-3): 257-60.
[http://dx.doi.org/10.1016/S0378-8741(03)00014-X] [PMID: 12639749]
[118]
Petchi RR, Vijaya C, Parasuraman S. Anti-arthritic activity of ethanolic extract of Tridax procumbens (Linn.) in Sprague Dawley rats. Pharmacognosy Res 2013; 5(2): 113-7.
[http://dx.doi.org/10.4103/0974-8490.110541] [PMID: 23798886]
[119]
Gupta D, Raju J, Baquer NZ. Modulation of some gluconeogenic enzyme activities in diabetic rat liver and kidney: effect of antidiabetic compounds. Indian J Exp Biol 1999; 37(2): 196-9.
[PMID: 10641146]
[120]
Ahmed MF, Kazim SM, Ghori SS, et al. Antidiabetic Activity of Vinca rosea Extracts in Alloxan-Induced Diabetic Rats. Int J Endocrinol 2010; 2010: 841090.
[http://dx.doi.org/10.1155/2010/841090] [PMID: 20652054]
[121]
Ahangarpour A, Oroojan AA, Khorsandi L, Najimi SA. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model. Res Pharm Sci 2017; 12(2): 137-43.
[http://dx.doi.org/10.4103/1735-5362.202452] [PMID: 28515766]
[122]
Zunino S. Type 2 diabetes and glycemic response to grapes or grape products. J Nutr 2009; 139(9): 1794S-800S.
[http://dx.doi.org/10.3945/jn.109.107631] [PMID: 19625702]
[123]
Andallu B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J Exp Biol 2000; 38(6): 607-9.
[PMID: 11116534]
[124]
Elbashir SMI, Devkota HP, Wada M, et al. Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activities of eighteen Sudanese medicinal plants BMC Complement. Altern Med 2018; 18(1): 282.
[http://dx.doi.org/10.1186/s12906-018-2346-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy