Review Article

SHP2变构抑制剂:最新专利综述(2015-2020)

卷 28, 期 19, 2021

发表于: 28 September, 2020

页: [3825 - 3842] 页: 18

弟呕挨: 10.2174/1568011817666200928114851

价格: $65

摘要

含Srchomology-2结构域的PTP 2 (SHP2)是由PTPN11基因编码的非受体磷酸酶。SHP2的过度表达与多种人类疾病有关,如努南综合征、LEOPARD综合征和癌症。为了克服现有位阻抑制剂的缺点,目前正在开发具有高选择性和低毒性的靶向SHP2变构位点的新型抑制剂。本文综述了2015-2020年发表在专利中的SHP2变构抑制剂。分子是根据中心核的化学结构分类的。SHP2长期以来被认为是一种“不可消化”的蛋白质。幸运的是,诺华股份有限公司的研究人员取得了重大突破,他们将SHP099确定为一种高效、选择性、可溶性和口服生物可利用的SHP2变构抑制剂。目前,有几种SHP2变构抑制剂正在临床开发中。然而,耐药性仍然是一个重大挑战。SHP2变构抑制剂与免疫治疗药物或分子靶向药物的结合是一种有前途的抗耐药性治疗策略。

关键词: SHP2抑制剂,PTPN11基因,变构,癌症,联合治疗,临床试验。

[1]
Kanagarethinam, S.; Mahapatra, P.; Jabalia, N.; Chaudhary, N. Protein tyrosine phosphatase-prospective target against cancer: a mini review. Cancer Surv., 2017, 2(113), 2.
[http://dx.doi.org/10.4172/2573-542X.1000113]
[2]
Venkataraghavan, R.; Brindha, P.; Ivo, R.S. A review on protein tyrosine phosphatases - an important target for various diseases. Asian J. Pharm. Clin. Res., 2018, 11(7), 11.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i7.25615]
[3]
Wu, J.; Sun, Y.; Zhou, H.; Ma, Y.; Wang, R. Design, synthesis, biological evaluation and molecular dynamics simulation studies of (R)-5-methylthiazolidin-4-one derivatives as megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) inhibitors for the treatment of type 2 diabetes. J. Biomol. Struct. Dyn., 2020, 38(11), 3156-3165.
[http://dx.doi.org/10.1080/07391102.2019.1654410] [PMID: 31402760]
[4]
Sobhia, M.E.; Paul, S.; Shinde, R.; Potluri, M.; Gundam, V.; Kaur, A.; Haokip, T. Protein tyrosine phosphatase inhibitors: a patent review (2002 - 2011). Expert Opin. Ther. Pat., 2012, 22(2), 125-153.
[http://dx.doi.org/10.1517/13543776.2012.661414] [PMID: 22332719]
[5]
Zhang, J.; Zhang, F.; Niu, R. Functions of Shp2 in cancer. J. Cell. Mol. Med., 2015, 19(9), 2075-2083.
[http://dx.doi.org/10.1111/jcmm.12618] [PMID: 26088100]
[6]
Wu, J.-W.; Zhang, H.; Li, W.-Y.; Tang, X.; Li, H.-L.; Lu, X.-H.; Zheng, Z.-H.; Ma, Y.; Wang, R.-L. Design potential selective inhibitors for human leukocyte common antigen-related (PTP-LAR) with fragment replace approach. J. Biomol. Struct. Dyn., 2020, 38(18), 5338-5348.
[http://dx.doi.org/10.1080/07391102.2019.1699862] [PMID: 31787068]
[7]
Byon, J.C.; Kusari, A.B.; Kusari, J. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol. Cell. Biochem., 1998, 182(1-2), 101-108.
[http://dx.doi.org/10.1023/A:1006868409841] [PMID: 9609119]
[8]
Wu, J.; Ma, Y.; Zhou, H.; Zhou, L.; Du, S.; Sun, Y.; Li, W.; Dong, W.; Wang, R. Identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors through de novo evoluton, synthesis, biological evaluation and molecular dynamics simulation. Biochem. Biophys. Res. Commun., 2020, 526(1), 273-280.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.075] [PMID: 32209254]
[9]
Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.-C.; Ramachandran, C.; Gresser, M.J.; Tremblay, M.L.; Kennedy, B.P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283(5407), 1544-1548.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[10]
Kawai, M.; de Paula, F.J.; Rosen, C.J. New insights into osteoporosis: the bone-fat connection. J. Intern. Med., 2012, 272(4), 317-329.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02564.x] [PMID: 22702419]
[11]
Liang, F.; Huang, Z.; Lee, S.-Y.; Liang, J.; Ivanov, M.I.; Alonso, A.; Bliska, J.B.; Lawrence, D.S.; Mustelin, T.; Zhang, Z-Y. Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH, an essential virulent factor of Yersinia pestis, the agent of plague. J. Biol. Chem., 2003, 278(43), 41734-41741.
[http://dx.doi.org/10.1074/jbc.M307152200] [PMID: 12888560]
[12]
Wang, L.-J.; Jiang, B.; Wu, N.; Wang, S.-Y.; Shi, D.-Y. Small molecules as potent protein tyrosine phosphatase 1B (PTP1B) inhibitors documented in patents from 2009 to 2013. Mini Rev. Med. Chem., 2015, 15(2), 104-122.
[http://dx.doi.org/10.2174/1389557515666150203144339] [PMID: 25643610]
[13]
Li, Y.; Yang, L.; Pan, Y.; Yang, J.; Shang, Y.; Luo, J. Methylation and decreased expression of SHP-1 are related to disease progression in chronic myelogenous leukemia. Oncol. Rep., 2014, 31(5), 2438-2446.
[http://dx.doi.org/10.3892/or.2014.3098] [PMID: 24647617]
[14]
Zhang, Z-Y. Protein tyrosine phosphatases: prospects for therapeutics. Curr. Opin. Chem. Biol., 2001, 5(4), 416-423.
[http://dx.doi.org/10.1016/S1367-5931(00)00223-4] [PMID: 11470605]
[15]
Rhee, I.; Veillette, A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat. Immunol., 2012, 13(5), 439-447.
[http://dx.doi.org/10.1038/ni.2246] [PMID: 22513334]
[16]
Stanford, S.M.; Maestre, M.F.; Campbell, A.M.; Bartok, B.; Kiosses, W.B.; Boyle, D.L.; Arnett, H.A.; Mustelin, T.; Firestein, G.S.; Bottini, N. Protein tyrosine phosphatase expression profile of rheumatoid arthritis fibroblast-like synoviocytes: a novel role of SH2 domain-containing phosphatase 2 as a modulator of invasion and survival. Arthritis Rheum., 2013, 65(5), 1171-1180.
[http://dx.doi.org/10.1002/art.37872] [PMID: 23335101]
[17]
Heward, J.M.; Brand, O.J.; Barrett, J.C.; Carr-Smith, J.D.; Franklyn, J.A.; Gough, S.C. Association of PTPN22 haplotypes with Graves’ disease. J. Clin. Endocrinol. Metab., 2007, 92(2), 685-690.
[http://dx.doi.org/10.1210/jc.2006-2064] [PMID: 17148556]
[18]
Orozco, G.; Sánchez, E.; González-Gay, M.A.; López-Nevot, M.A.; Torres, B.; Cáliz, R.; Ortego-Centeno, N.; Jiménez-Alonso, J.; Pascual-Salcedo, D.; Balsa, A.; de Pablo, R.; Nuñez-Roldan, A.; González-Escribano, M.F.; Martín, J. Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum., 2005, 52(1), 219-224.
[http://dx.doi.org/10.1002/art.20771] [PMID: 15641066]
[19]
Reusch, J.E.B.; Draznin, B.B. Atherosclerosis in diabetes and insulin resistance. Diabetes Obes. Metab., 2007, 9(4), 455-463.
[http://dx.doi.org/10.1111/j.1463-1326.2006.00620.x] [PMID: 17587387]
[20]
Beal, M.F. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci., 2000, 23(7), 298-304.
[http://dx.doi.org/10.1016/S0166-2236(00)01584-8] [PMID: 10856939]
[21]
Pilecka, I.; Whatmore, A.; Hooft van Huijsduijnen, R.; Destenaves, B.; Clayton, P. Growth hormone signalling: sprouting links between pathways, human genetics and therapeutic options. Trends Endocrinol. Metab., 2007, 18(1), 12-18.
[http://dx.doi.org/10.1016/j.tem.2006.11.004] [PMID: 17126560]
[22]
Hallak, H.; Ramadan, B.; Rubin, R. Tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) by oxidant stress in cerebellar granule neurons: modulation by N-methyl-D-aspartate through calcineurin activity. J. Neurochem., 2001, 77(1), 63-70.
[http://dx.doi.org/10.1046/j.1471-4159.2001.t01-1-00208.x] [PMID: 11279262]
[23]
Chan, G.; Kalaitzidis, D.; Neel, B.G. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev., 2008, 27(2), 179-192.
[http://dx.doi.org/10.1007/s10555-008-9126-y] [PMID: 18286234]
[24]
Miyamoto, D.; Miyamoto, M.; Takahashi, A.; Yomogita, Y.; Higashi, H.; Kondo, S.; Hatakeyama, M. Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors. Oncogene, 2008, 27(25), 3508-3515.
[http://dx.doi.org/10.1038/sj.onc.1211019] [PMID: 18223690]
[25]
Mohi, M.G.; Williams, I.R.; Dearolf, C.R.; Chan, G.; Kutok, J.L.; Cohen, S.; Morgan, K.; Boulton, C.; Shigematsu, H.; Keilhack, H.; Akashi, K.; Gilliland, D.G.; Neel, B.G. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell, 2005, 7(2), 179-191.
[http://dx.doi.org/10.1016/j.ccr.2005.01.010] [PMID: 15710330]
[26]
Tannous, B.A.; Badr, C.E. An allosteric inhibitor of SHP2 effectively targets PDGFRα-driven glioblastoma. Neuro. Oncol., 2019, 21(11), 1348-1349.
[http://dx.doi.org/10.1093/neuonc/noz176] [PMID: 31616943]
[27]
Xie, J.; Si, X.; Gu, S.; Wang, M.; Shen, J.; Li, H.; Shen, J.; Li, D.; Fang, Y.; Liu, C.; Zhu, J. Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. J. Med. Chem., 2017, 60(24), 10205-10219.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01520] [PMID: 29155585]
[28]
Vazhappilly, C.G.; Saleh, E.; Ramadan, W.; Menon, V.; Al-Azawi, A.M.; Tarazi, H.; Abdu-Allah, H.; El-Shorbagi, A.-N.; El-Awady, R. Inhibition of SHP2 by new compounds induces differential effects on RAS/RAF/ERK and PI3K/AKT pathways in different cancer cell types. Invest. New Drugs, 2019, 37(2), 252-261.
[http://dx.doi.org/10.1007/s10637-018-0626-5] [PMID: 29947013]
[29]
Zhao, M.; Guo, W.; Wu, Y.; Yang, C.; Zhong, L.; Deng, G.; Zhu, Y.; Liu, W.; Gu, Y.; Lu, Y.; Kong, L.; Meng, X.; Xu, Q.; Sun, Y. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Acta Pharm. Sin. B, 2019, 9(2), 304-315.
[http://dx.doi.org/10.1016/j.apsb.2018.08.009] [PMID: 30972278]
[30]
Fortanet, J.G.; Chen, C.H.-T.; Chen, Y.-N.P.; Chen, Z.; Deng, Z.; Firestone, B.; Fekkes, P.; Fodor, M.; Fortin, P.D.; Fridrich, C.; Grunenfelder, D.; Ho, S.; Kang, Z.B.; Karki, R.; Kato, M.; Keen, N.; LaBonte, L.R.; Larrow, J.; Lenoir, F.; Liu, G.; Liu, S.; Lombardo, F.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Ramsey, T.; Sellers, W.R.; Shultz, M.D.; Stams, T.; Towler, C.; Wang, P.; Williams, S.L.; Zhang, J.H.; LaMarche, M.J. Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor. J. Med. Chem., 2016, 59(17), 7773-7782.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00680] [PMID: 27347692]
[31]
Chen, L.; Sung, S.-S.; Yip, M.L.; Lawrence, H.R.; Ren, Y.; Guida, W.C.; Sebti, S.M.; Lawrence, N.J.; Wu, J. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol., 2006, 70(2), 562-570.
[http://dx.doi.org/10.1124/mol.106.025536] [PMID: 16717135]
[32]
Zhang, X.; He, Y.; Liu, S.; Yu, Z.; Jiang, Z.-X.; Yang, Z.; Dong, Y.; Nabinger, S.C.; Wu, L.; Gunawan, A.M.; Wang, L.; Chan, R.J.; Zhang, Z.Y. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J. Med. Chem., 2010, 53(6), 2482-2493.
[http://dx.doi.org/10.1021/jm901645u] [PMID: 20170098]
[33]
Lawrence, H.R.; Pireddu, R.; Chen, L.; Luo, Y.; Sung, S.-S.; Szymanski, A.M.; Yip, M.L.; Guida, W.C.; Sebti, S.M.; Wu, J.; Lawrence, N.J. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds. J. Med. Chem., 2008, 51(16), 4948-4956.
[http://dx.doi.org/10.1021/jm8002526] [PMID: 18680359]
[34]
Flemming, A. Cancer: allosteric phosphatase inhibitor puts brake on cancer cells. Nat. Rev. Drug Discov., 2016, 15(8), 530-531.
[http://dx.doi.org/10.1038/nrd.2016.157] [PMID: 27469230]
[35]
Lu, S.; Qiu, Y.; Ni, D.; He, X.; Pu, J.; Zhang, J. Emergence of allosteric drug-resistance mutations: new challenges for allosteric drug discovery. Drug Discov. Today, 2020, 25(1), 177-184.
[http://dx.doi.org/10.1016/j.drudis.2019.10.006] [PMID: 31634592]
[36]
Chen, Y.-N.P.; LaMarche, M.J.; Chan, H.M.; Fekkes, P.; Garcia-Fortanet, J.; Acker, M.G.; Antonakos, B.; Chen, C.H-T.; Chen, Z.; Cooke, V.G.; Dobson, J.R.; Deng, Z.; Fei, F.; Firestone, B.; Fodor, M.; Fridrich, C.; Gao, H.; Grunenfelder, D.; Hao, H.X.; Jacob, J.; Ho, S.; Hsiao, K.; Kang, Z.B.; Karki, R.; Kato, M.; Larrow, J.; La Bonte, L.R.; Lenoir, F.; Liu, G.; Liu, S.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Price, E.; Quinn, C.; Shakya, S.; Shultz, M.D.; Slisz, J.; Venkatesan, K.; Wang, P.; Warmuth, M.; Williams, S.; Yang, G.; Yuan, J.; Zhang, J.H.; Zhu, P.; Ramsey, T.; Keen, N.J.; Sellers, W.R.; Stams, T.; Fortin, P.D. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535(7610), 148-152.
[http://dx.doi.org/10.1038/nature18621] [PMID: 27362227]
[37]
Ou, S.; Koczywas, M.; Ulahannan, S.; Janne, P.; Pacheco, J.; Burris, H.; McCoach, C.; Wang, J.; Gordon, M.; Haura, E.; Riess, J.W.; Zhu, V.; Ng, K.; Eckhardt, S.G.; Capasso, A.; Dua, R.; Chen, A.; Wang, Z.; Hayes, J.; Nichols, R.; Bivona, T. A12 the SHP2 inhibitor RMC-4630 in patients with KRAS-mutant non-small cell lung cancer: preliminary evaluation of a first-in-man phase 1 clinical trial. J. Thorac. Oncol., 2020, 15(2_suppl), S15-S16.
[http://dx.doi.org/10.1016/j.jtho.2019.12.041]
[38]
Liu, Q.; Qu, J.; Zhao, M.; Xu, Q.; Sun, Y. Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol. Res., 2020, 152, 104595.
[http://dx.doi.org/10.1016/j.phrs.2019.104595] [PMID: 31838080]
[39]
Barford, D.; Neel, B.G. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure, 1998, 6(3), 249-254.
[http://dx.doi.org/10.1016/S0969-2126(98)00027-6] [PMID: 9551546]
[40]
Dechert, U.; Adam, M.; Harder, K.W.; Clark-Lewis, I.; Jirik, F. Characterization of protein tyrosine phosphatase SH-PTP2. Study of phosphopeptide substrates and possible regulatory role of SH2 domains. J. Biol. Chem., 1994, 269(8), 5602-5611.
[http://dx.doi.org/10.1016/S0021-9258(17)37504-X] [PMID: 8119896]
[41]
Yu, Z-H.; Xu, J.; Walls, C.D.; Chen, L.; Zhang, S.; Zhang, R.; Wu, L.; Wang, L.; Liu, S.; Zhang, Z-Y. Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J. Biol. Chem., 2013, 288(15), 10472-10482.
[http://dx.doi.org/10.1074/jbc.M113.450023] [PMID: 23457302]
[42]
Zeng, L-F.; Zhang, R-Y.; Yu, Z-H.; Li, S.; Wu, L.; Gunawan, A.M.; Lane, B.S.; Mali, R.S.; Li, X.; Chan, R.J.; Kapur, R.; Wells, C.D.; Zhang, Z.Y. Therapeutic potential of targeting the oncogenic SHP2 phosphatase. J. Med. Chem., 2014, 57(15), 6594-6609.
[http://dx.doi.org/10.1021/jm5006176] [PMID: 25003231]
[43]
Wu, J.; Li, W.; Zheng, Z.; Lu, X.; Zhang, H.; Ma, Y.; Wang, R. Design, synthesis, biological evaluation, common feature pharmacophore model and molecular dynamics simulation studies of ethyl 4-(phenoxymethyl)-2-phenylthiazole-5-carboxylate as Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. J. Biomol. Struct. Dyn., 2021, 39(4), 1174-1188.
[http://dx.doi.org/10.1080/07391102.2020.1726817] [PMID: 32036779]
[44]
Sun, X.; Ren, Y.; Gunawan, S.; Teng, P.; Chen, Z.; Lawrence, H.R.; Cai, J.; Lawrence, N.J.; Wu, J. Selective inhibition of leukemia-associated SHP2E69K mutant by the allosteric SHP2 inhibitor SHP099. Leukemia, 2018, 32(5), 1246-1249.
[http://dx.doi.org/10.1038/s41375-018-0020-5] [PMID: 29568093]
[45]
Rehman, A.U.; Rahman, M.U.; Khan, M.T.; Saud, S.; Liu, H.; Song, D.; Sultana, P.; Wadood, A.; Chen, H.-F. The landscape of protein tyrosine phosphatase (Shp2) and cancer. Curr. Pharm. Des., 2018, 24(32), 3767-3777.
[http://dx.doi.org/10.2174/1381612824666181106100837] [PMID: 30398108]
[46]
Grossmann, K.S.; Rosário, M.; Birchmeier, C.; Birchmeier, W. The tyrosine phosphatase Shp2 in development and cancer. Adv. Cancer Res., 2010, 106, 53-89.
[http://dx.doi.org/10.1016/s0065-230x(10)06002-1] [PMID: 20399956]
[47]
Chio, C.M.; Lim, C.S.; Bishop, A.C. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry, 2015, 54(2), 497-504.
[http://dx.doi.org/10.1021/bi5013595] [PMID: 25519989]
[48]
Marsh-Armstrong, B.; Fajnzylber, J.M.; Korntner, S.; Plaman, B.A.; Bishop, A.C. The allosteric site on SHP2’s protein tyrosine phosphatase domain is targetable with drug like small molecules. ACS Omega, 2018, 3(11), 15763-15770.
[http://dx.doi.org/10.1021/acsomega.8b02200] [PMID: 30533581]
[49]
Fodor, M.; Price, E.; Wang, P.; Lu, H.; Argintaru, A.; Chen, Z.; Glick, M.; Hao, H.-X.; Kato, M.; Koenig, R.; LaRochelle, J.R.; Liu, G.; McNeill, E.; Majumdar, D.; Nishiguchi, G.A.; Perez, L.B.; Paris, G.; Quinn, C.M.; Ramsey, T.; Sendzik, M.; Shultz, M.D.; Williams, S.L.; Stams, T.; Blacklow, S.C.; Acker, M.G.; LaMarche, M.J. Dual allosteric inhibition of SHP2 phosphatase. ACS Chem. Biol., 2018, 13(3), 647-656.
[http://dx.doi.org/10.1021/acschembio.7b00980] [PMID: 29304282]
[50]
Sarver, P.; Acker, M.; Bagdanoff, J.T.; Chen, Z.; Chen, Y.-N.; Chan, H.; Firestone, B.; Fodor, M.; Fortanet, J.; Hao, H.; Hentemann, M.; Kato, M.; Koenig, R.; LaBonte, L.R.; Liu, G.; Liu, S.; Liu, C.; McNeill, E.; Mohseni, M.; Sendzik, M.; Stams, T.; Spence, S.; Tamez, V.; Tichkule, R.; Towler, C.; Wang, H.; Wang, P.; Williams, S.L.; Yu, B.; LaMarche, M.J. 6-Amino-3-methylpyrimidinones as potent, selective and orally efficacious SHP2 inhibitors. J. Med. Chem., 2019, 62(4), 1793-1802.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01726] [PMID: 30688459]
[51]
Chen, Z.; Dore, M.; Fortanet, J.G.; Karki, R.; Kato, M.; LaMarche, M.J.; Perez, L.B.; Williams, S.; Sendzik, M. 1-(triazin-3-yl/pyridazin-3-yl)-piper (-azine) idine derivatives and compositions therefor for inhibiting the activity of SHP2. Patent No. WO2015107493, 2015.
[52]
Chen, Z.; Fortanet, J.G.; Jouk, A.; Karki, R.; LaMarche, M.J.; Liu, G.; Palermo, M.G.; Perez, L.B.; Sarver, P.J.; Shultz, M.D. Compounds and compositions for inhibiting the activity of SH Patent No. WO2015107494, 2015.
[53]
Chen, C.H.-T.; Chen, Z.; Dore, M.; Fortanet, J.G.; Karki, R.; Kato, M.; LaMarche, M.J.; Perez, L.B.; Smith, T.D.; Williams, S. N-azaspirocycloalkane substituted Nheteroaryl compounds and compositions for inhibiting the activity of SHP2. Patent No. US20180201623, 2018.
[54]
Chen, Z.; Fortanet, J.G.; Jouk, A.; Karki, R.; LaMarche, M.J.; Liu, G.; Palermo, M.G.; Perez, L.B.; Sarver, P.J.; Shultz, M.D. Compounds and compositions for inhibiting the activity of SH Patent No. WO2016203406, 2016.
[55]
Chen, Z.; Fortanet, J.G.; Karki, R.; LaMarche, M.J.; Liu, G.; Palermo, M.G.; Perez, L.B.; Sarver, P.J.; Shultz, M.D. Compounds and compositions for inhibiting the activity of SH Patent No. WO2017216706, 2017.
[56]
Jogalekar, A.; Won, W.; Koltun, E.S.; Gill, A.; Mellem, K.; Aay, N.; Buckl, A.; Semko, C.; Gert, K. 2 5-disubstituted 3-methyl pyrazines and 2, 5, 6-trisubstituted 3-methyl pyrazines as allosteric shp2 inhibitors, Patent No. US20190210977, 2019.
[57]
Koltun, E.S.; Gill, A.; Buckl, A.; Jogalekar, A.; Won, W.; Mellem, K.; Aay, N.; Semko, C. Pyridine, pyrazine and triazine compounds as allosteric SHP2 inhibitors Patent No. WO2019075265, 2019.
[58]
Nichols, R.J.; Haderk, F.; Stahlhut, C.; Schulze, C.J.; Hemmati, G.; Wildes, D.; Tzitzilonis, C.; Mordec, K.; Marquez, A.; Romero, J.; Hsieh, T.; Zaman, A.; Olivas, V.; McCoach, C.; Blakely, C.M.; Wang, Z.; Kiss, G.; Koltun, E.S.; Gill, A.L.; Singh, M.; Goldsmith, M.A.; Smith, J.A.M.; Bivona, T.G. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat. Cell Biol., 2018, 20(9), 1064-1073.
[http://dx.doi.org/10.1038/s41556-018-0169-1] [PMID: 30104724]
[59]
Pandey, G.; Horvat, N.; Amin, N.E.; Akuffo, A.A.; Colin, C.; Epling-Burnette, P.K.; Reuther, G.W. RMC-4550, an allosteric inhibitor of shp2, displays therapeutic efficacy in pre-clinical models of myeloproliferative neoplasms. Blood, 2019, 134(suppl_1), 4198.
[http://dx.doi.org/10.1182/blood-2019-128937]
[60]
Ma, C.; Panliang, G.; Chu, J.; Wu, X.; Chunwei, W.; Di, K.; Bai, J.; Xiaoyan, P. Novel heterocyclic derivatives useful as shp2 inhibitors. Patent No. WO2017211303, 2017.
[61]
Ma, C.; Panliang, G.; Chu, J.; Wu, X.; Chunwei, W.; Di, K.; Bai, J.; Xiaoyan, P. Novel heterocyclic derivatives useful as shp2 inhibitors. Patent No. WO2018172984, 2018.
[62]
Volkmann, R.; Marfat, A.; Nelson, F.; Zagouras, P. Octahydrocyclopenta [c] pyrrole allosteric inhibitors of SHP2. Patent No. WO2019051469, 2019.
[63]
Chen, Z.; Fortanet, J.G.; Karki, R.; LaMarche, M.J.; Majumdar, D.; Perez, L.B.; Sendzik, M.; Smith, T.D.; Yang, F.; Yu, B. Compounds and compositions for inhibiting the activity of shp2. Patent No. WO2017216706, 2017.
[64]
Bagdanoff, J.T.; Chen, Z.; Dore, M.; Fortanet, J.G.; Karki, R.; LaMarche, M.J.; Majumdar, D.; Perez, L.B.; Sendzik, M.; Smith, T.D.; Yang, F.; Yu, B. Compounds and compositions for inhibiting the activity of shp2. Patent No. US20190185475, 2019.
[65]
Blank, B.R.; Pitzen, J.; Wang, G.; Won, W.S.; Tzitzilonis, C.; Li, J.J.; Koltun, E.S.; Mellem, K.; Aay, N. Bicyclic compounds as allosteric shp2 inhibitors. Patent No. WO2018136265, 2018.
[66]
Koltun, E.S.; Aay, N.; Buckl, A.; Won, W.S.; Mellem, K.; Blank, B.R.; Pitzen, J.; Wang, G.; Won, W.S.; Tzitzilonis, C.; Li, J.J. Polycyclic compounds as allosteric shp2 inhibitors. Patent No. WO2019118909, 2019.
[67]
Zou, B.; Fu, X.; Zhang, R. Pyrimidine-fused cyclic compound, preparation method therefor and application thereof. Patent No. WO2019158019, 2019.
[68]
Xie, Y.; Babiss, L.E. SHP2 inhibitors and uses thereof. Patent No. US20190290649, 2019.
[69]
Giordanetto, F.; Greisman, J.B.; Maragakis, P.; Taylor, A.M.; Dipietro, L.V.; Kelley, E.H.; Lescarbeau, A.; Murcko, M.A.; Pierce, L.C.T.; Shortsleeves, K.C.; Walters, W.P.; Bhat, S.; Therrien, E.; Dahlgren, M.K. Pyrazine derivatives as SHP2 phosphatase inhibitors. Patent No. WO2018218133, 2018.
[70]
Taylor, A.M.; Giordanetto, F.; Greisman, J.B.; Maragakis, P.; Walters, P.W. Pyrazolo[3,4-B] pyrazine Shp2 phosphatase inhibitors and methods of use thereof. Patent No. WO2019183364, 2019.
[71]
Taylor, A.M.; Lescarbeau, A.; Kelley, E.H.; Shortsleeves, K.C.; Walters, W.C.; Murcko, M.A.; Mclean, T.H.; Gunaydin, H.; Giordanetto, F.; Therrien, E. Shp2 phosphatase inhibitors and methods of use thereof. Patent No. WO2019183367, 2019.
[72]
Walters, P.W.; Lescarbeau, A.; Kelley, E.H.; Giordanetto, F.; Greisman, J.B.; Maragakis, P.; Taylor, A.M.; DiPietro, L.V.; Murcko, M.A.; Pierce, L.C.T.; Shortsleeves, K.C. Shp2 phosphatase inhibitors and methods of use thereof. Patent No. WO2019165073, 2019.
[73]
Jones, P.; Czako, B.; Cross, J.; Leonard, P.; Mseeh, F.; Parker, C.A. Heterocyclic inhibitors of ptpn11. Patent No. US20190270746, 2019.
[74]
Czako, B.; Jones, P.; Cross, J.; Leonard, P.; Mseeh, F.; Parker, C.A. Heterocyclic inhibitors of ptpn11. Patent No. WO2017156397, 2017.
[75]
Chen, Z.; Fortanet, J.G.; Karki, R.; LaMarche, M.J.; Majumdar, D.; Perez, L.B.; Sendzik, M.; Smith, T.D.; Yang, F.; Yu, B. Compounds and compositions for inhibiting the activity of shp2. Patent No. WO2016203406, 2016.
[76]
Xie, Y.; Babiss, L.E. HP2 inhibitors and uses thereof. Patent No. US20190290649, 2019.
[77]
N-heterocyclic compounds, intermediates, preparation methods, pharmaceutical compositions and applications. Patent No. CN2017102335126, 2017.
[78]
Bentires-Alj, M.; Paez, J.G.; David, F.S.; Keilhack, H.; Halmos, B.; Naoki, K.; Maris, J.M.; Richardson, A.; Bardelli, A.; Sugarbaker, D.J.; Richards, W.G.; Du, J.; Girard, L.; Minna, J.D.; Loh, M.L.; Fisher, D.E.; Velculescu, V.E.; Vogelstein, B.; Meyerson, M.; Sellers, W.R.; Neel, B.G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res., 2004, 64(24), 8816-8820.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1923] [PMID: 15604238]
[79]
Niihori, T.; Aoki, Y.; Ohashi, H.; Kurosawa, K.; Kondoh, T.; Ishikiriyama, S.; Kawame, H.; Kamasaki, H.; Yamanaka, T.; Takada, F.; Nishio, K.; Sakurai, M.; Tamai, H.; Nagashima, T.; Suzuki, Y.; Kure, S.; Fujii, K.; Imaizumi, M.; Matsubara, Y. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J. Hum. Genet., 2005, 50(4), 192-202.
[http://dx.doi.org/10.1007/s10038-005-0239-7] [PMID: 15834506]
[80]
Chen, Z.; Dore, M.; Fortanet, J.G. 1-(triazin-3-yl/pyridazin-3-yl)-piper(-azine)idine derivatives and compositions therefor for inhibiting the activity of SHP2. Patent No. US20180065949, 2018.
[81]
Gill, A.; Aay, N.; Mellem, K.; Buckl, A.; Koltun, E.S.; Semko, C.; Gert, K. Pyridine compounds as allosteric shp2 inhibitors. Patent No. WO2018136264, 2018.
[82]
Chen, Z.; Dore, M.; Fortanet, J.G. 1-(triazin-3-yl/pyridazin-3-yl)-piper (-azine) idine derivatives and compositions therefor for inhibiting the activity of SHP2. Patent No. US9815813, 2017.
[83]
Chen, Z.; Fortanet, J.G.; Karki, R. Compounds and compositions for inhibiting the activity of SH. Patent No. CN2017800367987, 2017.
[84]
Chen, C.H.-T.; Chen, Z.; Fortanet, J.G.; Karki, R.; Kato, M.; LaMarche, M.J.; Perez, L.B.; Smith, T.D.; Williams, S. 1-(triazin-3-yl/pyridazin-3-yl)-piper(-azine)idine derivatives and compositions therefor for inhibiting the activity of SHP2. Patent No. WO20180362496, 2018.
[85]
LaRochelle, J.R.; Fodor, M.; Ellegast, J.M.; Liu, X.; Vemulapalli, V.; Mohseni, M.; Stams, T.; Buhrlage, S.J.; Stegmaier, K.; LaMarche, M.J.; Acker, M.G.; Blacklow, S.C. Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2. Bioorg. Med. Chem., 2017, 25(24), 6479-6485.
[http://dx.doi.org/10.1016/j.bmc.2017.10.025] [PMID: 29089257]
[86]
Abdu-Allah, H.H.; El-Shorbagi, A.-N.A.; Abdel-Moty, S.G.; El-Awady, R.; Abdel-Alim, A.-A.M. 5-Aminosalyclic acid (5-ASA): a unique anti-inflammatory salicylate. Med. Chem. (Los Angeles), 2016, 6(5), 306-315.
[http://dx.doi.org/10.4172/2161-0444.1000361]
[87]
Kim, B.; Jo, S.; Park, S.B.; Chae, C.H.; Lee, K.; Koh, B.; Shin, I. Development and structure-activity relationship study of SHP2 inhibitor containing 3,4,6-trihydroxy-5-oxo-5H-benzo[7]annulene. Bioorg. Med. Chem. Lett., 2020, 30(1), 126756.
[http://dx.doi.org/10.1016/j.bmcl.2019.126756] [PMID: 31784318]
[88]
Yu, H.; Choi, E. Shp2 inhibitors and methods of use thereof. Patent No. US20190231805, 2019.
[89]
Brüggemeier, U.; Schomber, T.; Dröbner, K.; Engel, D.; Becker, M. Inhibitors of shp2. Patent No. WO2019233810, 2019.
[90]
Lu, H.; Liu, C.; Huynh, H.; Le, T.B.U.; LaMarche, M.J.; Mohseni, M.; Engelman, J.A.; Hammerman, P.S.; Caponigro, G.; Hao, H.X. Resistance to allosteric SHP2 inhibition in FGFR-driven cancers through rapid feedback activation of FGFR. Oncotarget, 2020, 11(3), 265-281.
[http://dx.doi.org/10.18632/oncotarget.27435] [PMID: 32076487]
[91]
Her, N-G.; Toth, J.I.; Ma, C-T.; Wei, Y.; Motamedchaboki, K.; Sergienko, E.; Petroski, M.D. p97 composition changes caused by allosteric inhibition are suppressed by an on target mechanism that increases the enzyme’s ATPase activity. Cell Chem. Biol., 2016, 23(4), 517-528.
[http://dx.doi.org/10.1016/j.chembiol.2016.03.012] [PMID: 27105284]
[92]
Ruess, D.A.; Heynen, G.J.; Ciecielski, K.J.; Ai, J.; Berninger, A.; Kabacaoglu, D.; Görgülü, K.; Dantes, Z.; Wörmann, S.M.; Diakopoulos, K.N.; Karpathaki, A.F.; Kowalska, M.; Kaya-Aksoy, E.; Song, L.; van der Laan, E.A.Z.; López-Alberca, M.P.; Nazaré, M.; Reichert, M.; Saur, D.; Erkan, M.M.; Hopt, U.T.; Sainz, B. Jr.; Birchmeier, W.; Schmid, R.M.; Lesina, M.; Algül, H. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat. Med., 2018, 24(7), 954-960.
[http://dx.doi.org/10.1038/s41591-018-0024-8] [PMID: 29808009]
[93]
Fedele, C.; Ran, H.; Diskin, B.; Wei, W.; Jen, J.; Araki, K.; Simeone, D.M.; Miller, G.; Neel, B.G.; Tang, K.H. SHP2 inhibition abrogates MEK inhibitor resistance in multiple cancer models. bioRxiv, 2018., 307876.
[http://dx.doi.org/10.1101/307876]
[94]
Dardaei, L.; Wang, H.Q.; Singh, M.; Fordjour, P.; Shaw, K.X.; Yoda, S.; Kerr, G.; Yu, K.; Liang, J.; Cao, Y.; Chen, Y.; Lawrence, M.S.; Langenbucher, A.; Gainor, J.F.; Friboulet, L.; Dagogo-Jack, I.; Myers, D.T.; Labrot, E.; Ruddy, D.; Parks, M.; Lee, D.; DiCecca, R.H.; Moody, S.; Hao, H.; Mohseni, M.; LaMarche, M.; Williams, J.; Hoffmaster, K.; Caponigro, G.; Shaw, A.T.; Hata, A.N.; Benes, C.H.; Li, F.; Engelman, J.A. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat. Med., 2018, 24(4), 512-517.
[http://dx.doi.org/10.1038/nm.4497] [PMID: 29505033]
[95]
Shaw, A.T.; Kim, D.-W.; Mehra, R.; Tan, D.S.; Felip, E.; Chow, L.Q.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Lau, Y.Y.; Goldwasser, M.; Boral, A.; L. Engelman, J.A. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 370(13), 1189-1197.
[http://dx.doi.org/10.1056/nejmoa1311107] [PMID: 24670165]
[96]
Alghalandis, L.D.; Engelman, J.A.; Hao, H.; LaMarche, M.J.; Li, F.; Wang, H.-Q. Pharmaceutical combination comprising an alk inhibitor and a shp2 inhibitor. Patent No. WO2018130928, 2018.
[97]
Sakurai, T.; Nishida, N.; Kudo, M. Promising anticancer therapy: combination of immune checkpoint inhibitors and molecular-targeted agents. Hepatobiliary Surg. Nutr., 2020, 9(6), 777-779.
[http://dx.doi.org/10.21037/hbsn.2020.03.04] [PMID: 33299833]
[98]
Leung, C.O.N.; Tong, M.; Chung, K.P.S.; Zhou, L.; Che, N.; Tang, K.H.; Ding, J.; Lau, E.Y.T.; Ng, I.O.L.; Ma, S.; Lee, T.K.W. Overriding adaptive resistance to sorafenib via combination therapy with SHP2 blockade in hepatocellular carcinoma. Hepatology, 2020, 72(1), 155-168.
[http://dx.doi.org/10.1002/hep.30989] [PMID: 31610028]
[99]
Rota, G.; Niogret, C.; Dang, A.T.; Barros, C.R.; Fonta, N.P.; Alfei, F.; Morgado, L.; Zehn, D.; Birchmeier, W.; Vivier, E.; Guarda, G. Shp-2 is dispensable for establishing T cell exhaustion and for PD-1 signaling in vivo. Cell Rep., 2018, 23(1), 39-49.
[http://dx.doi.org/10.1016/j.celrep.2018.03.026] [PMID: 29617671]
[100]
Novartis Pharmaceuticals. Dose finding study of TNO155 in adult patients with advanced solid tumors. NCT No. NCT03114319, 2018. Available at: https://www.clinicaltrials.gov/ct2/show/NCT03114319?term=NCT03114319&draw=2&rank=1 (Accessed: April 22, 2020).
[101]
Novartis Pharmaceuticals. Phase Ib study of TNO155 in combination with spartalizumab or ribociclib in selected malignancies. NCT No. NCT04000529, 2018. Available at: https://www.clinicaltrials.gov/ct2/show/NCT04000529?term=NCT04000529&draw=2&rank=1 (Accessed: April 22, 2020).
[102]
Chi, A. Phase 1/2 study of MRTX849 plus TNO155 in patients with cancer having a KRAS G12C mutation. NCT No. NCT04330664, 2018. Available at: https://www. clinicaltrials.gov/ct2/show/NCT04330664?term=NCT04330664 &draw=2&rank=1 (Accessed: April 22, 2020).
[103]
Shi, Y. A first-in-human study of JAB-3068 (SHP2 inhibitor) in adult patients with advanced solid tumors in China. NCT No. NCT03565003, 2018. Available at: https://www.clinicaltrials.gov/ct2/show/NCT03565003?term=NCT03565003&draw=2&rank=1 (Accessed: April 22, 2020).
[104]
Jacobio Pharmaceuticals. A first in human, dose escalation study of JAB-3068 (SHP2 Inhibitor) in adult patients with advanced solid tumors. NCT No. NCT03518554, 2018. Available at: https://www.clinicaltrials.gov/ct2/show/NCT03518554?term=NCT03518554&draw=2&rank=1 (Accessed: April 22, 2020).
[105]
Jacobio Pharmaceuticals. A first-in-human, phase 1 study of JAB-3312 in adult patients with advanced solid tumors. NCT No. NCT04045496, 2018. Available at: https://www.clinicaltrials.gov/ct2/show/NCT04045496?term=NCT04045496&draw=2&rank=1 (Accessed: April 22, 2020).
[106]
Jacobio Pharmaceuticals. A study of JAB-3312 in adult patients with advanced solid tumors in China. NCT No. NCT04121286, 2018. Available at: https://www. clinicaltrials.gov/ct2/show/NCT04121286?term=NCT04121286&draw=2&rank=1 (Accessed: April 22, 2020).
[107]
Revolution Medicines, Inc.. Dose escalation of RMC-4630 monotherapy in relapsed/refractory solid tumors. NCT No. NCT03634982, 2018. Available at: https://www. clinicaltrials.gov/ct2/show/NCT03634982?term=NCT03634982&draw=2&rank=1 (Accessed: April 22, 2020).
[108]
Revolution Medicines, Inc.. Dose-escalation and doseexpansion of RMC-4630 and cobimetinib in relapsed/refractory solid tumors. NCT No. NCT03989115, 2019. Available at: https://www.clinicaltrials.gov/ct2/show/NCT03989115?term=NCT03989115&draw=2&rank=1 (Accessed: April 22, 2020).
[109]
Roche, H.-L. RLY-1971 in subjects with advanced or metastatic solid tumors. NCT No. NCT04252339, 2020. Available at: https://www.clinicaltrials.gov/ct2/show/NCT04252339?term=NCT04252339&draw=2&rank=1 (Accessed: April 22, 2020).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy