Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Smart Dual-Stimuli Responsive Nanoparticles for Controlled Anti-Tumor Drug Release and Cancer Therapy

Author(s): Feng Wu, Fei Qiu*, Siew A. Wai-Keong and Yong Diao*

Volume 21, Issue 10, 2021

Published on: 24 September, 2020

Page: [1202 - 1215] Pages: 14

DOI: 10.2174/1871520620666200924110418

Price: $65

Abstract

Background: In recent years, the emergence of stimuli-responsive nanoparticles has made drug delivery more efficient. As an intelligent and effective targeted delivery platform, it can reduce the side effects generated during drug transportation while enhancing the treatment efficacy. The stimuli-responsive nanoparticles can respond to different stimuli at corresponding times and locations to deliver and release their drugs and associated therapeutic effects.

Objective: This review aims to inform researchers on the latest advances in the application of dual-stimuli responsive nanoparticles in precise drug delivery, with special attention to their design, drug release properties, and therapeutic effects. Syntheses of nanoparticles with simultaneous or sequential responses to two or more stimuli (pH-redox, pH-light, redox-light, temperature-magnetic, pH-redox-temperature, redox-enzyme-light, etc.) and the applications of such responsivity properties for drugs control and release have become a hot topic of recent research.

Methods: A database of relevant information for the production of this review was sourced, screened and analyzed from Pubmed, Web of Science, SciFinder by searching for the following keywords: “dual-stimuli responsive”, “controlled release”, “cancer therapy”, “synergistic treatment”.

Results: Notably, the nanoparticles with dual-stimuli responsive function have an excellent control effect on drug delivery and release, playing a crucial part in the treatment of tumors. They can improve the encapsulation and delivery efficiency of hydrophobic chemotherapy drugs, combine chemo-photothermal therapies, apply imaging function in the diagnosis of tumors and even conduct multi-drug delivery to overcome Multi-Drug Resistance (MDR).

Conclusion: With the development of smart dual-stimuli responsive nanoparticles, cancer treatment methods have become more diverse and effective. All the stimuli-responsive nanoparticles functionalities exhibit their characteristics individually within the single nanosystem.

Keywords: Dual-stimuli responsive, multi-functional nanoparticles, cancer therapy, controlled release, drug delivery, synergistic treatment.

Graphical Abstract

[1]
Tayo, L.L. Stimuli-responsive nanocarriers for intracellular delivery. Biophys. Rev., 2017, 9(6), 931-940.
[http://dx.doi.org/10.1007/s12551-017-0341-z] [PMID: 29178081]
[2]
Gu, M.; Wang, X.; Toh, T.B.; Chow, E.K. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov. Today, 2018, 23(5), 1043-1052.
[http://dx.doi.org/10.1016/j.drudis.2017.11.009] [PMID: 29155366]
[3]
Yu, J.; Chu, X.; Hou, Y. Stimuli-responsive cancer therapy based on nanoparticles. Chem. Commun. (Camb.), 2014, 50(79), 11614-11630.
[http://dx.doi.org/10.1039/C4CC03984J] [PMID: 25058003]
[4]
Grzelczak, M.; Liz-Marzán, L.M.; Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev., 2019, 48(5), 1342-1361.
[http://dx.doi.org/10.1039/C8CS00787J] [PMID: 30688963]
[5]
Joglekar, M.; Trewyn, B.G. Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol. J., 2013, 8(8), 931-945.
[http://dx.doi.org/10.1002/biot.201300073] [PMID: 23843342]
[6]
Crucho, C.I. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem, 2015, 10(1), 24-38.
[http://dx.doi.org/10.1002/cmdc.201402290] [PMID: 25319803]
[7]
Liu, X.; Yang, Y.; Urban, M.W. Stimuli-responsive polymeric nanoparticles. Macromol. Rapid Commun., 2017, 38(13), e1700030.
[http://dx.doi.org/10.1002/marc.201700030] [PMID: 28497535]
[8]
Cheng, W.; Gu, L.; Ren, W.; Liu, Y. Stimuli-responsive polymers for anti-cancer drug delivery. Mater. Sci. Eng. C, 2014, 45, 600-608.
[http://dx.doi.org/10.1016/j.msec.2014.05.050] [PMID: 25491870]
[9]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A.R.; Haghani, L.; Bahrami, S.; Hamblin, M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[10]
Du, J.; Lane, L.A.; Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release, 2015, 219, 205-214.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.050] [PMID: 26341694]
[11]
Jhaveri, A.; Deshpande, P.; Torchilin, V. Stimuli-sensitive nanopreparations for combination cancer therapy. J. Control. Release, 2014, 190, 352-370.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.002] [PMID: 24818767]
[12]
Cheng, R.; Meng, F.; Deng, C.; Klok, H.A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34(14), 3647-3657.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[13]
Li, J.L.; Cheng, Y.J.; Zhang, C.; Cheng, H.; Feng, J.; Zhuo, R.X.; Zeng, X.; Zhang, X.Z. Dual drug delivery system based on biodegradable organosilica core-shell architectures. ACS Appl. Mater. Interfaces, 2018, 10(6), 5287-5295.
[http://dx.doi.org/10.1021/acsami.7b17949] [PMID: 29350909]
[14]
Yang, Y.; Aw, J.; Xing, B. Nanostructures for NIR light-controlled therapies. Nanoscale, 2017, 9(11), 3698-3718.
[http://dx.doi.org/10.1039/C6NR09177F] [PMID: 28272614]
[15]
Li, Z.; Hu, Y.; Miao, Z.; Xu, H.; Li, C.; Zhao, Y.; Li, Z.; Chang, M.; Ma, Z.; Sun, Y.; Besenbacher, F.; Huang, P.; Yu, M. Dual-stimuli responsive bismuth nanoraspberries for multimodal imaging and combined cancer therapy. Nano Lett., 2018, 18(11), 6778-6788.
[http://dx.doi.org/10.1021/acs.nanolett.8b02639] [PMID: 30288978]
[16]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[17]
Wang, X.; Lin, W.; Zhang, W.; Li, C.; Sun, T.; Chen, G.; Xie, Z. Amphiphilic redox-sensitive NIR BODIPY nanoparticles for dual-mode imaging and photothermal therapy. J. Colloid Interface Sci., 2019, 536, 208-214.
[http://dx.doi.org/10.1016/j.jcis.2018.10.051] [PMID: 30368092]
[18]
Xiao, D.; Hu, J.J.; Zhu, J.Y.; Wang, S.B.; Zhuo, R.X.; Zhang, X.Z. A redox-responsive mesoporous silica nanoparticle with a therapeutic peptide shell for tumor targeting synergistic therapy. Nanoscale, 2016, 8(37), 16702-16709.
[http://dx.doi.org/10.1039/C6NR04784J] [PMID: 27714082]
[19]
Rajendrakumar, S.K.; Cherukula, K.; Park, H.J.; Uthaman, S.; Jeong, Y.Y.; Lee, B.I.; Park, I.K. Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. J. Control. Release, 2018, 276, 72-83.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.039] [PMID: 29499218]
[20]
Li, Y.; Hei, M.; Xu, Y.; Qian, X.; Zhu, W. Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int. J. Pharm., 2016, 511(2), 689-702.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.029] [PMID: 27426108]
[21]
Sonawane, S.J.; Kalhapure, R.S.; Govender, T. Hydrazone linkages in pH responsive drug delivery systems. Eur. J. Pharm. Sci., 2017, 99, 45-65.
[http://dx.doi.org/10.1016/j.ejps.2016.12.011] [PMID: 27979586]
[22]
Deirram, N.; Zhang, C.; Kermaniyan, S.S.; Johnston, A.P.R.; Such, G.K. pH-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun., 2019, 40(10), e1800917.
[http://dx.doi.org/10.1002/marc.201800917] [PMID: 30835923]
[23]
Cao, H.; Yang, Y.; Chen, X.; Shao, Z. Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release. Nanoscale, 2016, 8(12), 6754-6760.
[http://dx.doi.org/10.1039/C6NR00987E] [PMID: 26952741]
[24]
Pillarisetti, S.; Maya, S.; Sathianarayanan, S.; Jayakumar, R. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment. Colloids Surf. B Biointerfaces, 2017, 159, 809-819.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.057] [PMID: 28886517]
[25]
Auzmendi, J.; Akyuz, E.; Lazarowski, A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in Sudden Unexpected Death in Epilepsy (SUDEP). Epilepsy Behav., 2019., 106590.
[http://dx.doi.org/10.1016/j.yebeh.2019.106590] [PMID: 31706919]
[26]
Kumar, A.; Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem., 2019, 176, 268-291.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.027] [PMID: 31103904]
[27]
Nguyen, D.H.; Lee, J.S.; Bae, J.W.; Choi, J.H.; Lee, Y.; Son, J.Y.; Park, K.D. Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice. Int. J. Pharm., 2015, 495(1), 329-335.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.083] [PMID: 26325307]
[28]
Fu, C.; Li, H.; Li, N.; Miao, X.; Xie, M.; Du, W.; Zhang, L.M. Conjugating an anticancer drug onto thiolated hyaluronic acid by acid liable hydrazone linkage for its gelation and dual stimuli-response release. Carbohydr. Polym., 2015, 128, 163-170.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.024] [PMID: 26005152]
[29]
Xu, W.; Qian, J.; Hou, G.; Wang, Y.; Wang, J.; Sun, T.; Ji, L.; Suo, A.; Yao, Y. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer. Acta Biomater., 2019, 83, 400-413.
[http://dx.doi.org/10.1016/j.actbio.2018.11.026] [PMID: 30465921]
[30]
Jiang, X.J.; Lau, J.T.; Wang, Q.; Ng, D.K.; Lo, P.C. pH- and Thiol-responsive BODIPY-based photosensitizers for targeted photodynamic therapy. Chemistry, 2016, 22(24), 8273-8281.
[http://dx.doi.org/10.1002/chem.201600452] [PMID: 27139139]
[31]
Kim, H.U.; Choi, D.G.; Lee, H.; Shim, M.S.; Bong, K.W. Fabrication of dual stimuli-responsive multicompartmental drug carriers for tumor-selective drug release. Lab Chip, 2018, 18(5), 754-764.
[http://dx.doi.org/10.1039/C7LC01063J] [PMID: 29387861]
[32]
Bawa, K.K.; Jazani, A.M.; Shetty, C.; Oh, J.K. PLA-based triblock copolymer micelles exhibiting dual acidic pH/reduction responses at dual core and core/corona interface locations. Macromol. Rapid Commun., 2018, 39(24), e1800477.
[http://dx.doi.org/10.1002/marc.201800477] [PMID: 30286258]
[33]
Sun, M.; Wang, X.; Cheng, X.; He, L.; Yan, G.; Tang, R. TPGS-functionalized and ortho ester-crosslinked dextran nanogels for enhanced cytotoxicity on multidrug resistant tumor cells. Carbohydr. Polym., 2018, 198, 142-154.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.079] [PMID: 30092984]
[34]
Yan, G.; Wang, J.; Zhang, P.; Hu, L.; Wang, X.; Yang, G.; Fu, S.; Cheng, X.; Tang, R. Tunable dynamic fluorinated poly(orthoester)-based drug carriers for greatly enhanced chemotherapeutic efficacy. Polym. Chem., 2017, 8(13), 2063-2073.
[http://dx.doi.org/10.1039/C6PY02204A]
[35]
Yang, G.; Fu, S.; Yao, W.; Wang, X.; Zha, Q.; Tang, R. Hyaluronic acid nanogels prepared via ortho ester linkages show pH-triggered behavior, enhanced penetration and antitumor efficacy in 3-D tumor spheroids. J. Colloid Interface Sci., 2017, 504, 25-38.
[http://dx.doi.org/10.1016/j.jcis.2017.05.033] [PMID: 28527297]
[36]
Yang, W.J.; Zhou, P.; Liang, L.; Cao, Y.; Qiao, J.; Li, X.; Teng, Z.; Wang, L. Nanogel-incorporated injectable hydrogel for synergistic therapy based on sequential local delivery of combretastatin-A4 phosphate (CA4P) and Doxorubicin (DOX). ACS Appl. Mater. Interfaces, 2018, 10(22), 18560-18573.
[http://dx.doi.org/10.1021/acsami.8b04394] [PMID: 29767951]
[37]
He, L.; Sun, M.; Cheng, X.; Xu, Y.; Lv, X.; Wang, X.; Tang, R. pH/redox dual-sensitive platinum (IV)-based micelles with greatly enhanced antitumor effect for combination chemotherapy. J. Colloid Interface Sci., 2019, 541, 30-41.
[http://dx.doi.org/10.1016/j.jcis.2019.01.076] [PMID: 30682591]
[38]
Samarajeewa, S.; Shrestha, R.; Elsabahy, M.; Karwa, A.; Li, A.; Zentay, R.P.; Kostelc, J.G.; Dorshow, R.B.; Wooley, K.L. in vitro efficacy of paclitaxel-loaded dual-responsive shell cross-linked polymer nanoparticles having orthogonally degradable disulfide cross-linked corona and polyester core domains. Mol. Pharm., 2013, 10(3), 1092-1099.
[http://dx.doi.org/10.1021/mp3005897] [PMID: 23421959]
[39]
Rao, N.V.; Ko, H.; Lee, J.; Park, J.H. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front. Bioeng. Biotechnol., 2018, 6, 110.
[http://dx.doi.org/10.3389/fbioe.2018.00110] [PMID: 30159310]
[40]
Huang, M.; Zhao, K.; Wang, L.; Lin, S.; Li, J.; Chen, J.; Zhao, C.; Ge, Z. Dual stimuli-responsive polymer prodrugs quantitatively loaded by nanoparticles for enhanced cellular internalization and triggered drug release. ACS Appl. Mater. Interfaces, 2016, 8(18), 11226-11236.
[http://dx.doi.org/10.1021/acsami.5b12227] [PMID: 27100328]
[41]
Qu, Y.; Chu, B.; Wei, X.; Lei, M.; Hu, D.; Zha, R.; Zhong, L.; Wang, M.; Wang, F.; Qian, Z. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J. Control. Release, 2019, 296, 93-106.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.016] [PMID: 30664976]
[42]
Pan, Y.J.; Chen, Y.Y.; Wang, D.R.; Wei, C.; Guo, J.; Lu, D.R.; Chu, C.C.; Wang, C.C. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials, 2012, 33(27), 6570-6579.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.062] [PMID: 22704845]
[43]
Curcio, M.; Diaz-Gomez, L.; Cirillo, G.; Concheiro, A.; Iemma, F.; Alvarez-Lorenzo, C. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur. J. Pharm. Biopharm., 2017, 117, 324-332.
[http://dx.doi.org/10.1016/j.ejpb.2017.05.002] [PMID: 28478161]
[44]
Yang, H.; Shen, W.; Liu, W.; Chen, L.; Zhang, P.; Xiao, C.; Chen, X. PEGylated poly(alpha-lipoic acid) loaded with doxorubicin as a pH and reduction dual responsive nanomedicine for breast cancer therapy. Biomacromolecules, 2018, 19(11), 4492-4503.
[http://dx.doi.org/10.1021/acs.biomac.8b01394] [PMID: 30346147]
[45]
Qi, J.; Zhang, Y.; Gou, Y.; Lee, P.; Wang, J.; Chen, S.; Zhou, Z.; Wu, X.; Yang, F.; Liang, H. Multidrug delivery dystems based on human serum albumin for combination therapy with three anticancer agents. Mol. Pharm., 2016, 13(9), 3098-3105.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00277] [PMID: 27453125]
[46]
Aji Alex, M.R.; Nehate, C.; Veeranarayanan, S.; Kumar, D.S.; Kulshreshtha, R.; Koul, V. Self assembled dual responsive micelles stabilized with protein for co-delivery of drug and siRNA in cancer therapy. Biomaterials, 2017, 133, 94-106.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.022] [PMID: 28433941]
[47]
Ghorbani, M.; Hamishehkar, H. Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. Int. J. Pharm., 2017, 520(1-2), 126-138.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.008] [PMID: 28167261]
[48]
Zhang, Y.; Peng, L.; Chu, J.; Zhang, M.; Sun, L.; Zhong, B.; Wu, Q. pH and redox dual-responsive copolymer micelles with surface charge reversal for co-delivery of all-trans-retinoic acid and paclitaxel for cancer combination chemotherapy. Int. J. Nanomedicine, 2018, 13, 6499-6515.
[http://dx.doi.org/10.2147/IJN.S179046] [PMID: 30410335]
[49]
Li, J.; Liu, P. One-pot fabrication of pH/reduction dual-stimuli responsive chitosan-based supramolecular nanogels for leakage-free tumor-specific DOX delivery with enhanced anti-cancer efficacy. Carbohydr. Polym., 2018, 201, 583-590.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.102] [PMID: 30241856]
[50]
Sun, Z.; Yi, Z.; Cui, X.; Chen, X.; Su, W.; Ren, X.; Li, X. Tumor-targeted and nitric oxide-generated nanogels of keratin and hyaluronan for enhanced cancer therapy. Nanoscale, 2018, 10(25), 12109-12122.
[http://dx.doi.org/10.1039/C8NR03265C] [PMID: 29915821]
[51]
Wang, L.; Zhang, J.; Song, M.; Tian, B.; Li, K.; Liang, Y.; Han, J.; Wu, Z. A shell-crosslinked polymeric micelle system for pH/redox dual stimuli-triggered DOX on-demand release and enhanced antitumor activity. Colloids Surf. B Biointerfaces, 2017, 152, 1-11.
[http://dx.doi.org/10.1016/j.colsurfb.2016.12.032] [PMID: 28063272]
[52]
Shi, H.; Xu, M.; Zhu, J.; Li, Y.; He, Z.; Zhang, Y.; Xu, Q.; Niu, Y.; Liu, Y. Programmed co-delivery of platinum nanodrugs and gemcitabine by a clustered nanocarrier for precision chemotherapy for NSCLC tumors. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(2), 332-342.
[http://dx.doi.org/10.1039/C9TB02055A] [PMID: 31825452]
[53]
Li, T.; Zhou, J.; Zhang, C.; Zhi, X.; Niu, J.; Fu, H.; Song, J.; Cui, D. Surface-engineered nanobubbles with pH-/light-responsive drug release and charge-switchable behaviors for active NIR/MR/US imaging-guided tumor therapy. NPG Asia Mater., 2018, 10(11), 1046-1060.
[http://dx.doi.org/10.1038/s41427-018-0094-6]
[54]
Shen, X.; Li, T.; Chen, Z.; Xie, X.; Zhang, H.; Feng, Y.; Li, S.; Qin, X.; Yang, H.; Wu, C.; Zheng, C.; Zhu, J.; You, F.; Liu, Y. NIR-light-triggered anticancer strategy for dual-modality imaging-guided combination therapy via a bioinspired hybrid PLGA nanoplatform. Mol. Pharm., 2019, 16(3), 1367-1384.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01321] [PMID: 30776896]
[55]
Chen, Y.; Li, H.; Deng, Y.; Sun, H.; Ke, X.; Ci, T. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater., 2017, 51, 374-392.
[http://dx.doi.org/10.1016/j.actbio.2016.12.004] [PMID: 28088668]
[56]
Cherukula, K.; Uthaman, S.; Park, I.K. “Navigate-dock-activate” anti-tumor strategy: Tumor micromilieu charge-switchable, hierarchically activated nanoplatform with ultrarapid tumor-tropic accumulation for trackable photothermal/chemotherapy. Theranostics, 2019, 9(9), 2505-2525.
[http://dx.doi.org/10.7150/thno.33280] [PMID: 31131050]
[57]
Li, Z.; Chen, Y.; Yang, Y.; Yu, Y.; Zhang, Y.; Zhu, D.; Yu, X.; Ouyang, X.; Xie, Z.; Zhao, Y.; Li, L. Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front. Bioeng. Biotechnol., 2019, 7, 293.
[http://dx.doi.org/10.3389/fbioe.2019.00293] [PMID: 31696114]
[58]
Feng, T.; Zhou, L.; Wang, Z.; Li, C.; Zhang, Y.; Lin, J.; Lu, D.; Huang, P. Dual-stimuli responsive nanotheranostics for mild hyperthermia enhanced inhibition of Wnt/β-catenin signaling. Biomaterials, 2020, 232, 119709.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119709] [PMID: 31896513]
[59]
Kim, H.S.; Lee, D.Y. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers (Basel), 2018, 10(9), 961.
[http://dx.doi.org/10.3390/polym10090961] [PMID: 30960886]
[60]
Connor, D.M.; Broome, A.M. Gold nanoparticles for the delivery of cancer therapeutics. Adv. Cancer Res., 2018, 139, 163-184.
[http://dx.doi.org/10.1016/bs.acr.2018.05.001] [PMID: 29941104]
[61]
Laprise-Pelletier, M.; Simão, T.; Fortin, M.A. Gold nanoparticles in radiotherapy and recent progress in nanobrachytherapy. Adv. Healthc. Mater., 2018, 7(16), e1701460.
[http://dx.doi.org/10.1002/adhm.201701460] [PMID: 29726118]
[62]
Fang, S.; Lin, J.; Li, C.; Huang, P.; Hou, W.; Zhang, C.; Liu, J.; Huang, S.; Luo, Y.; Fan, W.; Cui, D.; Xu, Y.; Li, Z. Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy. Small, 2017, 13(6), 1602580.
[http://dx.doi.org/10.1002/smll.201602580] [PMID: 27862953]
[63]
Zhang, W.; Wang, F.; Wang, Y.; Wang, J.; Yu, Y.; Guo, S.; Chen, R.; Zhou, D. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J. Control. Release, 2016, 232, 9-19.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.001] [PMID: 27072026]
[64]
Zhang, L.; Chen, Y.; Li, Z.; Li, L.; Saint-Cricq, P.; Li, C.; Lin, J.; Wang, C.; Su, Z.; Zink, J.I. Tailored synthesis of octopus-type janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 2118-2121.
[http://dx.doi.org/10.1002/anie.201510409] [PMID: 26732130]
[65]
Fang, J.; Liu, Y.; Chen, Y.; Ouyang, D.; Yang, G.; Yu, T. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int. J. Nanomedicine, 2018, 13, 5991-6007.
[http://dx.doi.org/10.2147/IJN.S175934] [PMID: 30323587]
[66]
Liao, W.; Zhang, L.; Zhong, Y.; Shen, Y.; Li, C.; An, N. Fabrication of ultrasmall WS2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy. OncoTargets Ther., 2018, 11, 1949-1960.
[http://dx.doi.org/10.2147/OTT.S160748] [PMID: 29670370]
[67]
Jin, L.; Liu, J.; Tang, Y.; Cao, L.; Zhang, T.; Yuan, Q.; Wang, Y.; Zhang, H. MnO2-functionalized Co-P nanocomposite: A new theranostic agent for pH-triggered T1/T2 dual-modality magnetic resonance imaging-guided chemo-photothermal synergistic therapy. ACS Appl. Mater. Interfaces, 2017, 9(48), 41648-41658.
[http://dx.doi.org/10.1021/acsami.7b10608] [PMID: 29116748]
[68]
Chen, Y.; Deng, X.; Li, C.; He, F.; Liu, B.; Hou, Z.; Cheng, Z.; Xing, B.; Lin, J. Stimuli-responsive nanocomposites for magnetic targeting synergistic multimodal therapy and T1/T2-weighted dual-mode imaging. Nanomedicine (Lond.), 2017, 13(3), 875-883.
[http://dx.doi.org/10.1016/j.nano.2016.12.004] [PMID: 27993724]
[69]
Wang, D.; Zhou, J.; Shi, R.; Wu, H.; Chen, R.; Duan, B.; Xia, G.; Xu, P.; Wang, H.; Zhou, S.; Wang, C.; Wang, H.; Guo, Z.; Chen, Q. Biodegradable core-shell dual-metal-organic-frameworks nanotheranostic agent for multiple imaging guided combination cancer therapy. Theranostics, 2017, 7(18), 4605-4617.
[http://dx.doi.org/10.7150/thno.20363] [PMID: 29158848]
[70]
Moreira, A.F.; Dias, D.R.; Costa, E.C.; Correia, I.J. Thermo- and pH-responsive nano-in-micro particles for combinatorial drug delivery to cancer cells. Eur. J. Pharm. Sci., 2017, 104, 42-51.
[http://dx.doi.org/10.1016/j.ejps.2017.03.033] [PMID: 28347775]
[71]
Zhang, M.; Wang, T.; Zhang, L.; Li, L.; Wang, C. Near-infrared light and pH-responsive polypyrrole@polyacrylic acid/fluorescent mesoporous silica nanoparticles for imaging and chemo-photothermal cancer therapy. Chemistry, 2015, 21(45), 16162-16171.
[http://dx.doi.org/10.1002/chem.201502177] [PMID: 26494031]
[72]
Salehi, R.; Rasouli, S.; Hamishehkar, H. Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int. J. Pharm., 2015, 487(1-2), 274-284.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.051] [PMID: 25895723]
[73]
Wu, J.; Xia, L.; Liu, Z.; Xu, Z.; Cao, H.; Zhang, W. Fabrication of a dual-stimuli-responsive supramolecular micelle from a pillar[5]arene-based supramolecular diblock copolymer for photodynamic therapy. Macromol. Rapid Commun., 2019, 40(18), e1900240.
[http://dx.doi.org/10.1002/marc.201900240] [PMID: 31298785]
[74]
Chen, P.; Song, H.; Yao, S.; Tu, X.; Su, M.; Zhou, L. Magnetic targeted nanoparticles based on β-cyclodextrin and chitosan for hydrophobic drug delivery and a study of their mechanism. RSC Advances, 2017, 7(46), 29025-29034.
[http://dx.doi.org/10.1039/C7RA02398G]
[75]
Das, M.; Solanki, A.; Joshi, A.; Devkar, R.; Seshadri, S.; Thakore, S. β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydr. Polym., 2019, 206, 694-705.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.049] [PMID: 30553374]
[76]
Rodrigues, R.O.; Baldi, G.; Doumett, S.; Garcia-Hevia, L.; Gallo, J.; Bañobre-López, M.; Dražić, G.; Calhelha, R.C.; Ferreira, I.C.F.R.; Lima, R.; Gomes, H.T.; Silva, A.M.T. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater. Sci. Eng. C, 2018, 93, 206-217.
[http://dx.doi.org/10.1016/j.msec.2018.07.060] [PMID: 30274052]
[77]
Salehi, R.; Hamishehkar, H.; Eskandani, M.; Mahkam, M.; Davaran, S. Development of dual responsive nanocomposite for simultaneous delivery of anticancer drugs. J. Drug Target., 2014, 22(4), 327-342.
[http://dx.doi.org/10.3109/1061186X.2013.876645] [PMID: 24404962]
[78]
Lanzalaco, S.; Armelin, E. Poly(N-isopropylacrylamide) and copolymers: A review on recent progresses in biomedical applications. Gels, 2017, 3(4), 36.
[http://dx.doi.org/10.3390/gels3040036] [PMID: 30920531]
[79]
Singh, A.; Vaishagya, K.; Verma, R.K.; Shukla, R. Temperature/pH-triggered PNIPAM-based smart nanogel system loaded with anastrozole delivery for application in cancer chemotherapy. AAPS PharmSciTech, 2019, 20(5), 213.
[http://dx.doi.org/10.1208/s12249-019-1410-3] [PMID: 31165298]
[80]
Wu, X.; Wang, Z.; Zhu, D.; Zong, S.; Yang, L.; Zhong, Y.; Cui, Y. pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer-lipid bilayer. ACS Appl. Mater. Interfaces, 2013, 5(21), 10895-10903.
[http://dx.doi.org/10.1021/am403092m] [PMID: 24127854]
[81]
Oroojalian, F.; Babaei, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M.; Alibolandi, M. Encapsulation of thermo-responsive gel in pH-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin. J. Control. Release, 2018, 288, 45-61.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.039] [PMID: 30171978]
[82]
Liu, R.; Sun, M.; Liu, X.; Fan, A.; Wang, Z.; Zhao, Y. Interplay of stimuli-responsiveness, drug loading and release for a surface-engineered dendrimer delivery system. Int. J. Pharm., 2014, 462(1-2), 103-107.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.031] [PMID: 24374220]
[83]
Hosseini Sadr, S.; Davaran, S.; Alizadeh, E.; Salehi, R.; Ramazani, A. Enhanced anticancer potency by thermo/pH-responsive PCL-based magnetic nanoparticles. J. Biomater. Sci. Polym. Ed., 2018, 29(3), 277-308.
[http://dx.doi.org/10.1080/09205063.2017.1414482] [PMID: 29212412]
[84]
Johnson, R.P.; Jeong, Y.I.; John, J.V.; Chung, C.W.; Kang, D.H.; Selvaraj, M.; Suh, H.; Kim, I. Dual stimuli-responsive poly(N-isopropylacrylamide)-b-poly(L-histidine) chimeric materials for the controlled delivery of doxorubicin into liver carcinoma. Biomacromolecules, 2013, 14(5), 1434-1443.
[http://dx.doi.org/10.1021/bm400089m] [PMID: 23627834]
[85]
Wen, Y.; Oh, J.K. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf. B Biointerfaces, 2015, 133, 246-253.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.017] [PMID: 26119370]
[86]
Chen, C.Y.; Kim, T.H.; Wu, W.C.; Huang, C.M.; Wei, H.; Mount, C.W.; Tian, Y.; Jang, S.H.; Pun, S.H.; Jen, A.K. pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 2013, 34(18), 4501-4509.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.049] [PMID: 23498892]
[87]
Saneja, A.; Kumar, R.; Arora, D.; Kumar, S.; Panda, A.K.; Jaglan, S. Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov. Today, 2018, 23(5), 1115-1125.
[http://dx.doi.org/10.1016/j.drudis.2018.02.005] [PMID: 29481876]
[88]
You, C.; Wu, H.; Wang, M.; Gao, Z.; Sun, B.; Zhang, X. Synthesis and biological evaluation of redox/NIR dual stimulus-responsive polymeric nanoparticles for targeted delivery of cisplatin. Mater. Sci. Eng. C, 2018, 92, 453-462.
[http://dx.doi.org/10.1016/j.msec.2018.06.044] [PMID: 30184771]
[89]
Wang, F.; Huang, Q.; Wang, Y.; Shi, L.; Shen, Y.; Guo, S. NIR-light and GSH activated cytosolic p65-shRNA delivery for precise treatment of metastatic cancer. J. Control. Release, 2018, 288, 126-135.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.002] [PMID: 30194946]
[90]
Wang, F.; Shen, Y.; Zhang, W.; Li, M.; Wang, Y.; Zhou, D.; Guo, S. Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J. Control. Release, 2014, 196, 37-51.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.026] [PMID: 25284820]
[91]
Wu, M.; Li, J.; Lin, X.; Wei, Z.; Zhang, D.; Zhao, B.; Liu, X.; Liu, J. Reduction/photo dual-responsive polymeric prodrug nanoparticles for programmed siRNA and doxorubicin delivery. Biomater. Sci., 2018, 6(6), 1457-1468.
[http://dx.doi.org/10.1039/C8BM00226F] [PMID: 29770812]
[92]
Wu, Y.; Xu, Z.; Sun, W.; Yang, Y.; Jin, H.; Qiu, L.; Chen, J.; Chen, J. Co-responsive smart cyclodextrin-gated mesoporous silica nanoparticles with ligand-receptor engagement for anti-cancer treatment. Mater. Sci. Eng. C, 2019, 103, 109831.
[http://dx.doi.org/10.1016/j.msec.2019.109831] [PMID: 31349481]
[93]
Liu, J.; Li, F.; Zheng, J.; Li, B.; Zhang, D.; Jia, L. Redox/NIR dual-responsive MoS2 for synergetic chemo-photothermal therapy of cancer. J. Nanobiotechnology, 2019, 17(1), 78.
[http://dx.doi.org/10.1186/s12951-019-0510-2] [PMID: 31269964]
[94]
Callmann, C.E.; Barback, C.V.; Thompson, M.P.; Hall, D.J.; Mattrey, R.F.; Gianneschi, N.C. Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors. Adv. Mater., 2015, 27(31), 4611-4615.
[http://dx.doi.org/10.1002/adma.201501803] [PMID: 26178920]
[95]
Sun, Z.; Yi, Z.; Zhang, H.; Ma, X.; Su, W.; Sun, X.; Li, X. Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydr. Polym., 2017, 175, 159-169.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.078] [PMID: 28917852]
[96]
Pandey, B.; Patil, N.G.; Bhosle, G.S.; Ambade, A.V.; Gupta, S.S. Amphiphilic glycopolypeptide star copolymer-based cross-linked nanocarriers for targeted and dual-stimuli-responsive drug delivery. Bioconjug. Chem., 2019, 30(3), 633-646.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00831] [PMID: 30592602]
[97]
Zhao, Q.; Liu, J.; Zhu, W.; Sun, C.; Di, D.; Zhang, Y.; Wang, P.; Wang, Z.; Wang, S. Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells. Acta Biomater., 2015, 23, 147-156.
[http://dx.doi.org/10.1016/j.actbio.2015.05.010] [PMID: 25985912]
[98]
Li, Y.; Hu, H.; Zhou, Q.; Ao, Y.; Xiao, C.; Wan, J.; Wan, Y.; Xu, H.; Li, Z.; Yang, X. Alpha-amylase- and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(22), 19215-19230.
[http://dx.doi.org/10.1021/acsami.7b04066] [PMID: 28513132]
[99]
Hong, S.H.; Larocque, K.; Jaunky, D.B.; Piekny, A.; Oh, J.K. Dual disassembly and biological evaluation of enzyme/oxidation-responsive polyester-based nanoparticulates for tumor-targeting delivery. Colloids Surf. B Biointerfaces, 2018, 172, 608-617.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.013] [PMID: 30223243]
[100]
Hong, S.H.; Patel, T.; Ip, S.; Garg, S.; Oh, J.K. Microfluidic assembly to synthesize dual enzyme/oxidation-responsive polyester-based nanoparticulates with controlled sizes for drug delivery. Langmuir, 2018, 34(10), 3316-3325.
[http://dx.doi.org/10.1021/acs.langmuir.8b00338] [PMID: 29485889]
[101]
Wang, M.; Gong, G.; Feng, J.; Wang, T.; Ding, C.; Zhou, B.; Jiang, W.; Fu, J. Dual pH-mediated mechanized hollow zirconia nanospheres. ACS Appl. Mater. Interfaces, 2016, 8(35), 23289-23301.
[http://dx.doi.org/10.1021/acsami.6b07603] [PMID: 27523904]
[102]
Zhao, X.; Yang, C.X.; Chen, L.G.; Yan, X.P. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat. Commun., 2017, 8(1), 14998.
[http://dx.doi.org/10.1038/ncomms14998] [PMID: 28524865]
[103]
Song, X.R.; Li, S.H.; Dai, J.; Song, L.; Huang, G.; Lin, R.; Li, J.; Liu, G.; Yang, H.H. Polyphenol-inspired facile construction of smart assemblies for ATP- and pH-responsive tumor MR/optical imaging and photothermal therapy. Small, 2017, 13(20), 1603997.
[http://dx.doi.org/10.1002/smll.201603997] [PMID: 28383201]
[104]
Ghaffari, R.; Eslahi, N.; Tamjid, E.; Simchi, A. Dual-sensitive hydrogel nanoparticles based on conjugated thermoresponsive copolymers and protein filaments for triggerable drug delivery. ACS Appl. Mater. Interfaces, 2018, 10(23), 19336-19346.
[http://dx.doi.org/10.1021/acsami.8b01154] [PMID: 29771485]
[105]
Kim, Y.J.; Kim, S.H.; Fujii, T.; Matsunaga, Y.T. Dual stimuli-responsive smart beads that allow “on-off” manipulation of cancer cells. Biomater. Sci., 2016, 4(6), 953-957.
[http://dx.doi.org/10.1039/C6BM00186F] [PMID: 27146341]
[106]
Xiao, W.; Zeng, X.; Lin, H.; Han, K.; Jia, H.Z.; Zhang, X.Z. Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs. Chem. Commun. (Camb.), 2015, 51(8), 1475-1478.
[http://dx.doi.org/10.1039/C4CC08831J] [PMID: 25494173]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy