Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Potential of Photobiomodulation to Induce Differentiation of Adipose- Derived Mesenchymal Stem Cells into Neural Cells

Author(s): Madeleen Jansen Van Rensburg, Anine Crous and Heidi Abrahamse*

Volume 16, Issue 3, 2021

Published on: 18 September, 2020

Page: [307 - 322] Pages: 16

DOI: 10.2174/1574888X15999200918095834

Price: $65

Abstract

Background: Given the minimal capacity and sometimes the failure of the mammalian nervous system to regenerate and repair itself after damage, strategies are required to help enhance this regenerative process. Adipose-derived Mesenchymal Stem Cells (ADMSCs) are likely candidates to assist in the recovery process due to their ability to differentiate into neural cells. Successful implementation of this intervention in a clinical setting would increase the rate of recovery following traumatic brain injury.

Review: Various strategies have been attempted to differentiate ADMSCs into neural cells for clinical use. Such methods have not been entirely successful in the development of functioning specialized cells for subsequent practical use. Therefore, the implementations of this differentiation technique in the clinical trial have not been effective. In this article, the potential of differentiating ADMSCs into neural cells and the various methods employed, including biological induction, chemical induction and photobiomodulation (PBM) will be discussed, where the combined use of transducers and PBM for neural differentiation of ADMSCs is also deliberated.

Conclusion: PBM shows promise as an avenue for effective ADMSCs differentiation into neural cells and their proliferation. Applying PBM with optimized biological factors and chemical inducers may prove to be an effective tool for clinical application.

Keywords: Adipose-derived mesenchymal stem cells, differentiation, photobiomodulation, neural regeneration, growth factors, chemical inducers.

[1]
Volkman R, Offen D. Concise review: Mesenchymal stem cells in neurodegenerative diseases. Stem Cells 2017; 35(8): 1867-80.
[http://dx.doi.org/10.1002/stem.2651] [PMID: 28589621]
[2]
Washington PM, Villapol S. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Burns MPJEn 2016; 275: 381-8.
[3]
Przedborski S, Vila M, Jackson-Lewis V. Neurodegeneration: What is it and where are we? J Clin Invest 2003; 111(1): 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[4]
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 2017; 39(1): 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[5]
Gupta R, Sen N. Traumatic brain injury: A risk factor for neurodegenerative diseases. Rev Neurosci 2016; 27(1): 93-100.
[http://dx.doi.org/10.1515/revneuro-2015-0017] [PMID: 26352199]
[6]
Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. International Journal of Cell Biology 2016.
[http://dx.doi.org/10.1155/2016/6940283]
[7]
Mason C, Dunnill P. A brief definition of regenerative medicine. 2008; 3(1): 1-5.
[http://dx.doi.org/10.2217/17460751.3.1.1]
[8]
Mvula B, Mathope T, Moore T, Abrahamse H. The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 2008; 23(3): 277-82.
[http://dx.doi.org/10.1007/s10103-007-0479-1] [PMID: 17713825]
[9]
Salazar Noratto GE, Luo G, Denoeud C, Padrona M, Moya A, Bensidhoum M, et al. Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. 2020; 38(1): 22-3.
[http://dx.doi.org/10.1002/stem.3079]
[10]
De Andrade ALM, Luna GF, Brassolatti P, et al. Photobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers Med Sci 2019; 34(4): 677-83.
[http://dx.doi.org/10.1007/s10103-018-2642-2] [PMID: 30284088]
[11]
Luo L, Hu D-H, Yin JQ, Xu R-X. Molecular mechanisms of transdifferentiation of adipose-derived stem cells into neural cells: Current status and perspectives. Stem Cells Int 2018; 2018: 5630802.
[http://dx.doi.org/10.1155/2018/5630802] [PMID: 30302094]
[12]
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
[http://dx.doi.org/10.1091/mbc.e02-02-0105] [PMID: 12475952]
[13]
Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 2007; 207(2): 267-74.
[http://dx.doi.org/10.1016/j.expneurol.2007.06.029] [PMID: 17761164]
[14]
Darvishi M, Tiraihi T, Mesbah-Namin SA, Delshad A, Taheri T. Motor neuron transdifferentiation of neural stem cell from adipose-derived stem cell characterized by differential gene expression. Cell Mol Neurobiol 2017; 37(2): 275-89.
[http://dx.doi.org/10.1007/s10571-016-0368-x] [PMID: 27107758]
[15]
Vellosillo L, Muñoz MP, Paíno CL. Adipose tissue-derived stromal cells (ADSC) express oligodendrocyte and myelin markers, but they do not function as oligodendrocytes. Histochem Cell Biol 2017; 148(5): 503-15.
[http://dx.doi.org/10.1007/s00418-017-1588-y] [PMID: 28620864]
[16]
Fu X, Tong Z, Li Q, et al. Induction of adipose-derived stem cells into Schwann-like cells and observation of Schwann-like cell proliferation. Mol Med Rep 2016; 14(2): 1187-93.
[http://dx.doi.org/10.3892/mmr.2016.5367] [PMID: 27279556]
[17]
Tang YP, Ma YL, Chao CC, Chen KY, Lee EHY. Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (-)-deprenyl and melatonin treatments. J Neurosci Res 1998; 53(5): 593-604.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19980901)53:5<593::AID-JNR9>3.0.CO;2-4] [PMID: 9726430]
[18]
Baker DJ. Cellular senescence in brain aging and neurodegenerative diseases: Evidence and perspectives. Petersen RCJTJoci 2018; 128(4): 1208-6.
[19]
Mauricio R, Benn C, Davis J, Dawson G, Dawson LA, Evans A, et al. Tackling gaps in developing life-changing treatments for dementia. 2019; 5: 241-53.
[http://dx.doi.org/10.1016/j.trci.2019.05.001]
[20]
Zhao Y. Oxidative stress and the pathogenesis of Alzheimer's disease. Zhao BJOm, longevity c 2013.
[21]
Feeney CJ, Frantseva MV, Carlen PL, Pennefather PS, Shulyakova N, Shniffer C, et al. Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. 2008; 1198: 1-15.
[http://dx.doi.org/10.1016/j.brainres.2007.12.049]
[22]
Slivka A. Hydroxyl radical attack on dopamine. Cohen GJJoBC 1985; 260(29): 15466-72.
[23]
Rottlaender A. Stepchild or prodigy? Neuroprotection in multiple sclerosis (MS) research. Kuerten SJIjoms 2015; 16(7): 14850-65.
[24]
Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases-a mechanistic approach. Carvalho FJTl 2014; 230(2): 85-103.
[25]
Dhillon VS. Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. Fenech MJMRRiMR 2014; 759: 1-3.
[26]
Chauhan NBJRn. Chronic neurodegenerative consequences of traumatic brain injury. 2014; 32(2): 337-65.
[27]
Ahuja CS, Wilson JR, Nori S, Kotter MR, Druschel C, Curt A, et al. Traumatic spinal cord injury. 2017; 3(1): 1-21.
[28]
Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 2017; 8(10): e3108.
[http://dx.doi.org/10.1038/cddis.2017.504] [PMID: 29022921]
[29]
Schneider RC, Thompson JM. The syndrome of acute central cervical spinal cord injury. 1958; 21(3): 216.
[30]
Kriegstein A. The glial nature of embryonic and adult neural stem cells. Alvarez-Buylla AJAron 2009; 32: 149-84.
[31]
Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett 2017; 591(24): 3993-4008.
[http://dx.doi.org/10.1002/1873-3468.12906] [PMID: 29121403]
[32]
Zhang W, Wang Y, Kong J, Dong M, Duan H. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Chen SJSr 2017; 7(1): 1-8.
[33]
Wolpert D, Pearson K, Ghez C, Kandel EJTO. Principles of Neural Science. McGraw-Hill PoMteNY 2013; 475-97.
[34]
Levitan IB, Kaczmarek LK. The neuron: Cell and molecular biology. In: USA: Oxford University Press 2015.
[http://dx.doi.org/10.1093/med/9780199773893.001.0001]
[35]
Chung W-S, Allen NJ. Astrocytes control synapse formation, function, and elimination. Eroglu CJCSHpib 2015; 7(9) a020370.
[36]
Fields RD, Araque A, Johansen-Berg H, Lim S-S, Lynch G, Nave K-A, et al. Glial biology in learning and cognition. 2014; 20(5): 426-31.
[http://dx.doi.org/10.1177/1073858413504465]
[37]
Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 2016; 43(4): 268-74.
[http://dx.doi.org/10.1159/000448180] [PMID: 27721702]
[38]
Focarete ML, Gualandi C. Cell delivery for regenerative medicine by using bioresorbable polymers. Bioresorbable Polymers for Biomedical Applications 2017; pp. 365-89.
[http://dx.doi.org/10.1016/B978-0-08-100262-9.00016-1]
[39]
Fischbach MA, Bluestone JA. Cell-based therapeutics: The next pillar of medicine. Lim WAJStm 2013; 5(179): 179ps7-ps7.
[40]
Garzón I, Pérez-Köhler B, Garrido-Gómez J, Carriel V, Nieto-Aguilar R, Martín-Piedra MA, et al. Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy. 2012; 18(6): 408-19.
[41]
Ahmadi N, Razavi S, Kazemi M, Oryan S. Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 2012; 44(2): 87-94.
[http://dx.doi.org/10.1016/j.tice.2011.11.006] [PMID: 22178208]
[42]
Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature 2001; 414(6859): 98-104.
[http://dx.doi.org/10.1038/35102160] [PMID: 11689954]
[43]
Kinzebach S, Bieback K. Mesenchymal stem cells - basics and clinical application I.Berlin, Heidelberg: Springer Berlin Heidelberg 2013; pp. 33-57.
[44]
Crous AM, Abrahamse H. Lung cancer stem cells and low-intensity laser irradiation: A potential future therapy? Stem Cell Res Ther 2013; 4(5): 129.
[http://dx.doi.org/10.1186/scrt340] [PMID: 24153107]
[45]
Sun T, Ma QH. Repairing neural injuries using human umbilical cord blood. Mol Neurobiol 2013; 47(3): 938-45.
[http://dx.doi.org/10.1007/s12035-012-8388-0] [PMID: 23275174]
[46]
Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132(4): 567-82.
[http://dx.doi.org/10.1016/j.cell.2008.01.015] [PMID: 18295576]
[47]
Kalladka D, Muir KW. Brain repair: Cell therapy in stroke. Stem Cells Cloning 2014; 7(1): 31-44.
[PMID: 24627643]
[48]
Nadig RR. Stem cell therapy - Hype or hope? A review. J Conserv Dent 2009; 12(4): 131-8.
[http://dx.doi.org/10.4103/0972-0707.58329] [PMID: 20543921]
[49]
Salehi H, Amirpour N, Niapour A, Razavi S. An overview of neural differentiation potential of human adipose derived stem cells. Stem Cell Rev Rep 2016; 12(1): 26-41.
[http://dx.doi.org/10.1007/s12015-015-9631-7] [PMID: 26490462]
[50]
Ilic D, Polak JM. Stem cells in regenerative medicine: Introduction. Br Med Bull 2011; 98(1): 117-26.
[http://dx.doi.org/10.1093/bmb/ldr012] [PMID: 21565803]
[51]
Si J-W, Wang XD, Shen SG. Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone. World J Stem Cells 2015; 7(1): 149-59.
[http://dx.doi.org/10.4252/wjsc.v7.i1.149] [PMID: 25621114]
[52]
Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016; 2016: 6940283.
[http://dx.doi.org/10.1155/2016/6940283] [PMID: 27516776]
[53]
Clarke D, Frisén J. Differentiation potential of adult stem cells. Curr Opin Genet Dev 2001; 11(5): 575-80.
[http://dx.doi.org/10.1016/S0959-437X(00)00235-5] [PMID: 11532401]
[54]
Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz) 2016; 64(6): 443-54.
[http://dx.doi.org/10.1007/s00005-016-0394-x] [PMID: 27178663]
[55]
Kuroda Y, Kitada M, Wakao S, Dezawa M. Bone marrow mesenchymal cells: How do they contribute to tissue repair and are they really stem cells? Arch Immunol Ther Exp (Warsz) 2011; 59(5): 369-78.
[http://dx.doi.org/10.1007/s00005-011-0139-9] [PMID: 21789625]
[56]
Hernández R, Jiménez-Luna C, Perales-Adán J, Perazzoli G, Melguizo C, Prados J. Differentiation of human mesenchymal stem cells towards neuronal lineage: Clinical trials in nervous system disorders. Biomol Ther (Seoul) 2020; 28(1): 34-44.
[http://dx.doi.org/10.4062/biomolther.2019.065] [PMID: 31649208]
[57]
Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, et al. Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 2013; 129: 89-115.
[58]
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: A new paradigm for central nervous system regeneration? Cell Mol Life Sci 2013; 70(20): 3871-82.
[http://dx.doi.org/10.1007/s00018-013-1290-8] [PMID: 23456256]
[59]
Han ZC, Du WJ, Han ZB, Liang L. New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed Mater Eng 2017; 28(s1): S29-45.
[http://dx.doi.org/10.3233/BME-171622] [PMID: 28372276]
[60]
Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells-a critical review. APMIS 2005; 113(11-12): 831-44.
[http://dx.doi.org/10.1111/j.1600-0463.2005.apm_3061.x] [PMID: 16480453]
[61]
Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact? J Neurosci Res 2004; 77(2): 174-91.
[http://dx.doi.org/10.1002/jnr.20148] [PMID: 15211585]
[62]
Mareschi K, Novara M, Rustichelli D, et al. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp Hematol 2006; 34(11): 1563-72.
[http://dx.doi.org/10.1016/j.exphem.2006.06.020] [PMID: 17046576]
[63]
Takeda YS, Xu Q. Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS One 2015; 10(8)e0135111
[http://dx.doi.org/10.1371/journal.pone.0135111] [PMID: 26248331]
[64]
Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 2001; 18(8): 813-9.
[http://dx.doi.org/10.1089/089771501316919175] [PMID: 11526987]
[65]
Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 2003; 53(3): 697-702.
[http://dx.doi.org/10.1227/01.NEU.0000079333.61863.AA] [PMID: 12943585]
[66]
George S, Hamblin MR, Abrahamse H. Current and future trends in adipose stem cell differentiation into neuroglia. Photomed Laser Surg 2018; 36(5): 230-40.
[http://dx.doi.org/10.1089/pho.2017.4411] [PMID: 29570423]
[67]
Bhang SH, Lee YE, Cho SW, et al. Basic fibroblast growth factor promotes bone marrow stromal cell transplantation-mediated neural regeneration in traumatic brain injury. Biochem Biophys Res Commun 2007; 359(1): 40-5.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.046] [PMID: 17531197]
[68]
Liu Y, Yi XC, Guo G, et al. Basic fibroblast growth factor increases the transplantation mediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury. Mol Med Rep 2014; 9(1): 333-9.
[http://dx.doi.org/10.3892/mmr.2013.1803] [PMID: 24248266]
[69]
Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
[http://dx.doi.org/10.1016/S0140-6736(04)16627-0] [PMID: 15246727]
[70]
Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 2013; 9(2): 191-200.
[http://dx.doi.org/10.5114/aoms.2013.33181] [PMID: 23671428]
[71]
Baptista LS, Silva KR, Borojevic R. Obesity and weight loss could alter the properties of adipose stem cells? World J Stem Cells 2015; 7(1): 165-73.
[http://dx.doi.org/10.4252/wjsc.v7.i1.165] [PMID: 25621116]
[72]
Ghasemi N. Transdifferentiation of human adipose-derived mesenchymal stem cells into oligodendrocyte progenitor cells. Iran J Neurol 2018; 17(1): 24-30.
[PMID: 30186556]
[73]
Kang S-K, Shin M-J, Jung JS, Kim YG, Kim C-H. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 2006; 15(4): 583-94.
[http://dx.doi.org/10.1089/scd.2006.15.583] [PMID: 16978061]
[74]
Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007; 100(9): 1249-60.
[http://dx.doi.org/10.1161/01.RES.0000265074.83288.09] [PMID: 17495232]
[75]
Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 2011; 7(2): 269-91.
[http://dx.doi.org/10.1007/s12015-010-9193-7] [PMID: 20853072]
[76]
Simonacci F, Bertozzi N, Raposio E. Off-label use of adipose-derived stem cells. Ann Med Surg (Lond) 2017; 24(April): 44-51.
[http://dx.doi.org/10.1016/j.amsu.2017.10.023] [PMID: 29123656]
[77]
Ikegame Y, Yamashita K, Hayashi S, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 2011; 13(6): 675-85.
[http://dx.doi.org/10.3109/14653249.2010.549122] [PMID: 21231804]
[78]
Swijnenburg RJ, Schrepfer S, Govaert JA, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA 2008; 105(35): 12991-6.
[http://dx.doi.org/10.1073/pnas.0805802105] [PMID: 18728188]
[79]
Hříbková H, Grabiec M, Klemová D, Slaninová I, Sun Y-M. Calcium signaling mediates five types of cell morphological changes to form neural rosettes. J Cell Sci 2018; 131(3): jcs206896. [-jcs.].
[http://dx.doi.org/10.1242/jcs.206896] [PMID: 29361526]
[80]
Jha RM, Chrenek R, Magnotti LM, Cardozo DL. The isolation, differentiation, and survival in vivo of multipotent cells from the postnatal rat filum terminale. PLoS One 2013; 8(6): e65974.
[http://dx.doi.org/10.1371/journal.pone.0065974] [PMID: 23762453]
[81]
Temple S. The development of neural stem cells. Nature 2001; 414(6859): 112-7.
[http://dx.doi.org/10.1038/35102174] [PMID: 11689956]
[82]
Cao Y. Regulation of germ layer formation by pluripotency factors during embryogenesis. Cell Biosci 2013; 3(1): 15.
[http://dx.doi.org/10.1186/2045-3701-3-15] [PMID: 23497659]
[83]
Ma Q. Transcriptional regulation of neuronal phenotype in mammals. J Physiol 2006; 575(Pt 2): 379-87.
[http://dx.doi.org/10.1113/jphysiol.2006.113449] [PMID: 16825304]
[84]
Eom YW, Oh JE, Lee JI, et al. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2014; 445(1): 16-22.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.084] [PMID: 24491556]
[85]
Marei HES, El-Gamal A, Althani A, et al. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J Cell Physiol 2018; 233(2): 936-45.
[http://dx.doi.org/10.1002/jcp.25937] [PMID: 28369825]
[86]
Hu F, Wang X, Liang G, et al. Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Reprogram 2013; 15(3): 224-32.
[http://dx.doi.org/10.1089/cell.2012.0077] [PMID: 23713433]
[87]
Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ. Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. J Neurosci Res 2013; 91(1): 30-41.
[PMID: 23023811]
[88]
Ying C, Hu W, Cheng B, Zheng X, Li S. Neural differentiation of rat adipose-derived stem cells in vitro. Cell Mol Neurobiol 2012; 32(8): 1255-63.
[http://dx.doi.org/10.1007/s10571-012-9850-2] [PMID: 22569742]
[89]
Zawada WM, Kirschman DL, Cohen JJ, Heidenreich KA, Freed CR. Growth factors rescue embryonic dopamine neurons from programmed cell death. Exp Neurol 1996; 140(1): 60-7.
[http://dx.doi.org/10.1006/exnr.1996.0115] [PMID: 8682180]
[90]
Hyman C, Hofer M, Barde Y-A, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991; 350(6315): 230-2.
[http://dx.doi.org/10.1038/350230a0] [PMID: 2005978]
[91]
Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 2005; 25(26): 6251-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4601-04.2005] [PMID: 15987955]
[92]
Lee HJ, Lim IJ, Lee MC, Kim SU. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J Neurosci Res 2010; 88(15): 3282-94.
[http://dx.doi.org/10.1002/jnr.22474] [PMID: 20818776]
[93]
Ji W, Zhang X, Ji L, Wang K, Qiu Y. Effects of brain‑derived neurotrophic factor and neurotrophin 3 on the neuronal differentiation of rat adipose derived stem cells. Mol Med Rep 2015; 12(4): 4981-8.
[http://dx.doi.org/10.3892/mmr.2015.4099] [PMID: 26239042]
[94]
Liu W, Lü G, Wang B, Ma Z, Li Y. [Transfection of BDNF gene promotes bone mesenchymal stem cells to differentiate into neuron-like cells]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2012; 37(5): 441-6. [Medical Sciences].
[PMID: 22659671]
[95]
Gao H, Wei M, Wang Y, Wu X, Zhu T. Journal of Huazhong University of Science and Technology - . Differentiation of GDNF and NT-3 dual gene-modified rat bone marrow mesenchymal stem cells into enteric neuron-like cells. J Huazhong Univ Sci Technolog Med Sci 2012; 32(1): 87-91.
[http://dx.doi.org/10.1007/s11596-012-0015-9] [PMID: 22282251]
[96]
Ai G, Shao X, Meng M, Song L, Qiu J, Wu Y, et al. Epidermal growth factor promotes proliferation and maintains multipotency of continuous cultured adipose stem cells via activating STAT signal pathway in vitro Medicine (United States). 2017; 96.(30)
[http://dx.doi.org/10.1097/MD.0000000000007607]
[97]
Cocola C, Molgora S, Piscitelli E, et al. FGF2 and EGF are required for self-renewal and organoid formation of canine normal and tumor breast stem cells. J Cell Biochem 2017; 118(3): 570-84.
[http://dx.doi.org/10.1002/jcb.25737] [PMID: 27632571]
[98]
Garcez RC, Teixeira BL, Schmitt SdosS, Alvarez-Silva M, Trentin AG. Epidermal growth factor (EGF) promotes the in vitro differentiation of neural crest cells to neurons and melanocytes. Cell Mol Neurobiol 2009; 29(8): 1087-91.
[http://dx.doi.org/10.1007/s10571-009-9406-2] [PMID: 19415484]
[99]
Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW. Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem 2008; 283(9): 5287-95.
[http://dx.doi.org/10.1074/jbc.M706917200] [PMID: 18171671]
[100]
Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61(4): 364-70.
[http://dx.doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C] [PMID: 10931522]
[101]
Pittack C, Grunwald GB, Reh TA. Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 1997; 124(4): 805-16.
[PMID: 9043062]
[102]
Ding C, Zou Q, Wang F, et al. HGF and BFGF secretion by human adipose-derived stem cells improves ovarian function during natural aging via activation of the SIRT1/FOXO1 signaling pathway. Cell Physiol Biochem 2018; 45(4): 1316-32.
[http://dx.doi.org/10.1159/000487559] [PMID: 29462806]
[103]
Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6(4): 307-19.
[http://dx.doi.org/10.1016/j.cmet.2007.08.014] [PMID: 17908559]
[104]
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72(8): 1559-76.
[http://dx.doi.org/10.1007/s00018-014-1815-9] [PMID: 25558812]
[105]
Zemelko VI, Kozhukharova IB, Alekseenko LL, Domnina AP, Reshetnikova GF, Puzanov MV, et al. Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: A Comparative study. Cell Tissue Biol 2013; 7(3): 235-44.
[http://dx.doi.org/10.1134/S1990519X13030140]
[106]
Pal R, Mamidi MK, Das AK, Bhonde R. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch Toxicol 2012; 86(4): 651-61.
[http://dx.doi.org/10.1007/s00204-011-0782-2] [PMID: 22105179]
[107]
Ishii K, Katayama M, Hori K, Yodoi J, Nakanishi T. Effects of 2-mercaptoethanol on survival and differentiation of fetal mouse brain neurons cultured in vitro. Neurosci Lett 1993; 163(2): 159-62.
[http://dx.doi.org/10.1016/0304-3940(93)90371-Q] [PMID: 8309623]
[108]
Radhakrishnan S, Trentz OA, Reddy MS, Rela M, Kandasamy M, Sellathamby S. In vitro transdifferentiation of human adipose tissue-derived stem cells to neural lineage cells - a stage-specific incidence. Adipocyte 2019; 8(1): 164-77.
[http://dx.doi.org/10.1080/21623945.2019.1607424] [PMID: 31033391]
[109]
Cardozo A, Ielpi M, Gómez D, Argibay P. Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expr 2010; 14(6): 307-19.
[http://dx.doi.org/10.3727/105221610X12717040569866] [PMID: 20635573]
[110]
Liu Q, Cheng G, Wang Z, Zhan S, Xiong B, Zhao XJIVC, et al. Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene. 2015; 51(3): 319-27.
[http://dx.doi.org/10.1007/s11626-015-9875-1]
[111]
Kandalam S, Sindji L, Delcroix GJ-R, Violet F, Garric X, André EM, et al. Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. 2017; 49: 167-80.
[112]
Alexander PB, Yuan L, Yang P, Sun T, Chen R, Xiang H, et al. EGF promotes mammalian cell growth by suppressing cellular senescence. 2015; 25(1): 135-8.
[http://dx.doi.org/10.1038/cr.2014.141]
[113]
Rafieemehr H, Kheyrandish M. Neuroprotective effects of transplanted mesenchymal stromal cells-derived human umbilical cord blood neural progenitor cells in EAE. 2015; 14(6): 596-604.
[114]
Zhang J, Lian M, Cao P, Bao G, Xu G, Sun Y, et al. Effects of nerve growth factor and basic fibroblast growth factor promote human dental pulp stem cells to neural differentiation. 2017; 42(4): 1015-25.
[http://dx.doi.org/10.1007/s11064-016-2134-3]
[115]
Popova N, Ilchibaeva T, Naumenko VJB. Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. 2017; 82(3): 308-17.
[116]
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ. The non-survival effects of glial cell line-derived neurotrophic factor on neural cells. Velasco IJFimn 2017; 10: 258.
[117]
Ko KR, Lee J, Lee D, Nho B. Hepatocyte growth factor (HGF) promotes peripheral nerve regeneration by activating repair schwann cells. Kim SJSr 2018; 8(1): 1-14.
[118]
Takano M, Kawabata S, Shibata S, Yasuda A, Nori S, Tsuji O, et al. Enhanced functional recovery from spinal cord injury in aged mice after stem cell transplantation through HGF induction. 2017; 8(3): 509-18.
[http://dx.doi.org/10.1016/j.stemcr.2017.01.013]
[119]
Yuan H, Chen R, Wu L, Chen Q, Hu A, Zhang T, et al. The regulatory mechanism of neurogenesis by IGF-1 in adult mice. 2015; 51(2): 512-22.
[http://dx.doi.org/10.1007/s12035-014-8717-6]
[120]
Niu H, Gou R, Xu Q. Recombinant insulin-like growth factor binding protein-4 inhibits proliferation and promotes differentiation of neural progenitor cells. Duan DJNl 2017; 642: 71-6.
[121]
Huat TJ, Khan AA, Pati S, Mustafa Z, Abdullah JM, Jaafar H. IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci 2014; 15: 91.
[http://dx.doi.org/10.1186/1471-2202-15-91] [PMID: 25047045]
[122]
Jahan S, Kumar D, Kumar A, Rajpurohit CS, Singh S, Srivastava A, et al. Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. 2017; 482(4): 961-7.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.140]
[123]
Nasser Ostad S. Lentiviral mediated overexpression of NGF in adipose-derived stem cells. Cloning Transgenes 2015; 04(03): 4-8.
[http://dx.doi.org/10.4172/2168-9849.1000142]
[124]
Chun SY, Soker S, Jang Y-J, Kwon TG. Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. Yoo ESJJoKms 2016; 31(2): 171-7.
[125]
Bressy C, Lac S, Nigri J, Leca J, Roques J, Lavaut M-N, et al. LIF drives neural remodeling in pancreatic cancer and offers a new candidate biomarker. 2018; 78(4): 909-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2790]
[126]
Ishii Y, Hamashima T, Yamamoto S. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Sasahara MJPi 2017; 67(5): 235-46.
[127]
Kim JY, Chun SY, Park J-S, Chung J-W, Ha Y-S, Lee JN, et al. Laminin and platelet-derived growth factor-BB promote neuronal differentiation of human urine-derived stem cells. 2018; 15(2): 195-209.
[http://dx.doi.org/10.1007/s13770-017-0102-x]
[128]
Darabi S, Tiraihi T, Delshad A, Sadeghizadeh M, Khalil W. In vitro non-viral murine pro-neurotrophin 3 gene transfer into rat bone marrow stromal cells. Taheri TJJotns 2017; 375: 137-45.
[129]
Wu D, Zhang Y, Xu X, Guo T, Xie D, Zhu R, et al. RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration. 2018; 72: 266-77.
[130]
Flachsbarth K, Jankowiak W, Kruszewski K, Helbing S, Bartsch S. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Bartsch UJEer 2018; 176: 258-65.
[131]
Chirivella L, Kirstein M, Ferrón SR, Domingo Muelas A, Durupt FC, Acosta Umanzor C, et al. Cyclin dependent kinase 4 regulates adult neural stem cell proliferation and differentiation in response to insulin. 2017; 35(12): 2403-16.
[132]
Shi Y, Hu Y, Lv C. Tu GJAot. Effects of reactive oxygen species on differentiation of bone marrow mesenchymal stem cells 2016; 21: 695-700.
[133]
Maeda MA-SAM, Almzaien Aous K, Hamad Mohammed A, Hassan Ayman A, Shaker Hiba K, Yaseen Nahi Y. Induction of mesenchymal stem cells into neuronal cells via two formulas. Res J Biotechnol 2019; 14(I): 265-82.
[134]
Mu M, Zhao Z, Li CJGMR. Comparative study of neural differentiation of bone marrow mesenchymal stem cells by different induction methods. 2015; 14(4): 14169-76.
[http://dx.doi.org/10.4238/2015.October.29.39]
[135]
Festjens N, Kalai M, Smet J, Meeus A, Van Coster R, Saelens X, et al. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. 2006; 13(I): 166-9.
[http://dx.doi.org/10.1038/sj.cdd.4401746]
[136]
Xu J, Lu H, Miao Z, Wu W, Jiang Y, Ge F, et al. Immunoregulatory effect of neuronal-like cells in inducting differentiation of bone marrow mesenchymal stem cells. 2016; 20(24): 5041-8.
[137]
Thompson R, Casali C. Forskolin and IBMX induce neural transdifferentiation of MSCs through downregulation of the NRSF. Chan CJSr 2019; 9(1): 1-10.
[138]
Jang S, Cho HH, Cho YB, Park JS, Jeong HS. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 2010; 11: 25.
[http://dx.doi.org/10.1186/1471-2121-11-25] [PMID: 20398362]
[139]
Meng Q-q, Lei W, Chen H, Feng Z-c, Hu L-q, Zhang X-l, et al. Combined rosiglitazone and forskolin have neuroprotective effects in SD rats after spinal cord injury. 2018.
[http://dx.doi.org/10.1155/2018/3897478]
[140]
Aden P, Paulsen RE, Mæhlen J, Løberg EM, Goverud IL, Liestøl K, et al. Glucocorticoids dexamethasone and hydrocortisone inhibit proliferation and accelerate maturation of chicken cerebellar granule neurons. 2011; 1418: 32-41.
[http://dx.doi.org/10.1016/j.brainres.2011.08.053]
[141]
Hain EG, Sparenberg M, Rasińska J, Klein C, Akyüz L. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion. Steiner BJJon 2018; 15(1): 162.
[142]
Zemel'Ko V, Kozhukharova I, Kovaleva Z, Domnina A, Pugovkina N, Fridlianskaia I, et al. BDNF secretion in human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue. 2014; 56(3)(204): 11.
[143]
Talwadekar M, Fernandes S, Kale V, Limaye L. Valproic acid enhances the neural differentiation of human placenta derived-mesenchymal stem cells in vitro. J Tissue Eng Regen Med 2017; 11(11): 3111-23.
[http://dx.doi.org/10.1002/term.2219] [PMID: 27781405]
[144]
Thakore KN. Encyclopedia of Toxicology: Third EditionButylated Hydroxyanisole. 2014; Iarc 1986: pp. 581-2.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00262-1]
[145]
Barkholt L, Flory E, Jekerle V, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies-bridging scientific observations and regulatory viewpoints. Cytotherapy 2013; 15(7): 753-9.
[http://dx.doi.org/10.1016/j.jcyt.2013.03.005] [PMID: 23602595]
[146]
Tio M, Tan KH, Lee W, Wang TT. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. Udolph GJPo 2010; 5(2): e9398.
[147]
George S, Hamblin MR, Abrahamse H. Photobiomodulation-induced differentiation of immortalized adipose stem cells to neuronal cells. Lasers Surg Med 2020.
[http://dx.doi.org/10.1002/lsm.23265] [PMID: 32525253]
[148]
Ashjian PH, Elbarbary AS, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 2003; 111(6): 1922-31.
[http://dx.doi.org/10.1097/01.PRS.0000055043.62589.05] [PMID: 12711954]
[149]
Ferreira-Silva V, Primo FL, Baqui MM, Magalhães DA, Orellana MD, Castilho-Fernandes A, et al. Beneficial role of low-intensity laser irradiation on neural β-tubulin III protein expression in human bone marrow multipotent mesenchymal stromal cells. 2018; 14(4): 585-98.
[http://dx.doi.org/10.1007/s12015-017-9796-3]
[150]
Wong CW, Xu Y, Liu X, et al. Effect of induction time on the proliferation and differentiation of induced schwann-like cells from adipose-derived stem cells. Cell Mol Neurobiol 2020; 40(7): 1105-16.
[http://dx.doi.org/10.1007/s10571-020-00795-5] [PMID: 32062800]
[151]
Tang Y, He H, Cheng N, et al. PDGF, NT-3 and IGF-2 in combination induced transdifferentiation of muscle-derived stem cells into Schwann cell-like cells. PLoS One 2014; 9(1)e73402
[http://dx.doi.org/10.1371/journal.pone.0073402] [PMID: 24454677]
[152]
Kondo T, Matsuoka AJ, Shimomura A, Koehler KR, Chan RJ, Miller JM, et al. Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. 2011; 29(5): 836-46.
[http://dx.doi.org/10.1002/stem.624]
[153]
Qian D-X, Zhang H-T, Ma X, Jiang X-D. Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. 2010; 35(4): 572-9.
[154]
Zarrinpour V, Hajebrahimi Z. Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition. Jafarinia MJIjobms 2017; 20(2): 178.
[155]
Wang Y, Huang Y-Y, Wang Y, Lyu P. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Hamblin MRJSr 2017; 7(1): 1-10.
[156]
Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 2012; 40(2): 516-33.
[http://dx.doi.org/10.1007/s10439-011-0454-7] [PMID: 22045511]
[157]
Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 2015; 33(4): 183-4.
[http://dx.doi.org/10.1089/pho.2015.9848] [PMID: 25844681]
[158]
Ginani F, Soares DM, Barreto MP, Barboza CA. Effect of low-level laser therapy on mesenchymal stem cell proliferation: A systematic review. Lasers Med Sci 2015; 30(8): 2189-94.
[http://dx.doi.org/10.1007/s10103-015-1730-9] [PMID: 25764448]
[159]
Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD. Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 2005; 36(1): 8-12.
[http://dx.doi.org/10.1002/lsm.20117] [PMID: 15662631]
[160]
Karu TI. Special issue papers. photobiological fundamentals of low-power laser therapy. IEEE J Quantum Electron 1987; 23(10): 1703-17.
[http://dx.doi.org/10.1109/JQE.1987.1073236]
[161]
Rosso MPdO. Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL. Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: A systematic review. Bioengineering (Basel) 2018; 5(2): 1-12.
[162]
Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation. J Photochem Photobiol B 2017; 170(April): 197-207.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.04.014] [PMID: 28441605]
[163]
Matić M, Lazetić B, Poljacki M, Duran V, Ivkov-Simić M. [Low level laser irradiation and its effect on repair processes in the skin]. Med Pregl 2003; 56(3-4): 137-41.
[http://dx.doi.org/10.2298/MPNS0304137M] [PMID: 12899077]
[164]
Hawkins D, Abrahamse H. Phototherapy a treatment modality for wound healing and pain relief. Afr J Biomed Res 2010; 10(2)
[http://dx.doi.org/10.4314/ajbr.v10i2.50626]
[165]
Sommer AP, Pinheiro ALB, Mester AR, Franke RP, Whelan HT. Biostimulatory windows in low-intensity laser activation: Lasers, scanners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg 2001; 19(1): 29-33.
[http://dx.doi.org/10.1089/104454701750066910] [PMID: 11547815]
[166]
Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, et al. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria by HeNe laser. FEBS Lett 1984; 175(1): 95-9.
[http://dx.doi.org/10.1016/0014-5793(84)80577-3] [PMID: 6479342]
[167]
Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 2007; 127(8): 2048-57.
[http://dx.doi.org/10.1038/sj.jid.5700826] [PMID: 17446900]
[168]
Santana-Blank L, Rodríguez-Santana E, Santana-Rodríguez K. Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed Laser Surg 2010; 33(4): 183-4.
[http://dx.doi.org/10.1089/pho.2009.2647]
[169]
Hamblin MR, Demidova TN. Mechanisms of low level light therapy. Mechanisms for Low-Light Therapy 2006; 6140614001
[http://dx.doi.org/10.1117/12.646294]
[170]
Bradford A, Barlow A, Chazot PL. Probing the differential effects of infrared light sources IR1072 and IR880 on human lymphocytes: Evidence of selective cytoprotection by IR1072. J Photochem Photobiol B 2005; 81(1): 9-14.
[http://dx.doi.org/10.1016/j.jphotobiol.2005.05.005] [PMID: 16046143]
[171]
Ahrabi B, Rezaei Tavirani M, Khoramgah MS, et al. The effect of photobiomodulation therapy on the differentiation, proliferation, and migration of the mesenchymal stem cell: A review. J Lasers Med Sci 2019; 10(Suppl. 1): S96-S103.
[http://dx.doi.org/10.15171/jlms.2019.S17] [PMID: 32021681]
[172]
Nurković J, Zaletel I, Nurković S, Hajrović Š, Mustafić F, Isma J, et al. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells. 2017; 32(1): 151-60.
[http://dx.doi.org/10.1007/s10103-016-2097-2]
[173]
Zare F, Moradi A, Fallahnezhad S, Ghoreishi SK, Amini A, Chien S, et al. Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. 2019; 201: 111658.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111658]
[174]
Wang Y, Huang Y-Y, Wang Y, Lyu P. Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Hamblin MRJBeBA-GS 2017; 1861(2): 441-9.
[175]
Huang Y-Y, Sharma SK, Carroll J, Hamblin MRJD-R. Biphasic dose response in low level light therapy–an update. 2011; 9(4): 11-009.
[http://dx.doi.org/10.2203/dose-response.11-009.Hamblin]
[176]
Choi CB, Cho YK, Prakash KB, Jee BK, Han CW, Paik Y-K, et al. Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells. 2006; 3501(1): 138-46.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.010]
[177]
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Kaka GJLims 2012; 27(2): 423-30.
[178]
Chen H, Wu H, Yin H, Wang J, Dong H, Chen Q, et al. Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells. 2019; 34(4): 667-75.
[http://dx.doi.org/10.1007/s10103-018-2638-y]
[179]
Mirhosseini M, Shiari R, Motlagh PE. Farivar SJJoLiMS. Cerebrospinal fluid and photobiomodulation effects on neural gene expression in dental pulp stem cells 2019; 10(Suppl. 1): S30.
[180]
Shen C-C, Yang Y-C, Chiao M-T, Chan S-C, Liu B-SJE-BC, Medicine A. Low-level laser stimulation on adipose-tissue-derived stem cell treatments for focal cerebral ischemia in rats. 2013.
[http://dx.doi.org/10.1155/2013/594906]
[181]
Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR. Brain Photobiomodulation Therapy: A Narrative Review. Mol Neurobiol 2018; 55(8): 6601-36.
[http://dx.doi.org/10.1007/s12035-017-0852-4] [PMID: 29327206]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy