Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

New Oxazolidines Inhibit the Secretion of IFN-γ and IL-17 by PBMCS from Moderate to Severe Asthmatic Patients

Author(s): Renata Virgínia Cavalcanti Santos, Eudes Gustavo Constantino Cunha, Gabriela Souto Vieira de Mello, José Ângelo Rizzo, Jamerson Ferreira de Oliveira, Maria do Carmo Alves de Lima, Ivan da Rocha Pitta, Maira Galdino da Rocha Pitta and Moacyr Jesus Barreto de Melo Rêgo*

Volume 17, Issue 3, 2021

Published on: 10 September, 2020

Page: [289 - 297] Pages: 9

DOI: 10.2174/1573406416666200910151950

Price: $65

Abstract

Background: Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies.

Objective: The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma.

Methods: The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed.

Results: We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma.

Conclusion: The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.

Keywords: Airway hyperresponsiveness, allergy, oxazolidine, anti-inflammatory, cytokine, treatment resistance.

« Previous
Graphical Abstract

[1]
Resiliac, J.; Grayson, M.H. Epidemiology of infections and development of asthma. Immunol. Allergy Clin. North Am., 2019, 39(3), 297-307.
[http://dx.doi.org/10.1016/j.iac.2019.03.001] [PMID: 31284921]
[2]
Kuruvilla, M.E.; Vanijcharoenkarn, K.; Shih, J.A.; Lee, F.E.H. Epidemiology and risk factors for asthma. Respir. Med., 2019, 149, 16-22.
[http://dx.doi.org/10.1016/j.rmed.2019.01.014] [PMID: 30885424]
[3]
Christou, E.A.A.; Giardino, G.; Stefanaki, E.; Ladomenou, F. Asthma: An Undermined State of Immunodeficiency. Int. Rev. Immunol., 2019, 38(2), 70-78.
[http://dx.doi.org/10.1080/08830185.2019.1588267] [PMID: 30939053]
[4]
Mims, J.W. Asthma: definitions and pathophysiology. Int. Forum Allergy Rhinol., 2015, 5(Suppl. 1), S2-S6.
[http://dx.doi.org/10.1002/alr.21609] [PMID: 26335832]
[5]
Han, M.; Rajput, C.; Hershenson, M.B. Rhinovirus Attributes that Contribute to Asthma Development. Immunol. Allergy Clin. North Am., 2019, 39(3), 345-359.
[http://dx.doi.org/10.1016/j.iac.2019.03.004] [PMID: 31284925]
[6]
Murrison, L.B.; Brandt, E.B.; Myers, J.B.; Hershey, G.K.K. Environmental exposures and mechanisms in allergy and asthma development. J. Clin. Invest., 2019, 129(4), 1504-1515.
[http://dx.doi.org/10.1172/JCI124612] [PMID: 30741719]
[7]
Ayakannu, R.; Abdullah, N.A.; Radhakrishnan, A.K.; Lechimi Raj, V.; Liam, C.K. Relationship between various cytokines implicated in asthma. Hum. Immunol., 2019, 80(9), 755-763.
[http://dx.doi.org/10.1016/j.humimm.2019.04.018] [PMID: 31054782]
[8]
Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The Cytokines of Asthma. Immunity, 2019, 50(4), 975-991.
[http://dx.doi.org/10.1016/j.immuni.2019.03.018] [PMID: 30995510]
[9]
Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol., 2015, 16(1), 45-56.
[http://dx.doi.org/10.1038/ni.3049] [PMID: 25521684]
[10]
Fogli, L.K.; Sundrud, M.S.; Goel, S.; Bajwa, S.; Jensen, K.; Derudder, E.; Sun, A.; Coffre, M.; Uyttenhove, C.; Van Snick, J.; Schmidt-Supprian, M.; Rao, A.; Grunig, G.; Durbin, J.; Casola, S.; Rajewsky, K.; Koralov, S.B. T cell-derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. J. Immunol., 2013, 191(6), 3100-3111.
[http://dx.doi.org/10.4049/jimmunol.1301360] [PMID: 23966625]
[11]
Wakashin, H.; Hirose, K.; Maezawa, Y.; Kagami, S.; Suto, A.; Watanabe, N.; Saito, Y.; Hatano, M.; Tokuhisa, T.; Iwakura, Y.; Puccetti, P.; Iwamoto, I.; Nakajima, H. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am. J. Respir. Crit. Care Med., 2008, 178(10), 1023-1032.
[http://dx.doi.org/10.1164/rccm.200801-086OC] [PMID: 18787221]
[12]
Peebles, R.S., Jr; Aronica, M.A. Proinflammatory Pathways in the Pathogenesis of Asthma. Clin. Chest Med., 2019, 40(1), 29-50.
[http://dx.doi.org/10.1016/j.ccm.2018.10.014] [PMID: 30691715]
[13]
Wadhwa, R.; Dua, K.; Adcock, I.M.; Horvat, J.C.; Kim, R.Y.; Hansbro, P.M. Cellular mechanisms underlying steroid-resistant asthma. Eur. Respir. Rev., 2019, 28(153), 1-10.
[http://dx.doi.org/10.1183/16000617.0096-2019] [PMID: 31636089]
[14]
Nanzer, A.M.; Chambers, E.S.; Ryanna, K.; Richards, D.F.; Black, C.; Timms, P.M.; Martineau, A.R.; Griffiths, C.J.; Corrigan, C.J.; Hawrylowicz, C.M. Enhanced production of IL-17A in patients with severe asthma is inhibited by 1α,25-dihydroxyvitamin D3 in a glucocorticoid-independent fashion. J. Allergy Clin. Immunol., 2013, 132(2), 297-304.e3.
[http://dx.doi.org/10.1016/j.jaci.2013.03.037] [PMID: 23683514]
[15]
Doe, C.; Bafadhel, M.; Siddiqui, S.; Desai, D.; Mistry, V.; Rugman, P.; McCormick, M.; Woods, J.; May, R.; Sleeman, M.A.; Anderson, I.K.; Brightling, C.E. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest, 2010, 138(5), 1140-1147.
[http://dx.doi.org/10.1378/chest.09-3058] [PMID: 20538817]
[16]
Agache, I.; Ciobanu, C.; Agache, C.; Anghel, M. Increased serum IL-17 is an independent risk factor for severe asthma. Respir. Med., 2010, 104(8), 1131-1137.
[http://dx.doi.org/10.1016/j.rmed.2010.02.018] [PMID: 20338742]
[17]
Al-Ramli, W.; Préfontaine, D.; Chouiali, F.; Martin, J.G.; Olivenstein, R.; Lemière, C.; Hamid, Q.T. (H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol., 2009, 123(5), 1185-1187.
[http://dx.doi.org/10.1016/j.jaci.2009.02.024] [PMID: 19361847]
[18]
Raundhal, M.; Morse, C.; Khare, A.; Oriss, T.B.; Milosevic, J.; Trudeau, J.; Huff, R.; Pilewski, J.; Holguin, F.; Kolls, J.; Wenzel, S.; Ray, P.; Ray, A. High IFN-γ and low SLPI mark severe asthma in mice and humans. J. Clin. Invest., 2015, 125(8), 3037-3050.
[http://dx.doi.org/10.1172/JCI80911] [PMID: 26121748]
[19]
Whittle, E.; Leonard, M.O.; Gant, T.W.; Tonge, D.P. Multi-method molecular characterisation of human dust-mite-associated allergic asthma. Sci. Rep., 2019, 9(1), 8912.
[http://dx.doi.org/10.1038/s41598-019-45257-1] [PMID: 31221987]
[20]
Dahlberg, P.E.; Busse, W.W. Is intrinsic asthma synonymous with infection? Clin. Exp. Allergy, 2009, 39(9), 1324-1329.
[http://dx.doi.org/10.1111/j.1365-2222.2009.03322.x] [PMID: 19638039]
[21]
Hayashi, N.; Yoshimoto, T.; Izuhara, K.; Matsui, K.; Tanaka, T.; Nakanishi, K. T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-γ and IL-13 production. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14765-14770.
[http://dx.doi.org/10.1073/pnas.0706378104] [PMID: 17766435]
[22]
Ebensen, T.; Schulze, K.; Riese, P.; Link, C.; Morr, M.; Guzmán, C.A. The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine, 2007, 25(8), 1464-1469.
[http://dx.doi.org/10.1016/j.vaccine.2006.10.033] [PMID: 17187906]
[23]
Ray, A.; Raundhal, M.; Oriss, T.B.; Ray, P.; Wenzel, S.E. Current concepts of severe asthma. J. Clin. Invest., 2016, 126(7), 2394-2403.
[http://dx.doi.org/10.1172/JCI84144] [PMID: 27367183]
[24]
Stokes, J.R.; Casale, T.B. Characterization of asthma endotypes: implications for therapy. Ann. Allergy Asthma Immunol., 2016, 117(2), 121-125.
[http://dx.doi.org/10.1016/j.anai.2016.05.016] [PMID: 27499539]
[25]
Nirula, A.; Nilsen, J.; Klekotka, P.; Kricorian, G.; Erondu, N.; Towne, J.E.; Russell, C.B.; Martin, D.A.; Budelsky, A.L. Effect of IL-17 receptor A blockade with brodalumab in inflammatory diseases. Rheumatology (Oxford), 2016, 55(Suppl. 2), ii43-ii55.
[http://dx.doi.org/10.1093/rheumatology/kew346] [PMID: 27856660]
[26]
Huang, J.; Pansare, M. New Treatments for Asthma. Pediatr. Clin. North Am., 2019, 66(5), 925-939.
[http://dx.doi.org/10.1016/j.pcl.2019.06.001] [PMID: 31466682]
[27]
Busse, W.W.; Holgate, S.; Kerwin, E.; Chon, Y.; Feng, J.; Lin, J.; Lin, S.L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med., 2013, 188(11), 1294-1302.
[http://dx.doi.org/10.1164/rccm.201212-2318OC] [PMID: 24200404]
[28]
Puig, L. Brodalumab: the first anti-IL-17 receptor agent for psoriasis. Drugs Today (Barc), 2017, 53(5), 283-297.
[http://dx.doi.org/10.1358/dot.2017.53.5.2613690] [PMID: 28650001]
[29]
Beck, K.M.; Koo, J. Brodalumab for the treatment of plaque psoriasis: up-to-date. Expert Opin. Biol. Ther., 2019, 19(4), 287-292.
[http://dx.doi.org/10.1080/14712598.2019.1579794] [PMID: 30831036]
[30]
Holgate, S.T. Innate and adaptive immune responses in asthma. Nat. Med., 2012, 18(5), 673-683.
[http://dx.doi.org/10.1038/nm.2731] [PMID: 22561831]
[31]
Kirsten, A.; Watz, H.; Pedersen, F.; Holz, O.; Smith, R.; Bruin, G.; Koehne-Voss, S.; Magnussen, H.; Waltz, D.A. The anti-IL-17A antibody secukinumab does not attenuate ozone-induced airway neutrophilia in healthy volunteers. Eur. Respir. J., 2013, 41(1), 239-241.
[http://dx.doi.org/10.1183/09031936.00123612] [PMID: 23277522]
[32]
Meng, X.; Sun, X.; Zhang, Y.; Shi, H.; Deng, W.; Liu, Y.; Wang, G.; Fang, P.; Yang, S. PPARγ Agonist PGZ Attenuates OVA-induced airway inflammation and airway remodeling via RGS4 signaling in mouse model. Inflammation, 2018, 41(6), 2079-2089.
[http://dx.doi.org/10.1007/s10753-018-0851-2] [PMID: 30022363]
[33]
Luczak, E.; Wieczfinska, J.; Sokolowska, M.; Pniewska, E.; Luczynska, D.; Pawliczak, R. Troglitazone, a PPAR-γ agonist, decreases LTC4 concentration in mononuclear cells in patients with asthma. Pharmacol. Rep., 2017, 69(6), 1315-1321.
[http://dx.doi.org/10.1016/j.pharep.2017.05.006] [PMID: 29128815]
[34]
Anderson, J.R.; Mortimer, K.; Pang, L.; Smith, K.M.; Bailey, H.; Hodgson, D.B.; Shaw, D.E.; Knox, A.J.; Harrison, T.W. Evaluation of the PPAR-γ agonist pioglitazone in mild asthma: a double-blind randomized controlled trial. PLoS One, 2016, 11(8)e0160257
[http://dx.doi.org/10.1371/journal.pone.0160257] [PMID: 27560168]
[35]
Xu, J.; Zhu, Y.T.; Wang, G.Z.; Han, D.; Wu, Y.Y.; Zhang, D.X.; Liu, Y.; Zhang, Y.H.; Xie, X.M.; Li, S.J.; Lu, J.M.; Liu, L.; Feng, W.; Sun, X.Z.; Li, M.X. The PPARγ agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma. Acta Pharmacol. Sin., 2015, 36(2), 171-178.
[http://dx.doi.org/10.1038/aps.2014.128] [PMID: 25619395]
[36]
Maślanka, T.; Otrocka-Domagała, I.; Zuśka-Prot, M.; Gesek, M. Beneficial effects of rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, in a mouse allergic asthma model is not associated with the recruitment or generation of Foxp3-expressing CD4+ regulatory T cells. Eur. J. Pharmacol., 2019, 848(January), 30-38.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.053] [PMID: 30710547]
[37]
Naresh, A.; Venkateswara Rao, M.; Kotapalli, S.S.; Ummanni, R.; Venkateswara Rao, B. Oxazolidinone derivatives: cytoxazone-linezolid hybrids induces apoptosis and senescence in DU145 prostate cancer cells. Eur. J. Med. Chem., 2014, 80, 295-307.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.062] [PMID: 24793880]
[38]
Rodrigues, F.A.R. Bomfim, Ida.S.; Cavalcanti, B.C.; Pessoa, C.; Goncalves, R.S.B.; Wardell, J.L.; Wardell, S.M.S.V.; de Souza, M.V.N. Mefloquine-oxazolidine derivatives: a new class of anticancer agents. Chem. Biol. Drug Des., 2014, 83(1), 126-131.
[http://dx.doi.org/10.1111/cbdd.12210] [PMID: 23961998]
[39]
Renslo, A.R. Antibacterial oxazolidinones: emerging structure-toxicity relationships. Expert Rev. Anti Infect. Ther., 2010, 8(5), 565-574.
[http://dx.doi.org/10.1586/eri.10.26] [PMID: 20455685]
[40]
Zurenko, G.E.; Gibson, J.K.; Shinabarger, D.L.; Aristoff, P.A.; Ford, C.W.; Tarpley, W.G. Oxazolidinones: a new class of antibacterials. Curr. Opin. Pharmacol., 2001, 1(5), 470-476.
[http://dx.doi.org/10.1016/S1471-4892(01)00082-0] [PMID: 11764772]
[41]
Kamal, A.; Swapna, P.; Shetti, R.V.C.R.N.C.; Shaik, A.B.; Narasimha Rao, M.P.; Gupta, S. Synthesis, biological evaluation of new oxazolidino-sulfonamides as potential antimicrobial agents. Eur. J. Med. Chem., 2013, 62, 661-669.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.034] [PMID: 23434639]
[42]
da Rocha, Junior L.F.; Rêgo, M.J.; Cavalcanti, M.B.; Pereira, M.C.; Pitta, M.G.D.R.; de Oliveira, P.S.S.; Gonçalves, S.M.C.; Duarte, A.L.B.P. de Lima, Mdo.C.; Pitta, Ida.R.; Pitta, M.G.D.R. Synthesis of a novel thiazolidinedione and evaluation of its modulatory effect on IFN- γ, IL-6, IL-17A, and IL-22 production in PBMCs from rheumatoid arthritis patients. BioMed Res. Int., 2013, 2013926060
[http://dx.doi.org/10.1155/2013/926060] [PMID: 24078927]
[43]
Cariou, B.; Charbonnel, B.; Staels, B. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol. Metab., 2012, 23(5), 205-215.
[http://dx.doi.org/10.1016/j.tem.2012.03.001] [PMID: 22513163]
[44]
Fresno, N.; Macías-González, M.; Torres-Zaguirre, A.; Romero-Cuevas, M.; Sanz-Camacho, P.; Elguero, J.; Pavón, F.J.; de Fonseca, F.R.; Goya, P.; Pérez-Fernández, R. Novel oxazolidinone based PPAR agonists : molecular modeling, synthesis and biological evaluation. J. Med. Chem., 2015, 58(16), 6639-6652.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00849] [PMID: 26226490]
[45]
Branco-Junior, J.F.; Teixeira, D.R.C.; Pereira, M.C.; Pitta, I.R.; Galdino-Pitta, M.R. The role of oxazolidine derivatives in the treatment of infectious and chronic diseases. Curr. Bioact. Compd., 2016.
[http://dx.doi.org/10.2174/1573407213666161214162149]
[46]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini-reviews. Med. Chem., 2017.
[http://dx.doi.org/10.2174/1389557517666170807123201] [PMID: 28782480]
[47]
Guerra, A.S.; Malta, D.J.; Laranjeira, L.P.; Maia, M.B.; Colaço, N.C. de Lima, Mdo. C.; Galdino, S.L.; Pitta, Ida.R.; Gonçalves-Silva, T. Anti-inflammatory and antinociceptive activities of indole-imidazolidine derivatives. Int. Immunopharmacol., 2011, 11(11), 1816-1822.
[http://dx.doi.org/10.1016/j.intimp.2011.07.010] [PMID: 21855654]
[48]
Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Halogen bonding for rational drug design and new drug discovery. Expert Opin. Drug Discov., 2012, 7(5), 375-383.
[http://dx.doi.org/10.1517/17460441.2012.678829] [PMID: 22462734]
[49]
Ahmad, T.B.; Rudd, D.; Smith, J.; Kotiw, M.; Mouatt, P.; Seymour, L.M.; Liu, L.; Benkendorff, K. Anti-Inflammatory Activity and Structure-Activity Relationships of Brominated Indoles from a Marine Mollusc. Mar. Drugs, 2017, 15(5)E133
[http://dx.doi.org/10.3390/md15050133] [PMID: 28481239]
[50]
Lind, K.F.; Hansen, E.; Østerud, B.; Eilertsen, K.E.; Bayer, A.; Engqvist, M.; Leszczak, K.; Jørgensen, T.Ø.; Andersen, J.H. Antioxidant and anti-inflammatory activities of barettin. Mar. Drugs, 2013, 11(7), 2655-2666.
[http://dx.doi.org/10.3390/md11072655] [PMID: 23880935]
[51]
Parisini, E.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in halocarbon-protein complexes: a structural survey. Chem. Soc. Rev., 2011, 40(5), 2267-2278.
[http://dx.doi.org/10.1039/c0cs00177e] [PMID: 21365086]
[52]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[53]
Daina, A.; Michielin, O.; Zoete, V. Swiss Target Prediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[54]
Faine, L.A.; Rudnicki, M.; César, F.A.; Heras, B.L.; Boscá, L.; Souza, E.S.; Hernandes, M.Z.; Galdino, S.L.; Lima, M.C.; Pitta, I.R.; Abdalla, D.S. Anti-inflammatory and antioxidant properties of a new arylidene-thiazolidinedione in macrophages. Curr. Med. Chem., 2011, 18(22), 3351-3360.
[http://dx.doi.org/10.2174/092986711796504600] [PMID: 21728966]
[55]
Lee, H.Y.; Hur, J.; Kim, I.K.; Kang, J.Y.; Yoon, H.K.; Lee, S.Y.; Kwon, S.S.; Kim, Y.K.; Rhee, C.K. Effect of nintedanib on airway inflammation and remodeling in a murine chronic asthma model. Exp. Lung Res., 2017, 43(4-5), 187-196.
[http://dx.doi.org/10.1080/01902148.2017.1339141] [PMID: 28696800]
[56]
Ye, Q.; Chourey, S.; Wang, R.; Chintam, N.R.; Gravel, S.; Powell, W.S.; Rokach, J. Structure-activity relationship study of β-oxidation resistant indole-based 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) receptor antagonists. Bioorg. Med. Chem. Lett., 2017, 27(20), 4770-4776.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.034] [PMID: 28943042]
[57]
El-Sayed, N.A.; Nour, M.S.; Salem, M.A.; Arafa, R.K. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur. J. Med. Chem., 2019, 183111693
[http://dx.doi.org/10.1016/j.ejmech.2019.111693] [PMID: 31539778]
[58]
Ohtake, J.; Kaneumi, S.; Tanino, M.; Kishikawa, T.; Terada, S.; Sumida, K.; Masuko, K.; Ohno, Y.; Kita, T.; Iwabuchi, S.; Shinohara, T.; Tanino, Y.; Takemura, T.; Tanaka, S.; Kobayashi, H.; Kitamura, H. Neuropeptide signaling through neurokinin-1 and neurokinin-2 receptors augments antigen presentation by human dendritic cells. J. Allergy Clin. Immunol., 2015, 136(6), 1690-1694.
[http://dx.doi.org/10.1016/j.jaci.2015.06.050] [PMID: 26371842]
[59]
Schuiling, M.; Zuidhof, A.B.; Zaagsma, J.; Meurs, H. Involvement of tachykinin NK1 receptor in the development of allergen-induced airway hyperreactivity and airway inflammation in conscious, unrestrained guinea pigs. Am. J. Respir. Crit. Care Med., 1999, 159(2), 423-430.
[http://dx.doi.org/10.1164/ajrccm.159.2.9804125] [PMID: 9927353]
[60]
De Swert, K.O.; Tournoy, K.G.; Joos, G.F.; Pauwels, R.A. The role of the tachykinin NK1 receptor in airway changes in a mouse model of allergic asthma. J. Allergy Clin. Immunol., 2004, 113(6), 1093-1099.
[http://dx.doi.org/10.1016/j.jaci.2004.03.015] [PMID: 15208590]
[61]
Joachim, R.A.; Sagach, V.; Quarcoo, D.; Dinh, Q.T.; Arck, P.C.; Klapp, B.F. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice. Psychosom. Med., 2004, 66(4), 564-571.
[http://dx.doi.org/10.1097/01.psy.0000132878.08780.93] [PMID: 15272104]
[62]
Wei, B.; Sun, M.; Shang, Y.; Zhang, C.; Jiao, X. Neurokinin 1 receptor promotes rat airway smooth muscle cell migration in asthmatic airway remodelling by enhancing tubulin expression. J. Thorac. Dis., 2018, 10(8), 4849-4857.
[http://dx.doi.org/10.21037/jtd.2018.07.114] [PMID: 30233858]
[63]
Grobman, M.; Krumme, S.; Outi, H.; Dodam, J.R.; Reinero, C.R. Acute neurokinin-1 receptor antagonism fails to dampen airflow limitation or airway eosinophilia in an experimental model of feline asthma. J. Feline Med. Surg., 2016, 18(2), 176-181.
[http://dx.doi.org/10.1177/1098612X15581405] [PMID: 25964467]
[64]
Grobman, M.; Graham, A.; Outi, H.; Dodam, J.R.; Reinero, C.R. Chronic neurokinin-1 receptor antagonism fails to ameliorate clinical signs, airway hyper-responsiveness or airway eosinophilia in an experimental model of feline asthma. J. Feline Med. Surg., 2016, 18(4), 273-279.
[http://dx.doi.org/10.1177/1098612X15581406] [PMID: 25964466]
[65]
Duffy, R.A. Potential therapeutic targets for neurokinin-1 receptor antagonists. Expert Opin. Emerg. Drugs, 2004, 9(1), 9-21.
[http://dx.doi.org/10.1517/14728214.9.1.9] [PMID: 15155133]
[66]
Ichinose, M.; Miura, M.; Yamauchi, H.; Kageyama, N.; Tomaki, M.; Oyake, T.; Ohuchi, Y.; Hida, W.; Miki, H.; Tamura, G.; Shirato, K. A neurokinin 1-receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am. J. Respir. Crit. Care Med., 1996, 153(3), 936-941.
[http://dx.doi.org/10.1164/ajrccm.153.3.8630576] [PMID: 8630576]
[67]
Alvaro, G.; Di Fabio, R. Neurokinin 1 receptor antagonists--current prospects. Curr. Opin. Drug Discov. Devel., 2007, 10(5), 613-621.
[PMID: 17786860]
[68]
Lu, Y.; Kared, H.; Tan, S.W.; Becht, E.; Newell, E.W.; Van Bever, H.P.S.; Ng, T.P.; Larbi, A. Dynamics of helper CD4 T cells during acute and stable allergic asthma. Mucosal Immunol., 2018, 11(6), 1640-1652.
[http://dx.doi.org/10.1038/s41385-018-0057-9] [PMID: 30087444]
[69]
Ray, A.; Kolls, J.K. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol., 2017, 38(12), 942-954.
[http://dx.doi.org/10.1016/j.it.2017.07.003] [PMID: 28784414]
[70]
Choy, D.F.; Hart, K.M.; Borthwick, L.A.; Shikotra, A.; Nagarkar, D.R.; Siddiqui, S.; Jia, G.; Ohri, C.M.; Doran, E.; Vannella, K.M.; Butler, C.A.; Hargadon, B.; Sciurba, J.C.; Gieseck, R.L.; Thompson, R.W.; White, S.; Abbas, A.R.; Jackman, J.; Wu, L.C.; Egen, J.G.; Heaney, L.G.; Ramalingam, T.R.; Arron, J.R.; Wynn, T.A.; Bradding, P. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med., 2015, 7(301)301ra129
[http://dx.doi.org/10.1126/scitranslmed.aab3142] [PMID: 26290411]
[71]
Krishnamoorthy, N.; Douda, D.N.; Brüggemann, T.R.; Ricklefs, I.; Duvall, M.G.; Abdulnour, R.E.; Martinod, K.; Tavares, L.; Wang, X.; Cernadas, M.; Israel, E.; Mauger, D.T.; Bleecker, E.R.; Castro, M.; Erzurum, S.C.; Gaston, B.M.; Jarjour, N.N.; Wenzel, S.; Dunican, E.; Fahy, J.V.; Irimia, D.; Wagner, D.D.; Levy, B.D. National Heart, Lung, and Blood Institute Severe Asthma Research Program-3 Investigators. Neutrophil cytoplasts induce TH17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci. Immunol., 2018, 3(26)eaao4747
[http://dx.doi.org/10.1126/sciimmunol.aao4747] [PMID: 30076281]
[72]
Hasegawa, T.; Uga, H.; Mori, A.; Kurata, H. Increased serum IL-17A and Th2 cytokine levels in patients with severe uncontrolled asthma. Eur. Cytokine Netw., 2017, 28(1), 8-18.
[http://dx.doi.org/10.1684/ecn.2017.0390] [PMID: 28840844]
[73]
Zhao, J.; Lloyd, C.M.; Noble, A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol., 2013, 6(2), 335-346.
[http://dx.doi.org/10.1038/mi.2012.76] [PMID: 22892938]
[74]
Foulkes, A.C.; Warren, R.B. Brodalumab in psoriasis: evidence to date and clinical potential. Drugs Context, 2019, 8212570
[http://dx.doi.org/10.7573/dic.212570] [PMID: 31024633]
[75]
Yu, J.H.; Long, L.; Luo, Z.X.; You, J.R. Effect of PPARγ agonist (rosiglitazone) on the secretion of Th2 cytokine in asthma mice. Asian Pac. J. Trop. Med., 2017, 10(1), 64-68.
[http://dx.doi.org/10.1016/j.apjtm.2016.10.006] [PMID: 28107868]
[76]
Duvall, M.G.; Barnig, C.; Cernadas, M.; Ricklefs, I.; Krishnamoorthy, N.; Grossman, N.L.; Bhakta, N.R.; Fahy, J.V.; Bleecker, E.R.; Castro, M.; Erzurum, S.C.; Gaston, B.M.; Jarjour, N.N.; Mauger, D.T.; Wenzel, S.E.; Comhair, S.A.; Coverstone, A.M.; Fajt, M.L.; Hastie, A.T.; Johansson, M.W.; Peters, M.C.; Phillips, B.R.; Israel, E.; Levy, B.D. National Heart, Lung, and Blood Institute’s Severe Asthma Research Program-3 Investigators. Natural killer cell-mediated inflammation resolution is disabled in severe asthma. Sci. Immunol., 2017, 2(9)eaam5446
[http://dx.doi.org/10.1126/sciimmunol.aam5446] [PMID: 28783702]
[77]
Oriss, T.B.; Raundhal, M.; Morse, C.; Huff, R.E.; Das, S.; Hannum, R.; Gauthier, M.C.; Scholl, K.L.; Chakraborty, K.; Nouraie, S.M.; Wenzel, S.E.; Ray, P.; Ray, A. IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCI Insight, 2017, 2(10), 1-16.
[http://dx.doi.org/10.1172/jci.insight.91019] [PMID: 28515358]
[78]
Sykes, A.; Edwards, M.R.; Macintyre, J.; del Rosario, A.; Bakhsoliani, E.; Trujillo-Torralbo, M.B.; Kon, O.M.; Mallia, P.; McHale, M.; Johnston, S.L. Rhinovirus 16-induced IFN-α and IFN-β are deficient in bronchoalveolar lavage cells in asthmatic patients. J. Allergy Clin. Immunol., 2012, 129(6), 1506-1514.e6.
[http://dx.doi.org/10.1016/j.jaci.2012.03.044] [PMID: 22657407]
[79]
Bhakta, N.R.; Christenson, S.A.; Nerella, S.; Solberg, O.D.; Nguyen, C.P.; Choy, D.F.; Jung, K.L.; Garudadri, S.; Bonser, L.R.; Pollack, J.L.; Zlock, L.T.; Erle, D.J.; Langelier, C.; Derisi, J.L.; Arron, J.R.; Fahy, J.V.; Woodruff, P.G. IFN-stimulated gene expression, type 2 inflammation, and Endoplasmic Reticulum Stress in Asthma. Am. J. Respir. Crit. Care Med., 2018, 197(3), 313-324.
[http://dx.doi.org/10.1164/rccm.201706-1070OC] [PMID: 29064281]
[80]
Yu, M.; Eckart, M.R.; Morgan, A.A.; Mukai, K.; Butte, A.J.; Tsai, M.; Galli, S.J. Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma. J. Clin. Invest., 2011, 121(8), 3133-3143.
[http://dx.doi.org/10.1172/JCI43598] [PMID: 21737883]
[81]
Pejler, G. The emerging role of mast cell proteases in asthma. Eur. Respir. J., 2019, 54(4)1900685
[http://dx.doi.org/10.1183/13993003.00685-2019] [PMID: 31371445]
[82]
Kobayashi, M.; Ashino, S.; Shiohama, Y.; Wakita, D.; Kitamura, H.; Nishimura, T. IFN-γ elevates airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model. Eur. J. Immunol., 2012, 42(2), 393-402.
[http://dx.doi.org/10.1002/eji.201141845] [PMID: 22105467]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy