[1]
Cunningham ET Jr, Margolis TP. Ocular manifestations of HIV infection. N Engl J Med 1998; 339: 236-44.
[2]
Kestelyn PG, Cunningham ET Jr. HIV/AIDS and blindness. Bull World Health Organ 2001; 79: 208-13.
[3]
Vrabec TR. Posterior segment manifestations of HIV/AIDS. Survey of ophthalmology 2004; 49: 131-57.
[4]
Martin-Odoom A, Bonney EY, Opoku DK. Ocular complications in HIV positive patients on antiretroviral therapy in Ghana. BMC Ophthalmol 2016; 16: 134.
[5]
Wang Z, Jia R, Ge S, et al. Ocular complications of human immunodeficiency virus infection in eastern china. Am J Ophthalmol 2012; 153: 363-9.
[6]
Han Y, Wu N, Zhu W, et al. Detection of HIV-1 viruses in tears of patients even under long-term HAART. AIDS 2011; 25: 1925-7.
[7]
Peng CH, Chen SJ, Ho CK, et al. Detection of HIV RNA levels in intraocular and cerebrospinal fluids in patients with AIDS-related cryptococcosis. Ophthalmologica 2005; 219: 101-6.
[8]
Hsu WM, Chiou SH, Chen SS, et al. The HIV RNA levels of plasma and ocular fluids in aids patients with ophthalmic infections. Ophthalmologica 2004; 218: 328-32.
[9]
Niederkorn JY. Immune privilege and immune regulation in the eye. Adv Immunol 1990; 48: 191-226.
[10]
Persidsky Y, Poluektova L. Immune privilege and HIV-1 persistence in the CNS. Immunol Rev 2006; 213: 180-94.
[11]
Head JR, Billingham RE. Immune privilege in the testis. II. Evaluation of potential local factors. Transplantation 1985; 40: 269-75.
[12]
Taylor AW, Ng TF. Negative regulators that mediate ocular immune privilege. J Leukoc Biol 2018. [Epub ahead of print].
[13]
Taylor AW. Ocular immune privilege. Eye (Lond) 2009; 23: 1885-9.
[14]
Kaplan HJ, Streilein JW.
Immune response to immunization
via
the anterior chamber of the eye. II. An analysis of F1 lymphocyte-induced immune deviation. 1978.
Ocul Immunol Inflamm 2007; 15: 179-85.
[15]
Streilein JW. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol 2003; 74: 179-85.
[16]
de Andrade FA, Fiorot SH, Benchimol EI, Provenzano J, Martins VJ, Levy RA. The autoimmune diseases of the eyes. Autoimmun Rev 2016; 15: 258-71.
[17]
Taylor AW, Alard P, Yee DG, Streilein JW. Aqueous humor induces transforming growth factor-beta (TGF-beta)-producing regulatory T-cells. 1997. Ocul Immunol Inflamm 2007; 15: 215-24.
[18]
Taylor AW, Streilein JW, Cousins SW. Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J Immunol 1994; 153: 1080-6.
[19]
Cunha-Vaz JG. The blood-ocular barriers: past, present, and future. Doc Ophthalmol 1997; 93: 149-57.
[20]
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57: 173-85.
[21]
Wang Z, Jia R, Ge S, et al. Ocular complications of human immunodeficiency virus infection in eastern china. Am J Ophthalmol 2012; 153: 363-9.
[22]
Ng WT, Versace P. Ocular association of HIV infection in the era of highly active antiretroviral therapy and the global perspective. Clin Experiment Ophthalmol 2005; 33: 317-29.
[23]
Kempen JH, Jabs DA, Wilson LA, Dunn JP, West SK, Tonascia J. Mortality risk for patients with cytomegalovirus retinitis and acquired immune deficiency syndrome. Clin Infect Dis 2003; 37: 1365-73.
[24]
Jabs DA. Ocular manifestations of HIV infection. Trans Am Ophthalmol Soc 1995; 93: 623-83.
[25]
Erickson KK, Sundstrom JM, Antonetti DA. Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 2007; 10: 103-17.
[26]
Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001; 153: 543-53.
[27]
Rizzolo LJ. Polarity and the development of the outer blood-retinal barrier. Histol Histopathol 1997; 12: 1057-67.
[28]
Runkle EA, Antonetti DA. The blood-retinal barrier: structure and functional significance. Methods Mol Biol 2011; 686: 133-48.
[29]
Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol 2011; 21(Suppl. 6): S3-9.
[30]
Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol 2003; 81: 1-44.
[31]
Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Deliv Rev 2005; 57: 883-917.
[32]
Gonzalez-Mariscal L. A. B, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol 2003; 81: 1-44.
[33]
Ramirez SH, Hasko J, Skuba A, et al. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J Neurosci 2012; 32: 4004-16.
[34]
Williams LA, Martin-Padura I, Dejana E, Hogg N, Simmons DL. Identification and characterisation of human junctional adhesion molecule (JAM). Mol Immunol 1999; 36: 1175-88.
[35]
Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol 2015; 209: 493-506.
[36]
Miyoshi J, Takai Y. Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 2005; 57: 815-55.
[37]
Kuznik BI, Linkova NS, Kolchina NV, Kukanova EO, Khavinson VK. The JAM family of molecules and their role in the regulation of physiological and pathological processes. Usp Fiziol Nauk 2016; 47(4): 76-97.
[38]
Economopoulou M, Avramovic N, Klotzsche-von Ameln A, et al. Endothelial-specific deficiency of junctional adhesion molecule-C promotes vessel normalisation in proliferative retinopathy. Thromb Haemost 2015; 114: 1241-9.
[39]
Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 1999; 274(49): 35179-85.
[40]
Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 1998; 141: 199-208.
[41]
Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci USA 1991; 88: 3460-4.
[42]
Lu L, Yu F, Cai L, Debnath AK, Jiang S. Development of small-molecule HIV entry inhibitors specifically targeting gp120 or gp41. Curr Top Med Chem 2016; 16: 1074-90.
[43]
Geijtenbeek TB, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100: 587-97.
[44]
Arthos J, Cicala C, Martinelli E, et al. HIV-1 envelope protein binds to and signals through integrin alpha(4)beta(7), the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008; 9: 301-9.
[45]
Vivès RR, Anne I, Sattentau QJ, Hugues LJ. Heparan sulfate targets the HIV-1 envelope glycoprotein gp120 coreceptor binding site. J Biol Chem 2005; 280: 21353-7.
[46]
Ahmed Z, Kawamura T, Shimada S, Piguet V. The role of human dendritic cells in HIV-1 infection. J Invest Dermatol 2015; 135: 1225-33.
[47]
Wu L. KewalRamani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 2006; 6: 859-68.
[48]
Geijtenbeek TB, van Kooyk Y. DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 2003; 276: 31-54.
[49]
Geijtenbeek TB, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100: 587-97.
[50]
Dohgu S, Ryerse JS, Robinson SM, Banks WA. Human immunodeficiency virus-1 uses the mannose-6-phosphate receptor to cross the blood-brain barrier. PLoS One 2012; 7: e39565.
[51]
Canki M, Sparrow JR, Chao W, Potash MJ, Volsky DJ. Human immunodeficiency virus type 1 can infect human retinal pigment epithelial cells in culture and alter the ability of the cells to phagocytose rod outer segment membranes. AIDS Res Hum Retroviruses 2000; 16(5): 453-63.
[52]
Wan ZT, Chen XL. Mechanisms of HIV envelope-induced T lymphocyte apoptosis. Virol Sin 2010; 25: 307-15.
[53]
Cummins NW, Rizza SA, Badley AD. How much gp120 is there? J Infect Dis 2010; 201: 1273-4.
[54]
Ellaurie M, Calvelli TA, Rubinstein A. Human immunodeficiency virus (HIV) circulating immune complexes in infected children. AIDS Res Hum Retroviruses 1990; 6: 1437-41.
[55]
Hasebe R, Suzuki T, Makino Y, et al. Transcellular transport of West Nile virus-like particles across human endothelial cells depends on residues 156 and 159 of envelope protein. BMC Microbiol 2010; 10: 165.
[56]
Verma S, Lo Y, Chapagain M, et al.
West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the
in vitro
blood-brain barrier.
Virology 2009; 385: 425-33.
[57]
Nazli A, Kafka JK, Ferreira VH, et al. HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol 2013; 191: 4246-58.
[58]
Louboutin J-P, Reyes BAS, Agrawal L, Van Bockstaele EJ, Strayer DS. HIV-1 gp120 upregulates matrix metalloproteinases and their inhibitors in a rat model of HIV encephalopathy. Eur J Neurosci 2011; 34: 2015-23.
[59]
Louboutin JP, Strayer DS. Blood-brain barrier abnormalities caused by HIV-1 gp120: Mechanistic and therapeutic implications. Sci World J 2012; 2012: 482575.
[60]
Craigo JK, Gupta P. HIV-1 in genital compartments: vexing viral reservoirs. Curr Opin HIV AIDS 2006; 1: 97-102.
[61]
Cioni C, Annunziata P. Circulating gp120 alters the blood-brain barrier permeability in HIV-1 gp120 transgenic mice. Neurosci Lett 2002; 330: 299-301.
[62]
Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 2002; 47(Suppl. 2): S253-62.
[63]
Shah A, Singh DP, Buch S, Kumar A. HIV-1 envelope protein gp120 up regulates CCL5 production in astrocytes which can be circumvented by inhibitors of NF-kappaB pathway. Biochemical and biophysical research communications 2011; 414: 112-7.
[64]
Yin PD, Kurup SK, Fischer SH, et al. Progressive outer retinal necrosis in the era of highly active antiretroviral therapy: successful management with intravitreal injections and monitoring with quantitative PCR. J Clin Virol 2007; 38: 254-9.
[65]
Sanyal S, Zeilmaker GH. Cell lineage in retinal development of mice studied in experimental chimaeras. Nature 1977; 265(5596): 731-3.
[66]
Power C, Gill MJ, Johnson RT. Progress in clinical neurosciences: The neuropathogenesis of HIV infection: host-virus interaction and the impact of therapy. Can J Neurol Sci 2002; 29: 19-32.
[67]
Woollard SM, Bhargavan B, Yu F, Kanmogne GD. Differential effects of Tat proteins derived from HIV-1 subtypes B and recombinant CRF02_AG on human brain microvascular endothelial cells: implications for blood-brain barrier dysfunction. J Cereb Blood Flow Metab 2014; 34: 1047-59.
[68]
Qian YW, Li C, Jiang AP, et al. HIV-1 gp120 glycoprotein interacting with dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) down-regulates tight junction proteins to disrupt the blood retinal barrier and increase its permeability. J Biol Chem 2016; 291(44): 22977-87.
[69]
Lee IT, Liu SW, Chi PL, Lin CC, Hsiao LD, Yang CM.
TNF-alpha mediates PKCdelta/JNK1/2/c-Jun-dependent monocyte adhesion
via
ICAM-1 induction in human retinal pigment epithelial cells.
PLoS One 2015; 10(2): e0117911.
[70]
Kolb SA, Sporer B, Lahrtz F, Koedel U, Pfister HW, Fontana A. Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-gamma inducible protein 10. J Neuroimmunol 1999; 93(1-2): 172-81.
[71]
Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 2006; 26(4): 1098-106.
[72]
Shah A, Verma AS, Patel KH, Noel R, Rivera-Amill V, Silverstein PS, et al. HIV-1 gp120 induces expression of IL-6 through a nuclear factor-kappa B-dependent mechanism: suppression by gp120 specific small interfering RNA. PLoS One 2011; 6: e21261.
[73]
Sarkar R, Mitra D, Chakrabarti S. HIV-1 gp120 protein downregulates Nef induced IL-6 release in immature dentritic cells through interplay of DC-SIGN. PLoS One 2013; 8: e59073.
[74]
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6: 1143.
[75]
Yu QR, Zhang ZP, Zhang H, et al. Inducible nitric oxide synthase is involved in the oxidation stress induced by HIV-1 gp120 in human retina pigment epithelial cells. Chin Med J (Engl) 2008; 121(24): 2578-83.
[76]
Silverstein PS, Shah A, Weemhoff J, Kumar S, Singh DP, Kumar A. HIV-1 gp120 and drugs of abuse: interactions in the central nervous system. Curr HIV Res 2012; 10(5): 369-83.
[77]
Louboutin JP, Agrawal L, Reyes BA, Van Bockstaele EJ, Strayer DS. HIV-1 gp120-induced injury to the blood-brain barrier: role of metalloproteinases 2 and 9 and relationship to oxidative stress. J Neuropathol Exp Neurol 2010; 69: 801-16.
[78]
Banerjee A, Zhang X, Manda KR, Banks WA, Ercal N. HIV proteins (gp120 and Tat) and methamphetamine in oxidative stressinduced damage in the brain: potential role of the thiol antioxidant N-acetylcysteine amide. Free Radic Biol Med 2010 15; 48(10): 1388-98.
[79]
Silverstein PS, Shah A, Weemhoff J, Kumar S, Singh DP, Kumar A. HIV-1 gp120 and drugs of abuse: interactions in the central nervous system. Curr HIV Res 2012; 10: 369-83.
[80]
Price TO, Uras F, Banks WA, Ercal N. A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells. Exp Neurol 2006; 201: 193-202.
[81]
Price TO, Ercal N, Nakaoke R, Banks WA. HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 2005; 1045: 57-63.
[82]
Chatterjee N, Callen S, Seigel GM, Buch SJ. HIV-1 Tat-mediated neurotoxicity in retinal cells. J Neuroimmune Pharmacol 2011; 6: 399-408.
[83]
Louboutin JP, Reyes BA, Agrawal L, Maxwell CR, Van Bockstaele EJ, Strayer DS. Blood-brain barrier abnormalities caused by exposure to HIV-1 gp120--protection by gene delivery of antioxidant enzymes. Neurobiol Dis 2010; 38(2): 313-25.
[84]
Hoffmann S, He S, Ehren M, Ryan SJ, Wiedemann P, Hinton DR. MMP-2 and MMP-9 secretion by rpe is stimulated by angiogenic molecules found in choroidal neovascular membranes. Retina 2006; 26: 454-61.
[85]
Lambert V, Wielockx B, Munaut C, et al. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J 2003; 17: 2290-2.
[86]
Singh D, Srivastava SK, Chaudhuri TK, Upadhyay G. Multifaceted role of matrix metalloproteinases (MMPs). Front Mol Biosci 2015; 2: 19.
[87]
Sporer B, Paul R, Koedel U, et al. Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J Infect Dis 1998; 178(3): 854-7.
[88]
Persidsky Y, Limoges J, Rasmussen J, Zheng J, Gearing A, Gendelman HE. Reduction in glial immunity and neuropathology by a PAF antagonist and an MMP and TNFalpha inhibitor in SCID mice with HIV-1 encephalitis. J Neuroimmunol 2001; 114: 57-68.
[89]
Rajashekhar G, Shivanna M, Kompella UB, Wang Y, Srinivas SP. Role of MMP-9 in the breakdown of barrier integrity of the corneal endothelium in response to TNF-alpha. Exp Eye Res 2014; 122: 77-85.
[90]
Xing Y, Shepherd N, Lan J, et al. MMPs/TIMPs imbalances in the peripheral blood and cerebrospinal fluid are associated with the pathogenesis of HIV-1-associated neurocognitive disorders. Brain Behav Immun 2017; 65: 161-72.
[91]
Tsai HC, Ye SY, Kunin CM, et al. Expression of matrix metalloproteinases and their tissue inhibitors in the serum and cerebrospinal fluid of patients with HIV-1 infection and syphilis or neurosyphilis. Cytokine 2011; 54(2): 109-16.
[92]
Gurney KJ, Estrada EY, Rosenberg GA. Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 2006; 23: 87-96.
[93]
Reijerkerk A, Kooij G, van der Pol SM, Khazen S, Dijkstra CD, de Vries HE. Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells. FASEB J 2006; 20: 2550-2.
[94]
Giebel SJ, Menicucci G, McGuire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 2005; 85: 597-607.
[95]
Steen B, Sejersen S, Berglin L, Seregard S, Kvanta A. Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1998; 39: 2194-200.
[96]
Runkle EA, Mu D. Tight junction proteins: from barrier to tumorigenesis. Cancer Lett 2013; 337: 41-8.
[97]
Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendelman HE, Persidsky Y. HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 2007; 27: 123-34.
[98]
Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 2011; 1399: 96-115.
[99]
Tan S, Duan H, Xun T, et al. HIV-1 impairs human retinal pigment epithelial barrier function: possible association with the pathogenesis of HIV-associated retinopathy. Laboratory investigation; a journal of technical methods and pathology 2014; 94: 777-87.
[100]
Gandhi N, Saiyed ZM, Napuri J. Interactive role of human immunodeficiency virus type 1 (HIV-1) clade-specific Tat protein and cocaine in blood-brain barrier dysfunction: implications for HIV-1-associated neurocognitive disorder. J Neurovirol 2010; 16(4): 294-305.
[101]
Kanmogne GD, Primeaux C, Grammas P. HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: implications for the pathogenesis of HIV-associated dementia. J Neuropathol Exp Neurol 2005; 64(6): 498-505.
[102]
Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW. Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 2011; 267: 109-23.
[103]
Wu DT, Woodman SE, Weiss JM, et al. Mechanisms of leukocyte trafficking into the CNS. J Neurovirol 2000; 6(Suppl. 1): S82-5.
[104]
Williams DW, Calderon TM, Lopez L, et al. Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLoS One 2013; 8: e69270.
[105]
Bai L, Zhu X, Ma T, et al. The p38 MAPK NF-kappaB pathway, not the ERK pathway, is involved in exogenous HIV-1 Tat-induced apoptotic cell death in retinal pigment epithelial cells. Int J Biochem Cell Biol 2013; 45(8): 1794-801.
[106]
Bai L, Zhang Z, Zhang H, et al.
HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: an
in vitro
study.
BMC Infect Dis 2008; 8: 77.
[107]
Heiden D, Tun N, Smithuis FN, et al. Active cytomegalovirus retinitis after the start of antiretroviral therapy. Br J Ophthalmol 2019; 103: 157-60.
[108]
Haile WB, Gavegnano C, Tao S, Jiang Y, Schinazi RF, Tyor WR. The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model Neurobiol Dis 2016; 92(Pt B): 137-43
[109]
Mahajan SD, Aalinkeel R, Law WC, et al. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 2012; 7: 5301-14.
[110]
Saiyed ZM, Gandhi NH, Nair MP. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomedicine 2010; 5: 157-66.
[111]
Ding H, Sagar V, Agudelo M, et al. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology 2014; 25(5): 055101.
[112]
Atluri V, Pilakka-Kanthikeel S, Samikkannu T, et al. Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: role of nicotine in progression of HIV-associated neurocognitive disorder. Mol Brain 2014; 7: 37.
[113]
Jayant RD, Atluri VS, Agudelo M, Sagar V, Kaushik A, Nair M. Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomedicine 2015; 10: 1077-93.
[114]
Dutta L, Mukherjee B, Chakraborty T, et al. Lipid-based nanocarrier efficiently delivers highly water soluble drug across the blood-brain barrier into brain. Drug Deliv 2018; 25(1): 504-16.
[115]
Roy U, Drozd V, Durygin A, et al. Characterization of Nanodiamond-based anti-HIV drug Delivery to the Brain. Sci Rep 2018; 8(1): 1603.
[116]
Schaftenaar E, Khosa NS, Baarsma GS, et al. HIV-infected individuals on long-term antiretroviral therapy are at higher risk for ocular disease. Epidemiol Infect 2017; 145(12): 2520-9.
[117]
Huang W, Eum SY, Andras IE, Hennig B, Toborek M. PPARalpha and PPARgamma attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. FASEB J 2009; 23: 1596-606.
[118]
Huang W, Chen L, Zhang B, Park M, Toborek M. PPAR agonist-mediated protection against HIV Tat-induced cerebrovascular toxicity is enhanced in MMP-9-deficient mice. J Cereb Blood Flow Metab 2014; 34(4): 646-53.
[119]
Ramirez SH, Heilman D, Morsey B, Potula R, Haorah J, Persidsky Y. Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) suppresses Rho GTPases in human brain microvascular endothelial cells and inhibits adhesion and transendothelial migration of HIV-1 infected monocytes. J Immunol 2008; 180(3): 1854-65.
[120]
Singh VB, Singh MV, Gorantla S, Poluektova LY, Maggirwar SB. Smoothened agonist reduces human immunodeficiency virus type-1-induced blood-brain barrier breakdown in humanized mice. Sci Rep 2016; 6: 26876.