Abstract
The recent widespread infection of COVID-19 in the entire world has created a pandemic situation with a serious health challenge to mankind. Numerous incidents of cardiovascular diseases were found among COVID-19 patients with a significantly high morbidity rate. Medication with several anticoagulant or blood thinner drugs are being performed on COVID-19 patients with atrial fibrillation and cardiovascular ailments to minimize the incidence of death. Warfarin is a widely used anticoagulant and cardiovascular drug prescribed as its sodium salt. S-Enantiomer is two to five times more active than R-enantiomer as an anticoagulant. Synthesis of enantiomerically pure warfarin is thus a rational and extremely important task. Organocatalyzed synthetic strategies may be considered as important avenues to produce optically pure warfarin in comparison to biocatalysis and chiral metal complex catalysis. Herein, a comprehensive review of the asymmetric organocatalyzed synthesis of warfarin catalyzed by diamine based organocatalysts, amino acidbased organocatalysts, quinine based organocatalysts, and proline derived organocatalysts in both aqueous and non-aqueous media has been discussed.
Keywords: COVID-19, cardiovascular diseases, anticoagulant, organocatalysis, warfarin synthesis, michael reaction, aqueous media, non-aqueous media.
Graphical Abstract
(b) Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; Brodie, D.; Beckman, J.A.; Kirtane, A.J.; Stone, G.W.; Krumholz, H.M.; Parikh, S.A. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J. Am. Coll. Cardiol., 2020, 75(18), 2352-2371.
(c) Fogerty, H.; Townsend, L.; Cheallaigh, C.N.; Bergin, C.; Martin-Loeches, I.; Browne, P.; Bacon, C.L.; Gaule, R.; Gillett, A.; Byrne, M.; Ryan, K.; O’Connell, N.; O’Sullivan, J.M.; Conlan, N.; O’Donnell, J.S. COVID-19 coagulopathy in Caucasian patients. Br. J. Haematol., 2020.
(d) Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
(e) Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(4), 844-847.
[http://dx.doi.org/10.1016/j.jacc.2020.03.031] [PMID: 32201335] [http://dx.doi.org/10.1111/bjh.16749] [http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076] [http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
(b) Atallah, B.; Mallah, S.I.; AlMahmeed, W. Anticoagulation in COVID-19. Eur. Heart J. Cardiovasc. Pharmacother., 2020, 6(4), 260-261.
(c) Kollias, A.; Kyriakoulis, K.G.; Dimakakos, E.; Poulakou, G.; Stergiou, G.S.; Syrigos, K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br. J. Haematol., 2020, 189(5), 846-847.
(d) Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy J. Thrombo. Haemost, 2020.
[http://dx.doi.org/10.1016/j.jacc.2020.05.001] [PMID: 32387623] [http://dx.doi.org/10.1093/ehjcvp/pvaa036] [PMID: 32352517] [http://dx.doi.org/10.1111/bjh.16727] [PMID: 32304577]
[http://dx.doi.org/10.1007/s10822-010-9335-7] [PMID: 20352297]
[http://dx.doi.org/10.1111/j.1365-2125.1978.tb01622.x] [PMID: 619952]
[http://dx.doi.org/10.1056/NEJM197608122950702] [PMID: 934223]
[http://dx.doi.org/10.1002/jps.2600720732] [PMID: 6886996]
[http://dx.doi.org/10.1002/jctb.3830]
[http://dx.doi.org/10.3987/COM-13-12714]
[http://dx.doi.org/10.1016/0040-4039(96)01796-0]
[http://dx.doi.org/10.1021/ol0619157] [PMID: 17020319]
[http://dx.doi.org/10.1016/j.tetlet.2010.05.074]
[http://dx.doi.org/10.3762/bjoc.9.18] [PMID: 23400419]
[http://dx.doi.org/10.1055/s-0029-1219936]
(b) Ghosh, A.; Bhowmick, S.; Mondal, A.; Garai, H.; Bhowmick, K.C. Advances on Asymmetric Organocatalyzed Mannich Reactions in Aqueous and Non-Aqueous Media. Curr. Organocatal., 2016, 3, 133-160.
(c) Mondal, A.; Bhowmick, S.; Ghosh, A.; Chanda, T.; Bhowmick, K.C. Advances on asymmetric organocatalytic 1, 4-conjugate addition reactions in aqueous and semi-aqueous media. Tetrahedron Asymmetry, 2017, 28, 849-875.
(d) Bhowmick, S.; Kunte, S.S.; Bhowmick, K.C. The Smallest Organocatalyst in Highly Enantioselective Direct Aldol Reaction in Wet Solvent-Free Conditions. RSC Advances, 2014, 4, 24311-24315.
(e) Bhowmick, S.; Kunte, S.S.; Bhowmick, K.C. A New Organocatalyst Derived from Abietic Acid and 4-Hydroxy-L-proline for Direct Asymmetric Aldol Reactions in Aqueous Media. Tetrahedron Asymmetry, 2014, 25, 1292-1297.
(f) Bhowmick, S.; Bhowmick, K.C. Catalytic asymmetric carbon–carbon bond-forming reactions in aqueous media. Tetrahedron Asymmetry, 2011, 22, 1945-1979.
(g) Bhowmick, K.C.; Bihani, M.; Zhao, J.C.G. Organocatalyzed Asymmetric Diels-Alder Reactions in Aqueous or Semi-Aqueous Media. Mini Rev. Org. Chem., 2018, 15, 3-19.
(h) Mondal, A.; Bhowmick, K.C. The carbamate esters as organocatalysts in asymmetric Michael addition reactions in aqueous media: when pyrrolidine backbone surpasses 1,2diaminocyclohexane. ARKIVOC, 2018, 320-331.
(i) Mondal, A.; Bhowmick, K.C. Asymmetric Direct Aldol Reaction Catalyzed by (1R, 2R)-(+)-1,2-Diammonium Cyclohexane-L-tartrate in Water. Curr. Organocatal., 2019, 6, 165-170.
(j) Berkessel, A.; Gröger, H. Asymmetric Organocatalysis From Biomimetic Concepts to Applications in Asymmetric Synthesis. Eds. Wiley-VCH, 2005. ISBN: 978-3-527-30517-9.
(k) Bhowmick, K.C.; Chanda, T. Chapter 12: Asymmetric Organocatalysis in Aqueous MediaGreen Techniques for Organic Synthesis and Medicinal Chemistry (2nd Ed.); Zhang, W.; Cue, B. W. Eds. John Wiley & Sons Ltd.: New Jersey, USA, 2018, pp. 291-324.
[http://dx.doi.org/10.1016/j.tetasy.2015.09.009] [http://dx.doi.org/10.2174/2213337202666150604232523] [http://dx.doi.org/10.1016/j.tetasy.2017.05.011] [http://dx.doi.org/10.1039/C4RA02690J] [http://dx.doi.org/10.1016/j.tetasy.2014.07.012] [http://dx.doi.org/10.1016/j.tetasy.2011.11.009] [http://dx.doi.org/10.2174/1570193X14666170518121235] [http://dx.doi.org/10.24820/ark.5550190.p010.692] [http://dx.doi.org/10.2174/2213337206666181227151140]
[http://dx.doi.org/10.1002/anie.200352136] [PMID: 14579449]
[http://dx.doi.org/10.1021/ol062000v] [PMID: 17078687]
[http://dx.doi.org/10.1016/j.tetlet.2011.01.054]
[http://dx.doi.org/10.1039/c1gc15118e]
[http://dx.doi.org/10.5012/bkcs.2012.33.6.1825]
[http://dx.doi.org/10.1039/c2ob26334c] [PMID: 22956019]
[http://dx.doi.org/10.1002/adsc.201200338]
[http://dx.doi.org/10.1016/j.tetasy.2014.04.008]
[http://dx.doi.org/10.1002/ejoc.201400045]
[http://dx.doi.org/10.3390/sym7031395]
[http://dx.doi.org/10.1039/C8OB01576G] [PMID: 30047554]
[http://dx.doi.org/10.1039/C7GC03626D]
[http://dx.doi.org/10.1002/ejoc.200900664]
[http://dx.doi.org/10.3987/COM-14-S(K)83]
[http://dx.doi.org/10.1021/ol062718a] [PMID: 17249775]
[http://dx.doi.org/10.1002/ejoc.200900831]
[http://dx.doi.org/10.1016/j.tetasy.2016.04.001]