Review Article

单克隆抗体,小分子抑制剂和抗体-药物偶联作为HER2抑制剂

卷 28, 期 17, 2021

发表于: 08 September, 2020

页: [3339 - 3360] 页: 22

弟呕挨: 10.2174/0929867327666200908112847

价格: $65

摘要

人类表皮生长因子受体(HER)-2的过表达在多种癌症中被发现,通常预示着较差的临床结果。因此,HER2是一个有吸引力的治疗靶点。本文综述了近年来HER2靶向抑制剂的研究进展。因此,我们重点研究了不同类型的抑制剂的发展、作用机制和构效关系,包括单克隆抗体、小分子抑制剂和抗体-药物偶联物(ADC)。此外,还比较了它们之间的差异。

关键词: HER2

[1]
Wells, A. EGF receptor. Int. J. Biochem. Cell Biol., 1999, 31(6), 637-643.
[http://dx.doi.org/10.1016/S1357-2725(99)00015-1] [PMID: 10404636]
[2]
Roskoski, R.Jr. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res., 2019, 139, 395-411.
[http://dx.doi.org/10.1016/j.phrs.2018.11.014] [PMID: 30500458]
[3]
Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J.A.R.P.; Dayam, R.; Neamati, N. Discovery of novel small-molecule inhibitors of human epidermal growth factor receptor-2: combined ligand and target-based approach. J. Med. Chem., 2008, 51(12), 3367-3377.
[http://dx.doi.org/10.1021/jm7013875] [PMID: 18500794]
[4]
Jones, J.T.; Akita, R.W.; Sliwkowski, M.X. Binding specificities and affinities of EGF domains for ErbB receptors. FEBS Lett., 1999, 447(2-3), 227-231.
[http://dx.doi.org/10.1016/S0014-5793(99)00283-5] [PMID: 10214951]
[5]
Yamamoto, T.; Ikawa, S.; Akiyama, T.; Semba, K.; Nomura, N.; Miyajima, N.; Saito, T.; Toyoshima, K. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature, 1986, 319(6050), 230-234.
[http://dx.doi.org/10.1038/319230a0] [PMID: 3003577]
[6]
Kreutzfeldt, J.; Rozeboom, B.; Dey, N.; De, P. The trastuzumab era: current and upcoming targeted HER2+ breast cancer therapies. Am. J. Cancer Res., 2020, 10(4), 1045-1067.
[PMID: 32368385]
[7]
Kulukian, A.; Lee, P.; Taylor, J.; Rosler, R.; de Vries, P.; Watson, D.; Forero-Torres, A.; Peterson, S. Preclinical activity of HER2-selective tyrosine kinase inhibitor tucatinib as a single agent or in combination with trastuzumab or docetaxel in solid tumor models. Mol. Cancer Ther., 2020, 19(4), 976-987.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0873] [PMID: 32241871]
[8]
Samanta, A.; LeVea, C.M.; Dougall, W.C.; Qian, X.; Greene, M.I. Ligand and p185c-neu density govern receptor interactions and tyrosine kinase activation. Proc. Natl. Acad. Sci. USA, 1994, 91(5), 1711-1715.
[http://dx.doi.org/10.1073/pnas.91.5.1711] [PMID: 7907421]
[9]
Garrett, T.P.J.; McKern, N.M.; Lou, M.; Elleman, T.C.; Adams, T.E.; Lovrecz, G.O.; Kofler, M.; Jorissen, R.N.; Nice, E.C.; Burgess, A.W.; Ward, C.W. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell, 2003, 11(2), 495-505.
[http://dx.doi.org/10.1016/S1097-2765(03)00048-0] [PMID: 12620236]
[10]
Battaglin, F.; Naseem, M.; Puccini, A.; Lenz, H-J. Molecular biomarkers in gastro-esophageal cancer: recent developments, current trends and future directions. Cancer Cell Int., 2018, 18, 99.
[http://dx.doi.org/10.1186/s12935-018-0594-z] [PMID: 30008616]
[11]
Geuna, E.; Montemurro, F.; Aglietta, M.; Valabrega, G. Potential of afatinib in the treatment of patients with HER2-positive breast cancer. Breast Cancer (Dove Med. Press), 2012, 4, 131-137.
[http://dx.doi.org/10.2147/BCTT.S25868]] [PMID: 24367201]
[12]
Feldinger, K.; Kong, A. Profile of neratinib and its potential in the treatment of breast cancer. Breast Cancer (Dove Med. Press), 2015, 7, 147-162.
[http://dx.doi.org/10.2147/BCTT.S54414]] [PMID: 26089701]
[13]
Molina-Garrido, M.J.; Guillen-Ponce, C.; Mora-Rufete, A. Targeted anti-HER2 cancer therapy in elderly women diagnosed with breast cancer. Anticancer. Agents Med. Chem., 2014, 14(5), 639-645.
[http://dx.doi.org/10.2174/18715206113139990087] [PMID: 23438846]
[14]
Rong, L.; Zhou, S.; Liu, X.; Li, A.; Jing, T.; Liu, X.; Zhang, Y.; Cai, S.; Tang, X. Trastuzumab-modified DM1-loaded nanoparticles for HER2+ breast cancer treatment: an in vitro and in vivo study. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1708-1718.
[http://dx.doi.org/10.1080/21691401.2017.1391821]] [PMID: 29069935]
[15]
Su, C-Y.; Chen, M.; Chen, L-C.; Ho, Y-S.; Ho, H-O.; Lin, S-Y.; Chuang, K-H.; Sheu, M-T. Bispecific antibodies (anti-mPEG/anti-HER2) for active tumor targeting of docetaxel (DTX)-loaded mPEGylated nanocarriers to enhance the chemotherapeutic efficacy of HER2-overexpressing tumors. Drug Deliv., 2018, 25(1), 1066-1079.
[http://dx.doi.org/10.1080/10717544.2018.1466936] [PMID: 29718725]
[16]
Varshosaz, J.; Davoudi, M.A.; Rasoul-Amini, S. Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (Herceptin) for HER2-positive breast cancer cells. J. Liposome Res., 2018, 28(4), 285-295.
[http://dx.doi.org/10.1080/08982104.2017.1370471] [PMID: 28826287]
[17]
Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]
[18]
Kumar, G.; Nandakumar, K.; Mutalik, S.; Rao, C.M. Biologicals to direct nanotherapeutics towards HER2-positive breast cancers. Nanomedicine (Lond.), 2020, 27102197
[http://dx.doi.org/10.1016/j.nano.2020.102197] [PMID: 32275958]
[19]
Cho, H-S.; Mason, K.; Ramyar, K.X.; Stanley, A.M.; Gabelli, S.B.; Denney, D.W. Jr; Leahy, D.J. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 2003, 421(6924), 756-760.
[http://dx.doi.org/10.1038/nature01392] [PMID: 12610629]
[20]
Franklin, M.C.; Carey, K.D.; Vajdos, F.F.; Leahy, D.J.; de Vos, A.M.; Sliwkowski, M.X. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell, 2004, 5(4), 317-328.
[http://dx.doi.org/10.1016/S1535-6108(04)00083-2] [PMID: 15093539]
[21]
Gonzalez-Alonso, P.; Cristobal, I.; Zazo, S.; Martin-Aparicio, E.; Chamizo, C.; Madoz-Gurpide, J.; Rovira, A.; Eroles, P.; Lluch, A.; Albanell, J.; Rojo, F. Recent insights into the development of preclinical trastuzumab- resistant HER2+ breast cancer models. Curr. Med. Chem., 2018, 25(17), 1976-1998.
[http://dx.doi.org/10.2174/0929867323666161216144659] [PMID: 27993109]
[22]
Yap, T.A.; Vidal, L.; Adam, J.; Stephens, P.; Spicer, J.; Shaw, H.; Ang, J.; Temple, G.; Bell, S.; Shahidi, M.; Uttenreuther-Fischer, M.; Stopfer, P.; Futreal, A.; Calvert, H.; de Bono, J.S.; Plummer, R. Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J. Clin. Oncol., 2010, 28(25), 3965-3972.
[http://dx.doi.org/10.1200/JCO.2009.26.7278] [PMID: 20679611]
[23]
Gonzales, A.J.; Hook, K.E.; Althaus, I.W.; Ellis, P.A.; Trachet, E.; Delaney, A.M.; Harvey, P.J.; Ellis, T.A.; Amato, D.M.; Nelson, J.M.; Fry, D.W.; Zhu, T.; Loi, C-M.; Fakhoury, S.A.; Schlosser, K.M.; Sexton, K.E.; Winters, R.T.; Reed, J.E.; Bridges, A.J.; Lettiere, D.J.; Baker, D.A.; Yang, J.; Lee, H.T.; Tecle, H.; Vincent, P.W. Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol. Cancer Ther., 2008, 7(7), 1880-1889.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2232] [PMID: 18606718]
[24]
Deng, S.; Lin, Z.; Li, W. Recent advances in antibody-drug conjugates for breast cancer treatment. Curr. Med. Chem., 2017, 24(23), 2505-2527.
[http://dx.doi.org/10.2174/0929867324666170530092350] [PMID: 28554322]
[25]
Chari, R.V.J.; Martell, B.A.; Gross, J.L.; Cook, S.B.; Shah, S.A.; Blättler, W.A.; McKenzie, S.J.; Goldmacher, V.S. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res., 1992, 52(1), 127-131.
[PMID: 1727373]
[26]
Fendly, B.M.; Winget, M.; Hudziak, R.M.; Lipari, M.T.; Napier, M.A.; Ullrich, A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res., 1990, 50(5), 1550-1558.
[PMID: 1689212]
[27]
Hudziak, R.M.; Lewis, G.D.; Winget, M.; Fendly, B.M.; Shepard, H.M.; Ullrich, A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol. Cell. Biol., 1989, 9(3), 1165-1172.
[http://dx.doi.org/10.1128/MCB.9.3.1165] [PMID: 2566907]
[28]
Carter, P.; Presta, L.; Gorman, C.M.; Ridgway, J.B.B.; Henner, D.; Wong, W.L.T.; Rowland, A.M.; Kotts, C.; Carver, M.E.; Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4285-4289.
[http://dx.doi.org/10.1073/pnas.89.10.4285] [PMID: 1350088]
[29]
Nahta, R.; Esteva, F.J. Herceptin: mechanisms of action and resistance. Cancer Lett., 2006, 232(2), 123-138.
[http://dx.doi.org/10.1016/j.canlet.2005.01.041]] [PMID: 16458110]
[30]
Baselga, J.; Albanell, J. Mechanism of action of anti-HER2 monoclonal antibodies. Ann. Oncol., 2001, 12(Suppl. 1), S35-S41.
[http://dx.doi.org/10.1093/annonc/12.suppl_1.S35] [PMID: 11521720]
[31]
Clynes, R.A.; Towers, T.L.; Presta, L.G.; Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med., 2000, 6(4), 443-446.
[http://dx.doi.org/10.1038/74704] [PMID: 10742152]
[32]
Ritter, C.A.; Perez-Torres, M.; Rinehart, C.; Guix, M.; Dugger, T.; Engelman, J.A.; Arteaga, C.L. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin. Cancer Res., 2007, 13(16), 4909-4919.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0701] [PMID: 17699871]
[33]
Zabrecky, J.R.; Lam, T.; McKenzie, S.J.; Carney, W. The extracellular domain of p185/neu is released from the surface of human breast carcinoma cells, SK-BR-3. J. Biol. Chem., 1991, 266(3), 1716-1720.
[PMID: 1671042]
[34]
Molina, M.A.; Codony-Servat, J.; Albanell, J.; Rojo, F.; Arribas, J.; Baselga, J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res., 2001, 61(12), 4744-4749.
[PMID: 11406546]
[35]
Izumi, Y.; Xu, L.; di Tomaso, E.; Fukumura, D.; Jain, R.K. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature, 2002, 416(6878), 279-280.
[http://dx.doi.org/10.1038/416279b] [PMID: 11907566]
[36]
Bornstein, P. Thrombospondins as matricellular modulators of cell function. J. Clin. Invest., 2001, 107(8), 929-934.
[http://dx.doi.org/10.1172/JCI12749] [PMID: 11306593]
[37]
Lane, H.A.; Motoyama, A.B.; Beuvink, I.; Hynes, N.E. Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling. Ann. Oncol., 2001, 12(Suppl. 1), S21-S22.
[http://dx.doi.org/10.1093/annonc/12.suppl_1.S21] [PMID: 11521716]
[38]
Nagata, Y.; Lan, K-H.; Zhou, X.; Tan, M.; Esteva, F.J.; Sahin, A.A.; Klos, K.S.; Li, P.; Monia, B.P.; Nguyen, N.T.; Hortobagyi, G.N.; Hung, M-C.; Yu, D. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 2004, 6(2), 117-127.
[http://dx.doi.org/10.1016/j.ccr.2004.06.022] [PMID: 15324695]
[39]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[40]
Zhang, H.; Samanta, A.; Nagai, Y.; Tsuchiya, H.; Ohtani, T.; Cai, Z.; Zhu, Z.; Liu, J.; Greene, M.I. Monoclonal antibodies for cancer therapy and prevention: paradigm studies in targeting the neu/ERBB2/HER2 oncoprotein. Cancer Immunotherapy, 2nd ed; Academic Press: San Diego, 2013, pp. 207-222.
[http://dx.doi.org/10.1016/B978-0-12-394296-8.00014-2]
[41]
Christianson, T.A.; Doherty, J.K.; Lin, Y.J.; Ramsey, E.E.; Holmes, R.; Keenan, E.J.; Clinton, G.M. NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res., 1998, 58(22), 5123-5129.
[PMID: 9823322]
[42]
Chan, J.M.; Stampfer, M.J.; Giovannucci, E.; Gann, P.H.; Ma, J.; Wilkinson, P.; Hennekens, C.H.; Pollak, M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science, 1998, 279(5350), 563-566.
[http://dx.doi.org/10.1126/science.279.5350.563] [PMID: 9438850]
[43]
Lu, Y.; Zi, X.; Zhao, Y.; Mascarenhas, D.; Pollak, M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J. Natl. Cancer Inst., 2001, 93(24), 1852-1857.
[http://dx.doi.org/10.1093/jnci/93.24.1852] [PMID: 11752009]
[44]
Takai, N.; Jain, A.; Kawamata, N.; Popoviciu, L.M.; Said, J.W.; Whittaker, S.; Miyakawa, I.; Agus, D.B.; Koeffler, H.P. 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth. Cancer, 2005, 104(12), 2701-2708.
[http://dx.doi.org/10.1002/cncr.21533] [PMID: 16265675]
[45]
Adams, C.W.; Allison, D.E.; Flagella, K.; Presta, L.; Clarke, J.; Dybdal, N.; McKeever, K.; Sliwkowski, M.X. Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol. Immunother., 2006, 55(6), 717-727.
[http://dx.doi.org/10.1007/s00262-005-0058-x] [PMID: 16151804]
[46]
Harbeck, N.; Beckmann, M.W.; Rody, A.; Schneeweiss, A.; Müller, V.; Fehm, T.; Marschner, N.; Gluz, O.; Schrader, I.; Heinrich, G.; Untch, M.; Jackisch, C. HER2 dimerization inhibitor pertuzumab - mode of action and clinical data in breast cancer. Breast Care (Basel), 2013, 8(1), 49-55.
[http://dx.doi.org/10.1159/000346837] [PMID: 24715843]
[47]
Baselga, J. A new anti-ErbB2 strategy in the treatment of cancer: prevention of ligand-dependent ErbB2 receptor heterodimerization. Cancer Cell, 2002, 2(2), 93-95.
[http://dx.doi.org/10.1016/S1535-6108(02)00098-3] [PMID: 12204526]
[48]
Agus, D.B.; Akita, R.W.; Fox, W.D.; Lewis, G.D.; Higgins, B.; Pisacane, P.I.; Lofgren, J.A.; Tindell, C.; Evans, D.P.; Maiese, K.; Scher, H.I.; Sliwkowski, M.X. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2002, 2(2), 127-137.
[http://dx.doi.org/10.1016/S1535-6108(02)00097-1] [PMID: 12204533]
[49]
Capelan, M.; Pugliano, L.; De Azambuja, E.; Bozovic, I.; Saini, K.S.; Sotiriou, C.; Loi, S.; Piccart-Gebhart, M.J. Pertuzumab: new hope for patients with HER2-positive breast cancer. Ann. Oncol., 2013, 24(2), 273-282.
[http://dx.doi.org/10.1093/annonc/mds328] [PMID: 22910839]
[50]
Mazzotta, M.; Krasniqi, E.; Barchiesi, G.; Pizzuti, L.; Tomao, F.; Barba, M.; Vici, P. Long-term safety and real-world effectiveness of trastuzumab in breast cancer. J. Clin. Med., 2019, 8(2), 254.
[http://dx.doi.org/10.3390/jcm8020254] [PMID: 30781624]
[51]
Ward, W.H.J.; Cook, P.N.; Slater, A.M.; Davies, D.H.; Holdgate, G.A.; Green, L.R. Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem. Pharmacol., 1994, 48(4), 659-666.
[http://dx.doi.org/10.1016/0006-2952(94)90042-6] [PMID: 8080438]
[52]
Cockerill, S.; Stubberfield, C.; Stables, J.; Carter, M.; Guntrip, S.; Smith, K.; McKeown, S.; Shaw, R.; Topley, P.; Thomsen, L.; Affleck, K.; Jowett, A.; Hayes, D.; Willson, M.; Woollard, P.; Spalding, D. Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and C-erbB-2. Bioorg. Med. Chem. Lett., 2001, 11(11), 1401-1405.
[http://dx.doi.org/10.1016/S0960-894X(01)00219-0] [PMID: 11378364]
[53]
Rusnak, D.W.; Affleck, K.; Cockerill, S.G.; Stubberfield, C.; Harris, R.; Page, M.; Smith, K.J.; Guntrip, S.B.; Carter, M.C.; Shaw, R.J.; Jowett, A.; Stables, J.; Topley, P.; Wood, E.R.; Brignola, P.S.; Kadwell, S.H.; Reep, B.R.; Mullin, R.J.; Alligood, K.J.; Keith, B.R.; Crosby, R.M.; Murray, D.M.; Knight, W.B.; Gilmer, T.M.; Lackey, K. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res., 2001, 61(19), 7196-7203.
[PMID: 11585755]
[54]
Rusnak, D.W.; Lackey, K.; Affleck, K.; Wood, E.R.; Alligood, K.J.; Rhodes, N.; Keith, B.R.; Murray, D.M.; Knight, W.B.; Mullin, R.J.; Gilmer, T.M. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther., 2001, 1(2), 85-94.
[PMID: 12467226]
[55]
Cockerill, G.S.; Lackey, K.E. Small molecule inhibitors of the class 1 receptor tyrosine kinase family. Curr. Top. Med. Chem., 2002, 2(9), 1001-1010.
[http://dx.doi.org/10.2174/1568026023393309] [PMID: 12171567]
[56]
Petrov, K.G.; Zhang, Y-M.; Carter, M.; Cockerill, G.S.; Dickerson, S.; Gauthier, C.A.; Guo, Y.; Mook, R.A., Jr; Rusnak, D.W.; Walker, A.L.; Wood, E.R.; Lackey, K.E. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series. Bioorg. Med. Chem. Lett., 2006, 16(17), 4686-4691.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.090] [PMID: 16777410]
[57]
Rewcastle, G.W.; Denny, W.A.; Bridges, A.J.; Zhou, H.; Cody, D.R.; McMichael, A.; Fry, D.W. Tyrosine kinase inhibitors. 5. Synthesis and structure-activity relationships for 4-[(phenylmethyl)amino]- and 4-(phenylamino)quinazoli-nes as potent adenosine 5′-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor. J. Med. Chem., 1995, 38(18), 3482-3487.
[http://dx.doi.org/10.1021/jm00018a008] [PMID: 7658435]
[58]
Gaul, M.D.; Guo, Y.; Affleck, K.; Cockerill, G.S.; Gilmer, T.M.; Griffin, R.J.; Guntrip, S.; Keith, B.R.; Knight, W.B.; Mullin, R.J.; Murray, D.M.; Rusnak, D.W.; Smith, K.; Tadepalli, S.; Wood, E.R.; Lackey, K. Discovery and biological evaluation of potent dual ErbB-2/EGFR tyrosine kinase inhibitors: 6-thiazolylquinazolines. Bioorg. Med. Chem. Lett., 2003, 13(4), 637-640.
[http://dx.doi.org/10.1016/S0960-894X(02)01047-8] [PMID: 12639547]
[59]
Zhang, Y-M.; Cockerill, S.; Guntrip, S.B.; Rusnak, D.; Smith, K.; Vanderwall, D.; Wood, E.; Lackey, K. Synthesis and SAR of potent EGFR/erbB2 dual inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(1), 111-114.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.010] [PMID: 14684309]
[60]
Minami, Y.; Shimamura, T.; Shah, K.; LaFramboise, T.; Glatt, K.A.; Liniker, E.; Borgman, C.L.; Haringsma, H.J.; Feng, W.; Weir, B.A.; Lowell, A.M.; Lee, J.C.; Wolf, J.; Shapiro, G.I.; Wong, K.K.; Meyerson, M.; Thomas, R.K. The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272. Oncogene, 2007, 26(34), 5023-5027.
[http://dx.doi.org/10.1038/sj.onc.1210292] [PMID: 17311002]
[61]
Wissner, A.; Mansour, T. S. The development of HKI-272 and related compounds for the treatment of cancer. Arch. Pharm. (Weinheim, Ger.), 2008, 341(8), 465-77..
[http://dx.doi.org/10.1002/ardp.200800009] [PMID: 18493974]
[62]
Kwak, E.L.; Sordella, R.; Bell, D.W.; Godin-Heymann, N.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Driscoll, D.R.; Fidias, P.; Lynch, T.J.; Rabindran, S.K.; McGinnis, J.P.; Wissner, A.; Sharma, S.V.; Isselbacher, K.J.; Settleman, J.; Haber, D.A. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl. Acad. Sci. USA, 2005, 102(21), 7665-7670.
[http://dx.doi.org/10.1073/pnas.0502860102] [PMID: 15897464]
[63]
Singh, J.; Dobrusin, E.M.; Fry, D.W.; Haske, T.; Whitty, A.; McNamara, D.J. Structure-based design of a potent, selective, and irreversible inhibitor of the catalytic domain of the erbB receptor subfamily of protein tyrosine kinases. J. Med. Chem., 1997, 40(7), 1130-1135.
[http://dx.doi.org/10.1021/jm960380s] [PMID: 9089334]
[64]
Fry, D.W.; Bridges, A.J.; Denny, W.A.; Doherty, A.; Greis, K.D.; Hicks, J.L.; Hook, K.E.; Keller, P.R.; Leopold, W.R.; Loo, J.A.; McNamara, D.J.; Nelson, J.M.; Sherwood, V.; Smaill, J.B.; Trumpp-Kallmeyer, S.; Dobrusin, E.M. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 12022-12027.
[http://dx.doi.org/10.1073/pnas.95.20.12022] [PMID: 9751783]
[65]
Fry, D.W. Site-directed irreversible inhibitors of the erbB family of receptor tyrosine kinases as novel chemotherapeutic agents for cancer. Anticancer Drug Des., 2000, 15(1), 3-16.
[PMID: 10888032]
[66]
Singh, J.; Petter, R.C.; Baillie, T.A.; Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov., 2011, 10(4), 307-317.
[http://dx.doi.org/10.1038/nrd3410] [PMID: 21455239]
[67]
Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; Rettig, W.J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K.K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene, 2008, 27(34), 4702-4711.
[http://dx.doi.org/10.1038/onc.2008.109] [PMID: 18408761]
[68]
Yu, H.A.; Riely, G.J. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in lung cancers. J. Natl. Compr. Canc. Netw., 2013, 11(2), 161-169.
[http://dx.doi.org/10.6004/jnccn.2013.0024] [PMID: 23411383]
[69]
Solca, F.; Dahl, G.; Zoephel, A.; Bader, G.; Sanderson, M.; Klein, C.; Kraemer, O.; Himmelsbach, F.; Haaksma, E.; Adolf, G.R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J. Pharmacol. Exp. Ther., 2012, 343(2), 342-350.
[http://dx.doi.org/10.1124/jpet.112.197756] [PMID: 22888144]
[70]
Tsou, H-R.; Mamuya, N.; Johnson, B.D.; Reich, M.F.; Gruber, B.C.; Ye, F.; Nilakantan, R.; Shen, R.; Discafani, C.; DeBlanc, R.; Davis, R.; Koehn, F.E.; Greenberger, L.M.; Wang, Y-F.; Wissner, A. 6-Substituted-4-(3-bromophenylamino)quinazolines as putative irreversible inhibitors of the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER-2) tyrosine kinases with enhanced antitumor activity. J. Med. Chem., 2001, 44(17), 2719-2734.
[http://dx.doi.org/10.1021/jm0005555] [PMID: 11495584]
[71]
Wissner, A.; Berger, D.M.; Boschelli, D.H.; Floyd, M.B. Jr.; Greenberger, L.M.; Gruber, B.C.; Johnson, B.D.; Mamuya, N.; Nilakantan, R.; Reich, M.F.; Shen, R.; Tsou, H-R.; Upeslacis, E.; Wang, Y.F.; Wu, B.; Ye, F.; Zhang, N. 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors. J. Med. Chem., 2000, 43(17), 3244-3256.
[http://dx.doi.org/10.1021/jm000206a] [PMID: 10966743]
[72]
Wissner, A.; Overbeek, E.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Mamuya, N.; Rosfjord, E.C.; Discafani, C.; Davis, R.; Shi, X.; Rabindran, S.K.; Gruber, B.C.; Ye, F.; Hallett, W.A.; Nilakantan, R.; Shen, R.; Wang, Y-F.; Greenberger, L.M.; Tsou, H-R. Synthesis and structure-activity relationships of 6,7-disubstituted 4-anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2). J. Med. Chem., 2003, 46(1), 49-63.
[http://dx.doi.org/10.1021/jm020241c] [PMID: 12502359]
[73]
Tsou, H-R.; Overbeek-Klumpers, E.G.; Hallett, W.A.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Michalak, R.S.; Nilakantan, R.; Discafani, C.; Golas, J.; Rabindran, S.K.; Shen, R.; Shi, X.; Wang, Y-F.; Upeslacis, J.; Wissner, A. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J. Med. Chem., 2005, 48(4), 1107-1131.
[http://dx.doi.org/10.1021/jm040159c] [PMID: 15715478]
[74]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H-R.; Wang, Y-F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868] [PMID: 15173008]
[75]
Li, X.; Yang, C.; Wan, H.; Zhang, G.; Feng, J.; Zhang, L.; Chen, X.; Zhong, D.; Lou, L.; Tao, W.; Zhang, L. Discovery and development of pyrotinib: a novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci., 2017, 110, 51-61.
[http://dx.doi.org/10.1016/j.ejps.2017.01.021] [PMID: 28115222]
[76]
Eichhorn, P.J.A.; Gili, M.; Scaltriti, M.; Serra, V.; Guzman, M.; Nijkamp, W.; Beijersbergen, R.L.; Valero, V.; Seoane, J.; Bernards, R.; Baselga, J. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res., 2008, 68(22), 9221-9230.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1740] [PMID: 19010894]
[77]
Liu, L.; Greger, J.; Shi, H.; Liu, Y.; Greshock, J.; Annan, R.; Halsey, W.; Sathe, G.M.; Martin, A-M.; Gilmer, T.M. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res., 2009, 69(17), 6871-6878.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4490] [PMID: 19671800]
[78]
Chen, C-T.; Kim, H.; Liska, D.; Gao, S.; Christensen, J.G.; Weiser, M.R. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol. Cancer Ther., 2012, 11(3), 660-669.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0754] [PMID: 22238368]
[79]
Trowe, T.; Boukouvala, S.; Calkins, K.; Cutler, R.E., Jr; Fong, R.; Funke, R.; Gendreau, S.B.; Kim, Y.D.; Miller, N.; Woolfrey, J.R.; Vysotskaia, V.; Yang, J.P.; Gerritsen, M.E.; Matthews, D.J.; Lamb, P.; Heuer, T.S. EXEL-7647 inhibits mutant forms of ErbB2 associated with lapatinib resistance and neoplastic transformation. Clin. Cancer Res., 2008, 14(8), 2465-2475.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4367] [PMID: 18413839]
[80]
Xu, X.; De Angelis, C.; Burke, K.A.; Nardone, A.; Hu, H.; Qin, L.; Veeraraghavan, J.; Sethunath, V.; Heiser, L.M.; Wang, N.; Ng, C.K.Y.; Chen, E.S.; Renwick, A.; Wang, T.; Nanda, S.; Shea, M.; Mitchell, T.; Rajendran, M.; Waters, I.; Zabransky, D.J.; Scott, K.L.; Gutierrez, C.; Nagi, C.; Geyer, F.C.; Chamness, G.C.; Park, B.H.; Shaw, C.A.; Hilsenbeck, S.G.; Rimawi, M.F.; Gray, J.W.; Weigelt, B.; Reis-Filho, J.S.; Osborne, C.K.; Schiff, R. HER2 reactivation through acquisition of the HER2 L755S mutation as a mechanism of acquired resistance to HER2-targeted therapy in HER2+ breast cancer. Clin. Cancer Res., 2017, 23(17), 5123-5134.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2191] [PMID: 28487443]
[81]
Rao, G-W.; Guo, Y-M.; Hu, W-X. Synthesis, structure analysis, and antitumor evaluation of 3,6-dimethyl-1,2,4,5-tetrazine-1,4-dicarboxamide derivatives. ChemMedChem, 2012, 7(6), 973-976.
[http://dx.doi.org/10.1002/cmdc.201200109] [PMID: 22539490]
[82]
Rao, G-W.; Wang, C.; Wang, J.; Zhao, Z-G.; Hu, W-X. Synthesis, structure analysis, antitumor evaluation and 3D-QSAR studies of 3,6-disubstituted-dihydro-1,2,4,5-tetrazine derivatives. Bioorg. Med. Chem. Lett., 2013, 23(23), 6474-6480.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.036] [PMID: 24120541]
[83]
ssRao, G-W.; Xu, G-J.; Wang, J.; Jiang, X-L.; Li, H-B. Synthesis, antitumor evaluation and docking study of novel 4-anilinoquinazoline derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. ChemMedChem, 2013, 8(6), 928-933.
[http://dx.doi.org/10.1002/cmdc.201300120] [PMID: 23640754]
[84]
Das, D.; Hong, J. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur. J. Med. Chem., 2019, 170, 55-72.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.004] [PMID: 30878832]
[85]
Das, D.; Xie, L.; Wang, J.; Shi, J.; Hong, J. In vivo efficacy studies of novel quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors, in lung cancer xenografts (NCI-H1975) mice models. Bioorg. Chem., 2020, 99103790
[http://dx.doi.org/10.1016/j.bioorg.2020.103790] [PMID: 32279037]
[86]
Das, D.; Xie, L.; Wang, J.; Xu, X.; Zhang, Z.; Shi, J.; Le, X.; Hong, J. Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities - Part 1. Bioorg. Med. Chem. Lett., 2019, 29(4), 591-596.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.056] [PMID: 30600209]
[87]
TYKERB® (lapatinib) . Available at:. https://www. accessdata.fda.gov/drugsatfda_docs/label/2007/022059s001lbl.pdf(Accessed date: 13 March, 2007).
[88]
TUKYSATM (tucatinib). Available at:. https://www. accessdata.fda.gov/drugsatfda_docs/label/2020/213411s000lbl.pdf(Accessed date: 17 April, 2020).
[89]
GILOTRIF™ (afatinib) . Available at: . https://www. accessdata.fda.gov/drugsatfda_docs/label/2013/201292s000lbl.pdf(Accessed date: 12 July, 2013).
[90]
NERLYNX (neratinib). Available at:. https://www. accessdata.fda.gov/drugsatfda_docs/label/2017/208051s000lbl.pdf(Accessed date: 17 July, 2017).
[91]
VIZIMPRO® (dacomitinib). Available at:. https://www. accessdata.fda.gov/drugsatfda_docs/label/2018/211288s000lbl.pdf(Accessed date: 27 September,2018).
[92]
Calce, E.; Monfregola, L.; Saviano, M.; De Luca, S. HER2-mediated anticancer drug delivery: strategies to prepare targeting ligands highly specific for the receptor. Curr. Med. Chem., 2015, 22(21), 2525-2538.
[http://dx.doi.org/10.2174/0929867322666150521091103] [PMID: 25994863]
[93]
Barok, M.; Joensuu, H.; Isola, J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res., 2014, 16(2), 209.
[http://dx.doi.org/10.1186/bcr3621] [PMID: 24887180]
[94]
Hurvitz, S.A.; Kakkar, R. The potential for trastuzumab emtansine in human epidermal growth factor receptor 2 positive metastatic breast cancer: latest evidence and ongoing studies. Ther. Adv. Med. Oncol., 2012, 4(5), 235-245.
[http://dx.doi.org/10.1177/1758834012451205] [PMID: 22942906]
[95]
Lambert, J.M.; Chari, R.V.J. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem., 2014, 57(16), 6949-6964.
[http://dx.doi.org/10.1021/jm500766w] [PMID: 24967516]
[96]
Ballantyne, A.; Dhillon, S. Trastuzumab emtansine: first global approval. Drugs, 2013, 73(7), 755-765.
[http://dx.doi.org/10.1007/s40265-013-0050-2] [PMID: 23620199]
[97]
Poon, K.A.; Flagella, K.; Beyer, J.; Tibbitts, J.; Kaur, S.; Saad, O.; Yi, J-H.; Girish, S.; Dybdal, N.; Reynolds, T. Preclinical safety profile of trastuzumab emtansine (T-DM1): mechanism of action of its cytotoxic component retained with improved tolerability. Toxicol. Appl. Pharmacol., 2013, 273(2), 298-313.
[http://dx.doi.org/10.1016/j.taap.2013.09.003] [PMID: 24035823]
[98]
Junttila, T.T.; Li, G.; Parsons, K.; Phillips, G.L.; Sliwkowski, M.X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat., 2011, 128(2), 347-356.
[http://dx.doi.org/10.1007/s10549-010-1090-x] [PMID: 20730488]
[99]
Chari, R.V.J. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc. Chem. Res., 2008, 41(1), 98-107.
[http://dx.doi.org/10.1021/ar700108g] [PMID: 17705444]
[100]
Flygare, J.A.; Pillow, T.H.; Aristoff, P. Antibody-drug conjugates for the treatment of cancer. Chem. Biol. Drug Des., 2013, 81(1), 113-121.
[http://dx.doi.org/10.1111/cbdd.12085] [PMID: 23253133]
[101]
Burke, P.J.; Senter, P.D.; Meyer, D.W.; Miyamoto, J.B.; Anderson, M.; Toki, B.E.; Manikumar, G.; Wani, M.C.; Kroll, D.J.; Jeffrey, S.C. Design, synthesis, and biological evaluation of antibody-drug conjugates comprised of potent camptothecin analogues. Bioconjug. Chem., 2009, 20(6), 1242-1250.
[http://dx.doi.org/10.1021/bc9001097] [PMID: 19469529]
[102]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; Wong, W.L.T.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[103]
Burris, H.A. III. Trastuzumab emtansine: a novel antibody-drug conjugate for HER2-positive breast cancer. Expert Opin. Biol. Ther., 2011, 11(6), 807-819.
[http://dx.doi.org/10.1517/14712598.2011.580273] [PMID: 21506905]
[104]
Kupchan, S.M.; Komoda, Y.; Court, W.A.; Thomas, G.J.; Smith, R.M.; Karim, A.; Gilmore, C.J.; Haltiwanger, R.C.; Bryan, R.F. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J. Am. Chem. Soc., 1972, 94(4), 1354-1356.
[http://dx.doi.org/10.1021/ja00759a054] [PMID: 5062169]
[105]
Barok, M.; Tanner, M.; Köninki, K.; Isola, J. Trastuzumab-DM1 causes tumour growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. Breast Cancer Res., 2011, 13(2), R46.
[http://dx.doi.org/10.1186/bcr2868] [PMID: 21510863]
[106]
Erickson, H.K.; Park, P.U.; Widdison, W.C.; Kovtun, Y.V.; Garrett, L.M.; Hoffman, K.; Lutz, R.J.; Goldmacher, V.S.; Blättler, W.A. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res., 2006, 66(8), 4426-4433.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4489] [PMID: 16618769]
[107]
Erickson, H.K.; Widdison, W.C.; Mayo, M.F.; Whiteman, K.; Audette, C.; Wilhelm, S.D.; Singh, R. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug. Chem., 2010, 21(1), 84-92.
[http://dx.doi.org/10.1021/bc900315y] [PMID: 19891424]
[108]
Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; Hirai, T.; Atsumi, R.; Nakada, T.; Hayakawa, I.; Abe, Y.; Agatsuma, T. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res., 2016, 22(20), 5097-5108.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2822] [PMID: 27026201]
[109]
Nakada, T.; Sugihara, K.; Jikoh, T.; Abe, Y.; Agatsuma, T. The latest research and development into the antibody-drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chem. Pharm. Bull. (Tokyo), 2019, 67(3), 173-185.
[http://dx.doi.org/10.1248/cpb.c18-00744] [PMID: 30827997]
[110]
Doi, T.; Shitara, K.; Naito, Y.; Shimomura, A.; Fujiwara, Y.; Yonemori, K.; Shimizu, C.; Shimoi, T.; Kuboki, Y.; Matsubara, N.; Kitano, A.; Jikoh, T.; Lee, C.; Fujisaki, Y.; Ogitani, Y.; Yver, A.; Tamura, K. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol., 2017, 18(11), 1512-1522.
[http://dx.doi.org/10.1016/S1470-2045(17)30604-6] [PMID: 29037983]
[111]
Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; Harrenga, A.; Hauff, P.; Scholle, F-D.; Müller-Tiemann, B.; Kreft, B.; Ziegelbauer, K. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther., 2014, 13(6), 1537-1548.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0926] [PMID: 24714131]
[112]
Widdison, W.C.; Ponte, J.F.; Coccia, J.A.; Lanieri, L.; Setiady, Y.; Dong, L.; Skaletskaya, A.; Hong, E.E.; Wu, R.; Qiu, Q.; Singh, R.; Salomon, P.; Fishkin, N.; Harris, L.; Maloney, E.K.; Kovtun, Y.; Veale, K.; Wilhelm, S.D.; Audette, C.A.; Costoplus, J.A.; Chari, R.V.J. Development of anilino-maytansinoid ADCs that efficiently release cytotoxic metabolites in cancer cells and induce high levels of bystander killing. Bioconjug. Chem., 2015, 26(11), 2261-2278.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00430] [PMID: 26355774]
[113]
Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci., 2016, 107(7), 1039-1046.
[http://dx.doi.org/10.1111/cas.12966] [PMID: 27166974]
[114]
Shiose, Y.; Ochi, Y.; Kuga, H.; Yamashita, F.; Hashida, M. Relationship between drug release of DE-310, macromolecular prodrug of DX-8951f, and cathepsins activity in several tumors. Biol. Pharm. Bull., 2007, 30(12), 2365-2370.
[http://dx.doi.org/10.1248/bpb.30.2365] [PMID: 18057727]
[115]
Nakada, T.; Masuda, T.; Naito, H.; Yoshida, M.; Ashida, S.; Morita, K.; Miyazaki, H.; Kasuya, Y.; Ogitani, Y.; Yamaguchi, J.; Abe, Y.; Honda, T. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg. Med. Chem. Lett., 2016, 26(6), 1542-1545.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.020] [PMID: 26898815]
[116]
Rinnerthaler, G.; Gampenrieder, S.P.; Greil, R. HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int. J. Mol. Sci., 2019, 20(5), 1115.
[http://dx.doi.org/10.3390/ijms20051115] [PMID: 30841523]
[117]
Kumazawa, E.; Jimbo, T.; Ochi, Y.; Tohgo, A. Potent and broad antitumor effects of DX-8951f, a water-soluble camptothecin derivative, against various human tumors xenografted in nude mice. Cancer Chemother. Pharmacol., 1998, 42(3), 210-220.
[http://dx.doi.org/10.1007/s002800050807] [PMID: 9685056]
[118]
Nagai, Y.; Oitate, M.; Shiozawa, H.; Ando, O. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica, 2019, 49(9), 1086-1096.
[http://dx.doi.org/10.1080/00498254.2018.1531158] [PMID: 30351177]
[119]
Iwata, T.N.; Ishii, C.; Ishida, S.; Ogitani, Y.; Wada, T.; Agatsuma, T.A. HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol. Cancer Ther., 2018, 17(7), 1494-1503.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0749] [PMID: 29703841]
[120]
Iwata, T.N.; Sugihara, K.; Wada, T.; Agatsuma, T. [Fam-] trastuzumab deruxtecan (DS-8201a)-induced antitumor immunity is facilitated by the anti-CTLA-4 antibody in a mouse model. PLoS One, 2019, 14(10)e0222280
[http://dx.doi.org/10.1371/journal.pone.0222280] [PMID: 31574081]
[121]
Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N.Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C.R.; Nohadani, M.; Eklund, A.C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P.A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 2012, 366(10), 883-892.
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[122]
Wang, H.; Wang, W.; Xu, Y.; Yang, Y.; Chen, X.; Quan, H.; Lou, L. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci., 2017, 108(7), 1458-1468.
[http://dx.doi.org/10.1111/cas.13253] [PMID: 28388007]
[123]
Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov., 2017, 16(5), 315-337.
[http://dx.doi.org/10.1038/nrd.2016.268] [PMID: 28303026]
[124]
Austin, C.D.; De Mazière, A.M.; Pisacane, P.I.; van Dijk, S.M.; Eigenbrot, C.; Sliwkowski, M.X.; Klumperman, J.; Scheller, R.H. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol. Biol. Cell, 2004, 15(12), 5268-5282.
[http://dx.doi.org/10.1091/mbc.e04-07-0591] [PMID: 15385631]
[125]
Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010, 10(3), 194-204.
[http://dx.doi.org/10.1038/nrc2803] [PMID: 20147901]
[126]
Takegawa, N.; Nonagase, Y.; Yonesaka, K.; Sakai, K.; Maenishi, O.; Ogitani, Y.; Tamura, T.; Nishio, K.; Nakagawa, K.; Tsurutani, J. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int. J. Cancer, 2017, 141(8), 1682-1689.
[http://dx.doi.org/10.1002/ijc.30870] [PMID: 28677116]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy