Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Systematic Review Article

Association between the Use of Inhaled Corticosteroids and Pulmonary Nontuberculous Mycobacterial Infection: A Systematic Review

Author(s): Mahnaz Mozdourian and Rozita Khodashahi*

Volume 16, Issue 2, 2020

Page: [113 - 122] Pages: 10

DOI: 10.2174/1573398X16999200901185724

Price: $65

conference banner
Abstract

The incidence of nontuberculous mycobacterial (NTM) pulmonary disease has increased in recent years. It seems that patients with structural lung diseases treated with inhaled corticosteroids (ICS) are at risk of pulmonary NTM infection. This systematic review investigated the articles focused on the association between the use of ICS and pulmonary NTM infection. The current study assessed four categories, namely the association between the use of ICS therapy and NTM infections, bacterial factors involved in the incidence of NTM infection in patients undergoing ICS therapy, the relationship between dosage and long-term use of ICS therapy in the incidence of NTM infection, and main risk factors of the incidence of NTM infection in patients undergoing ICS therapy. Based on the obtained results of the present study, there was an association between the use of ICS therapy and NTM infections. It seems that ICS increases the risk of NTM infection by 1.8 to 8 times. Accordingly, 40-90% of patients with NTM had a history of ICS usage. Mycobacterium avium complex was the most common bacterial factor in NTM patients undergoing ICS therapy. The relationship between a higher dosage of ICS therapy and an increased risk of NTM was confirmed in the majority of the studies. Age, gender, smoking history, and underlying diseases are the main risk factors for the incidence of NTM in patients receiving ICS therapy.

Keywords: Asthma, inhaled corticosteroids use, mycobacterium avium complex, mycobacterium infections, nontuberculous, therapeutic strategy.

Graphical Abstract

[1]
Rabe KFHS, Hurd S, Anzueto A, et al. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2007; 176(6): 532-55.
[http://dx.doi.org/10.1164/rccm.200703-456SO]
[2]
Hojo M, Iikura M, Hirano S, Sugiyama H, Kobayashi N, Kudo K. Increased risk of nontuberculous mycobacterial infection in asthmatic patients using long-term inhaled corticosteroid therapy. Respirology 2012; 17(1): 185-90.
[http://dx.doi.org/10.1111/j.1440-1843.2011.02076.x]
[3]
Boulet L-P, Reddel HK, Bateman E, Pedersen S, FitzGerald JM, O’Byrne PM. The global initiative for asthma (GINA): 25 years later. Eur Respir J 2019; 54(2): 1900598.
[http://dx.doi.org/10.1183/13993003.00598-2019]
[4]
Winthrop KL, McNelley E, Kendall B, et al. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging public health disease. Am J Respir Crit Care Med 2010; 182(7): 977-82.
[http://dx.doi.org/10.1164/rccm.201003-0503OC]
[5]
Andréjak C, Thomsen VØ, Johansen IS, et al. Nontuberculous pulmonary mycobacteriosis in Denmark: incidence and prognostic factors. Am J Respir Crit Care Med 2010; 181(5): 514-21.
[http://dx.doi.org/10.1164/rccm.200905-0778OC]
[6]
Fritscher LG, Marras TK, Bradi AC, Fritscher CC, Balter MS, Chapman KR. Nontuberculous mycobacterial infection as a cause of difficult-to-control asthma: a case-control study. Chest 2011; 139(1): 23-7.
[http://dx.doi.org/10.1378/chest.10-0186]
[7]
Christensson C, Thorén A, Lindberg B. Safety of inhaled budesonide: clinical manifestations of systemic corticosteroid-related adverse effects. Drug Saf 2008; 31(11): 965-88.
[http://dx.doi.org/10.2165/00002018-200831110-00002]
[8]
Calverley P, Anderson J, Celli B. TORCH investigators. Salmeterol and fluticasone protionate and survival in COPD. N Engl J Med 2007; 356: 775-89.
[http://dx.doi.org/10.1056/NEJMoa063070]
[9]
Sin DDTD, Tashkin D, Zhang X, et al. Budesonide and the risk of pneumonia: a meta-analysis of individual patient data. Lancet 2009; 374(9691): 712-9.
[http://dx.doi.org/10.1016/S0140-6736(09)61250-2]
[10]
O’Byrne PMPS. Risks of pneumonia in asthmatic patients taking inhaled corticosteroids. 2011. Am J Respir Crit Care Med 2011; 183: 589-95.
[http://dx.doi.org/10.1164/rccm.201005-0694OC]
[11]
Sexton P, Harrison AC. Susceptibility to nontuberculous mycobacterial lung disease. Eur Respir J 2008; 31(6): 1322-33.
[http://dx.doi.org/10.1183/09031936.00140007]
[12]
Fowler SJFJ, French J, Screaton NJ, et al. Nontuberculous mycobacteria in bronchiectasis: Prevalence and patient characteristics. Eur Respir J 2006; 28(6): 1204-10.
[http://dx.doi.org/10.1183/09031936.06.00149805]
[13]
Ford E, Mannino D, Zhao G, Li C, Croft J. Changes in mortality among United States adults with chronic obstructive pulmonary disease in two national cohorts recruited during 1971 through 1975 and 1988 through 1994. Chest 2012; 141(1): 101-10.
[http://dx.doi.org/10.1378/chest.11-0472]
[14]
Kim RD, Greenberg DE, Ehrmantraut ME, et al. Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med 2008; 178(10): 1066-74.
[http://dx.doi.org/10.1164/rccm.200805-686OC]
[15]
Griffith DE, Aksamit T, Brown-Elliott BA, et al. ATS mycobacterial diseases subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175(4): 367-416.
[http://dx.doi.org/10.1164/rccm.200604-571ST]
[16]
Corbett EL, Churchyard GJ, Clayton T, et al. Risk factors for pulmonary mycobacterial disease in South African gold miners. A case-control study. Am J Respir Crit Care Med 1999; 159(1): 94-9.
[http://dx.doi.org/10.1164/ajrccm.159.1.9803048]
[17]
Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons 2011. Available from: https://training.cochrane.org/cochrane-handbook-systematic-reviews-interventions
[18]
Winthrop KL, Chang E, Yamashita S, Iademarco MF, LoBue PA. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg Infect Dis 2009; 15(10): 1556-61.
[http://dx.doi.org/10.3201/eid1510.090310]
[19]
Brode SK, Campitelli MA, Kwong JC, et al. The risk of mycobacterial infections associated with inhaled corticosteroid use. Eur Respir J 2017; 50(3): 1700037.
[http://dx.doi.org/10.1183/13993003.00037-2017]
[20]
Andréjak C, Nielsen R, Thomsen VØ, Duhaut P, Sørensen HT, Thomsen RW. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax 2013; 68(3): 256-62.
[http://dx.doi.org/10.1136/thoraxjnl-2012-201772]
[21]
Liu VX, Winthrop KL, Lu Y, Sharifi H, Nasiri HU, Ruoss SJ. Association between Inhaled corticosteroid use and pulmonary nontuberculous mycobacterial infection. Ann Am Thorac Soc 2018; 15(10): 1169-76.
[http://dx.doi.org/10.1513/AnnalsATS.201804-245OC]
[22]
Kotilainen H, Valtonen V, Tukiainen P, Poussa T, Eskola J, Järvinen A. Clinical findings in relation to mortality in non-tuberculous mycobacterial infections: patients with Mycobacterium avium complex have better survival than patients with other mycobacteria. Eur J Clin Microbiol Infect Dis 2015; 34(9): 1909-18.
[http://dx.doi.org/10.1007/s10096-015-2432-8]
[23]
Jhun BW, Jung WJ, Hwang NY, et al. Risk factors for the development of chronic pulmonary aspergillosis in patients with nontuberculous mycobacterial lung disease. PLoS One 2017; 12(11): e0188716.
[http://dx.doi.org/10.1371/journal.pone.0188716]
[24]
Fujita K, Ito Y, Hirai T, et al. Prevalence and risk factors for chronic co-infection in pulmonary Mycobacterium avium complex disease. BMJ Open Respir Res 2014; 1(1): e000050.
[http://dx.doi.org/10.1136/bmjresp-2014-000050]
[25]
Wedzicha JA, Calverley PM, Seemungal TA, Hagan G, Ansari Z, Stockley RA. INSPIRE Investigators. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med 2008; 177(1): 19-26.
[http://dx.doi.org/10.1164/rccm.200707-973OC]
[26]
Van Andel AE, Reisner C, Menjoge SS, Witek TJ. Analysis of inhaled corticosteroid and oral theophylline use among patients with stable COPD from 1987 to 1995. Chest 1999; 115(3): 703-7.
[http://dx.doi.org/10.1378/chest.115.3.703]
[27]
Niewoehner DE, Erbland ML, Deupree RH, et al. Department of Veterans Affairs Cooperative Study Group. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1999; 340(25): 1941-7.
[http://dx.doi.org/10.1056/NEJM199906243402502]
[28]
Bourbeau J, Sebaldt RJ, Day A, et al. Practice patterns in the management of chronic obstructive pulmonary disease in primary practice: the CAGE study. Can Respir J 2008; 15(1): 13-9.
[http://dx.doi.org/10.1155/2008/173904]
[29]
Henkle E, Aksamit TR, Barker AF, et al. Pharmacotherapy for non-cystic fibrosis bronchiectasis: results from an NTM Info & Research patient survey and the Bronchiectasis and NTM Research Registry. Chest 2017; 152(6): 1120-7.
[http://dx.doi.org/10.1016/j.chest.2017.04.167]
[30]
Yawn BPLY, Li Y, Tian H, Zhang J, Arcona S, Kahler KH. Inhaled corticosteroid use in patients with chronic obstructive pulmonary disease and the risk of pneumonia: a retrospective claims data analysis. Int J Chron Obstruct Pulmon Dis 2013; 8: 295-304.
[http://dx.doi.org/10.2147/COPD.S42366]
[31]
Suissa S, Patenaude V, Lapi F, Ernst P. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax 2013; 68(11): 1029-36.
[http://dx.doi.org/10.1136/thoraxjnl-2012-202872]
[32]
Brassard P, Suissa S, Kezouh A, Ernst P. Inhaled corticosteroids and risk of tuberculosis in patients with respiratory diseases. Am J Respir Crit Care Med 2011; 183(5): 675-8.
[http://dx.doi.org/10.1164/rccm.201007-1099OC]
[33]
Lee C-H, Kim K, Hyun MK, Jang EJ, Lee NR, Yim J-J. Use of inhaled corticosteroids and the risk of tuberculosis. Thorax 2013; 68(12): 1105-13.
[http://dx.doi.org/10.1136/thoraxjnl-2012-203175]
[34]
Ernst P, Gonzalez AV, Brassard P, Suissa S. Inhaled corticosteroid use in chronic obstructive pulmonary disease and the risk of hospitalization for pneumonia. Am J Respir Crit Care Med 2007; 176(2): 162-6.
[http://dx.doi.org/10.1164/rccm.200611-1630OC]
[35]
Singh S, Amin AV, Loke YK. Long-term use of inhaled corticosteroids and the risk of pneumonia in chronic obstructive pulmonary disease: a meta-analysis. Arch Intern Med 2009; 169(3): 219-29.
[http://dx.doi.org/10.1001/archinternmed.2008.550]
[36]
Hogg JCCF, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004; 350(26): 2645-53.
[http://dx.doi.org/10.1056/NEJMoa032158]
[37]
Hogg JCCF, Chu FS, Tan WC, et al. Survival after lung volume reduction in chronic obstructive pulmonary disease: insights from small airway pathology. Am J Respir Crit Care Med 2007; 176(5): 454-9.
[http://dx.doi.org/10.1164/rccm.200612-1772OC]
[38]
Patterson CMMR, Morrison RL, D’Souza A, Teng XS, Happel KI. Inhaled fluticasone propionate impairs pulmonary clearance of Klebsiella pneumoniae in mice. Respir Res 2012; 13: 40.
[http://dx.doi.org/10.1186/1465-9921-13-40]
[39]
Cowman SAJJ, Jacob J, Hansell DM, et al. Whole-blood gene expression in pulmonary nontuberculous mycobacterial infection. Am J Respir Cell Mol Biol 2018; 58(4): 510-8.
[http://dx.doi.org/10.1165/rcmb.2017-0230OC]
[40]
Middleton AM, Chadwick MV, Nicholson AG, et al. Inhibition of adherence of Mycobacterium avium complex and Mycobacterium tuberculosis to fibronectin on the respiratory mucosa. Respir Med 2004; 98(12): 1203-6.
[http://dx.doi.org/10.1016/j.rmed.2004.04.013]
[41]
Talbot TR, Hartert TV, Mitchel E, et al. Asthma as a risk factor for invasive pneumococcal disease. N Engl J Med 2005; 352(20): 2082-90.
[http://dx.doi.org/10.1056/NEJMoa044113]
[42]
Johnston SLMR, Martin RJ. Chlamydophila pneumoniae and Mycoplasma pneumoniae: a role in asthma pathogenesis? Am J Respir Crit Care Med 2005; 172(9): 1078-89.
[http://dx.doi.org/10.1164/rccm.200412-1743PP]
[43]
Wark PAJS, Johnston SL, Moric I, Simpson JL, Hensley MJ, Gibson PG. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 2002; 19(1): 68-75.
[http://dx.doi.org/10.1183/09031936.02.00226302]
[44]
Dasenbrook EC, Merlo CA, Diener-West M, Lechtzin N, Boyle MP. Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med 2008; 178(8): 814-21.
[http://dx.doi.org/10.1164/rccm.200802-327OC]
[45]
Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 2010; 137(1): 171-6.
[http://dx.doi.org/10.1378/chest.09-1103]
[46]
Davies G, Wells AU, Doffman S, Watanabe S, Wilson R. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur Respir J 2006; 28(5): 974-9.
[http://dx.doi.org/10.1183/09031936.06.00074605]
[47]
Martínez-García MA, Soler-Cataluña J-J, Perpiñá-Tordera M, Román-Sánchez P, Soriano J. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 2007; 132(5): 1565-72.
[http://dx.doi.org/10.1378/chest.07-0490]
[48]
Evans SA, Turner SM, Bosch BJ, Hardy CC, Woodhead MA. Lung function in bronchiectasis: the influence of Pseudomonas aeruginosa. Eur Respir J 1996; 9(8): 1601-4.
[http://dx.doi.org/10.1183/09031936.96.09081601]
[49]
Dirac MA, Horan KL, Doody DR, et al. Environment or host?: A case-control study of risk factors for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2012; 186(7): 684-91.
[http://dx.doi.org/10.1164/rccm.201205-0825OC]
[50]
Koh W-J, Jeong B-H, Jeon K, et al. Clinical significance of the differentiation between Mycobacterium avium and Mycobacterium intracellulare in M avium complex lung disease. Chest 2012; 142(6): 1482-8.
[http://dx.doi.org/10.1378/chest.12-0494]
[51]
Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 1998; 157(6 Pt 1): 1829-32.
[http://dx.doi.org/10.1164/ajrccm.157.6.9710075]
[52]
van Ingen J, Egelund EF, Levin A, et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am J Respir Crit Care Med 2012; 186(6): 559-65.
[http://dx.doi.org/10.1164/rccm.201204-0682OC]
[53]
Thomsen VØ, Andersen ÅB, Miörner H. Incidence and clinical significance of non-tuberculous mycobacteria isolated from clinical specimens during a 2-y nationwide survey. Scand J Infect Dis 2002; 34(9): 648-53.
[http://dx.doi.org/10.1080/00365540210147813]
[54]
Thomson RMAJ, Armstrong JG, Looke DF. Gastroesophageal reflux disease, acid suppression, and Mycobacterium avium complex pulmonary disease. Chest 2007; 131(4): 1166-72.
[http://dx.doi.org/10.1378/chest.06-1906]
[55]
Bodmer T, Miltner E, Bermudez LE. Mycobacterium avium resists exposure to the acidic conditions of the stomach. FEMS Microbiol Lett 2000; 182(1): 45-9.
[http://dx.doi.org/10.1111/j.1574-6968.2000.tb08871.x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy