Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Development of an Electrochemical DNA Biosensor Based on Gold Nanoparticles and Thiol Graphene Nanocomposite for Detection of a Specific nuc Gene from Staphylococcus aureus

Author(s): Lijun Yan, Bo Shao, Xiaoping Zhang*, Yanyan Niu, Wendi Dang, Hui Cheng, Guangjiu Li and Wei Sun*

Volume 17, Issue 3, 2021

Published on: 20 August, 2020

Page: [418 - 425] Pages: 8

DOI: 10.2174/1573411016999200820160754

Price: $65

Abstract

Background: An electrochemical DNA biosensor based on gold nanoparticles (AuNPs) and thiol graphene (TGR) nanocomposite modified carbon ionic liquid electrode (CILE) was developed to detect a specific nuc gene of Staphylococcus aureus, which was further used in the analysis of PCR amplification samples from unfrozen pork.

Objective: The development of a DNA biosensor derived from AuNPs-coated TGR could be used as a novel sensing method for the detection of specific ssDNA sequences in biological and clinical samples.

Methods: The electrochemical properties of modified CILE electrodes were determined by cyclic voltammetry and electrochemical impedance spectroscopy, and the electrochemical performances of the biosensor were investigated by differential pulse voltammetry.

Results: This gene sensor was able to detect the specific nuc gene from Staphylococcus aureus over the concentration range from 1.0×10-15 mol L-1 to 1.0×10-6 mol L-1 with a limit of detection of 4.5×10-16 mol L-1 (3σ), and it was applied in the detection of Staphylococcus aureus in an unfrozen pork sample after PCR amplification of the nuc gene with satisfactory results.

Conclusion: This gene biosensor showed high sensitivity and good selectivity, wide detection range and low detection limit, which demonstrated an effective tool to detect specific nuc gene sequences of Staphylococcus aureus.

Keywords: Gold nanoparticles, thiol graphene, specific nuc gene of Staphylococcus aureus, electrochemical DNA biosensor, ionic liquid, carbon ionic liquid electrode.

Graphical Abstract

[1]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[2]
Chen, D.; Feng, H.; Li, J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev., 2012, 112(11), 6027-6053.
[http://dx.doi.org/10.1021/cr300115g] [PMID: 22889102]
[3]
Mahmood, N.; Zhang, C.; Yin, H.; Hou, Y. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 15-32.
[http://dx.doi.org/10.1039/C3TA13033A]
[4]
Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci., 2020, 566, 463-472.
[http://dx.doi.org/10.1016/j.jcis.2020.01.089] [PMID: 32032811]
[5]
Khodadadi, A.; Faghihmirzaei, E.; Karimimaleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: Experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[6]
Cheng, C.; Li, S.; Thomas, A.; Kotov, N.A.; Haag, R. Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem. Rev., 2017, 117(3), 1826-1914.
[http://dx.doi.org/10.1021/acs.chemrev.6b00520] [PMID: 28075573]
[7]
Li, G.; Xue, Q.; Feng, J.J.; Sui, W.P. Electrochemical biosensor based on nanocomposites film of thiol graphene‐thiol chitosan/nano gold for the detection of carcinoembryonic antigen. Electroanal., 2015, 27, 1245-1252.
[http://dx.doi.org/10.1002/elan.201400524]
[8]
Chu, Z.; Liu, Y.; Xu, Y.Q.; Shi, L.; Peng, J.M.; Jin, W.Q. In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection. Electrochim. Acta, 2015, 176, 162-171.
[http://dx.doi.org/10.1016/j.electacta.2015.06.123]
[9]
Valipour, A.; Roushani, M. Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens. Bioelectron., 2017, 89(2), 946-951.
[http://dx.doi.org/10.1016/j.bios.2016.09.086] [PMID: 27818057]
[10]
Chen, Y.; Meng, X.Z.; Gu, H.W.; Yi, H.C.; Sun, W.Y. A dual-response biosensor for electrochemical and glucometer detection of DNA methyltransferase activity based on functionalized metal-organic framework amplification. Biosens. Bioelectron., 2019, 134, 117-122.
[http://dx.doi.org/10.1016/j.bios.2019.03.051] [PMID: 30981130]
[11]
Sun, T.M.; Zhang, Y.; Pang, B.; Hyun, D.C.; Yang, M.X.; Xia, Y.N. Engineered nanoparticles for drug delivery in cancer therapy.In: Chem. Int. Ed;; , 2014, 53, pp. 12320-12364.
[http://dx.doi.org/10.1002/anie.201403036]
[12]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[13]
Alim, S.; Vejayan, J.; Yusoff, M.M.; Kafi, A.K.M. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens. Bioelectron., 2018, 121, 125-136.
[http://dx.doi.org/10.1016/j.bios.2018.08.051] [PMID: 30205246]
[14]
Rasheed, P.A.; Sandhyarani, N. Electrochemical DNA sensors based on the use of gold nanoparticles: A review on recent developments. Mikrochim. Acta, 2017, 184, 981-1000.
[http://dx.doi.org/10.1007/s00604-017-2143-1]
[15]
Ingrosso, C.; Corricelli, M.; Disha, A.; Fanizza, E.; Bianco, G.V.; Depalo, N.; Panniello, A.; Agostiano, A.; Striccoli, M.; Curri, M.L. Solvent dispersible nanocomposite based on reduced graphene oxide in-situ decorated with gold nanoparticles. Carbon, 2019, 152, 777-787.
[http://dx.doi.org/10.1016/j.carbon.2019.06.070]
[16]
Zou, J.; Zhao, G.Q.; Teng, J.; Liu, Q.; Jiang, X.Y.; Jiao, F.P.; Yu, J.G. Highly sensitive detection of bisphenol A in real water samples based on in-situ assembled graphene nanoplatelets and gold nanoparticles composite. Microchem. J., 2019, 145, 693-702.
[http://dx.doi.org/10.1016/j.microc.2018.11.040]
[17]
Nazari-Vanani, R.; Sattarahmady, N.; Yadegari, H.; Heli, H. A novel and ultrasensitive electrochemical DNA biosensor based on an ice crystals-like gold nanostructure for the detection of Enterococcus faecalis gene sequence. Colloids Surf. B Biointerfaces, 2018, 166, 245-253.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.025] [PMID: 29602079]
[18]
Amano, Y.; Cheng, Q. Detection of influenza virus: Traditional approaches and development of biosensors. Anal. Bioanal. Chem., 2005, 381(1), 156-164.
[http://dx.doi.org/10.1007/s00216-004-2927-0] [PMID: 15592819]
[19]
Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol., 2014, 17, 32-37.
[http://dx.doi.org/10.1016/j.mib.2013.11.004] [PMID: 24581690]
[20]
Mohammadi, J.; Moattari, A.; Sattarahmady, N.; Pirbonyeh, N.; Yadegari, H.; Heli, H. Electrochemical biosensing of influenza A subtype genome based on meso/macroporous cobalt (II) oxide nanoflakes-applied to human samples. Anal. Chim. Acta, 2017, 979, 51-57.
[http://dx.doi.org/10.1016/j.aca.2017.05.010] [PMID: 28599709]
[21]
Chen, S.; Cheng, Y.F.; Voordouw, G. Three-dimensional graphene nanosheet doped with gold nanoparticles as electrochemical DNA biosensor for bacterial detection. Sens. Actuators B Chem., 2018, 262, 860-868.
[http://dx.doi.org/10.1016/j.snb.2018.02.093]
[22]
Shao, Y.Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.; Lin, Y.H. Graphene based electrochemical sensors and biosensors: A review. Electroanal., 2010, 22, 1027-1036.
[http://dx.doi.org/10.1002/elan.200900571]
[23]
Ye, Y.K.; Xie, J.Q.; Ye, Y.W.; Cao, X.D.; Zheng, H.S.; Xu, X.X.; Zhang, Q. A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon, 2018, 129, 730-737.
[http://dx.doi.org/10.1016/j.carbon.2017.12.060]
[24]
Sun, W.; Qi, X.W.; Zhang, Y.Y.; Yang, H.R.; Gao, H.W.; Chen, Y.; Sun, Z.F. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim. Acta, 2012, 85, 145-151.
[http://dx.doi.org/10.1016/j.electacta.2012.07.133]
[25]
Shiddiky, M.J.A.; Torriero, A.A.J. Application of ionic liquids in electrochemical sensing systems. Biosens. Bioelectron., 2011, 26(5), 1775-1787.
[http://dx.doi.org/10.1016/j.bios.2010.08.064] [PMID: 20933382]
[26]
Ren, Q.Q.; Wu, J.; Zhang, W.C.; Wang, C.; Qin, X.; Liu, G.C.; Li, Z.X.; Yu, Y. Real-time in vitro detection of cellular H2O2 under camptothecin stress using horseradish peroxidase, ionic liquid, and carbon nanotube-modified carbon fiber ultramicroelectrode. Sens. Actuators B Chem., 2017, 245, 615-621.
[http://dx.doi.org/10.1016/j.snb.2017.02.001]
[27]
Mohammadi, N.; Najafi, M.; Adeh, N.B. Highly defective mesoporous carbon ionic liquid paste electrode as sensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts. Sens. Actuators B Chem., 2017, 243, 838-846.
[http://dx.doi.org/ 10.1016/j.snb.2016.12.070]
[28]
Li, X.Y.; Niu, X.L.; Zhao, W.S.; Chen, W.; Yin, C.X.; Men, Y.L.; Li, G.J.; Sun, W. Black phosphorene and PEDOT: PSS-modified electrode for electrochemistry of hemoglobin. Electrochem. Commun., 2018, 86, 68-71.
[http://dx.doi.org/10.1016/j.elecom.2017.11.017]
[29]
Shi, F.; Zheng, W.; Wang, W.; Hou, F.; Lei, B.; Sun, Z.; Sun, W. Application of graphene-copper sulfide nanocomposite modified electrode for electrochemistry and electrocatalysis of hemoglobin. Biosens. Bioelectron., 2015, 64, 131-137.
[http://dx.doi.org/10.1016/j.bios.2014.08.064] [PMID: 25212067]
[30]
Velusamy, V.; Arshak, K.; Yang, C.F.; Yu, L.; Korostynska, O.; Adley, C. Comparison between DNA immobilization techniques on a redox polymer matrix. Am. J. Anal. Chem., 2011, 2, 392-400.
[http://dx.doi.org/10.4236/ajac.2011.23048]
[31]
Erdem, A.; Kerman, K.; Meric, B.; Ozsoz, M. Methylene blue as a novel electrochemical hybridization indicator. Electroanalysis, 2001, 13, 219-223.
[http://dx.doi.org/10.1002/1521-4109(200103)13:3<219:AID-ELAN219>3.0.CO;2-7]
[32]
Zhang, Y.Z.; Jiang, W. Decorating graphene sheets with gold nanoparticles for the detection of sequence-specific DNA. Electrochim. Acta, 2012, 71, 239-245.
[http://dx.doi.org/10.1016/j.electacta.2012.03.136]
[33]
Radhakrishnan, S.; Sumathi, C.; Dharuman, V.; Wilson, J. Polypyrrole nanotubes-polyaniline composite for DNA detection using methylene blue as intercalator. Anal. Methods, 2013, 5, 1010-1015.
[http://dx.doi.org/10.1039/c2ay26127h]
[34]
Wang, L.M.; Lin, L.Q.; Xu, X.W.; Weng, S.H.; Lei, Y.; Liu, A.L.; Chen, Y.Z.; Lin, X.H. Electrochemical biosensor for detection of PML/RAR α fusion gene based on eriochrome cyanine R film modified glassy carbon electrode. Electrochim. Acta, 2012, 69, 56-59.
[http://dx.doi.org/10.1016/j.electacta.2012.02.065]
[35]
Radhakrishnan, S.; Sumathi, C.; Umar, A.; Jae Kim, S.; Wilson, J.; Dharuman, V. Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing. Biosens. Bioelectron., 2013, 47, 133-140.
[http://dx.doi.org/10.1016/j.bios.2013.02.049] [PMID: 23578969]
[36]
Qi, X.; Gao, H.; Zhang, Y.; Wang, X.; Chen, Y.; Sun, W. Electrochemical DNA biosensor with chitosan-Co(3)O(4) nanorod-graphene composite for the sensitive detection of Staphylococcus aureus nuc gene sequence. Bioelectrochemistry, 2012, 88, 42-47.
[http://dx.doi.org/10.1016/j.bioelechem.2012.05.007] [PMID: 22765971]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy