Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction and Capillary Electrophoretic Determination of Tramadol in Human Plasma

Author(s): Paria Habibollahi, Azam Samadi *, Alireza Garjani, Samad Shams Vahdati, Hamid-Reza Sargazi and Abolghasem Jouyban

Volume 17, Issue 3, 2021

Published on: 19 March, 2020

Page: [426 - 433] Pages: 8

DOI: 10.2174/1573411016666200319101416

Price: $65

Abstract

Background: Tramadol, (±)-trans-2-[(dimethylamino) methyl]-1-(3-methoxyphenyl) cyclohexanol, is a synthetic centrally acting analgesic used in the treatment of moderate to chronic pain. Tramadol, like other narcotic drugs, is used for the treatment of pain and may also be abused. Its overdose can cause adverse effects such as dizziness, vomiting, and nausea. The aim of this paper is to develop a sample preparation method for the determination of tramadol in human plasma samples, followed by CE analysis.

Methods: Ultrasound assisted-dispersive liquid-liquid microextraction using binary mixed extractant solvent (chloroform and ethyl acetate) was used for the extraction of one hundred microliters of tramadol spiked human plasma samples and in real human plasma samples obtained from the patients with abuse of tramadol. After evaporation of the extractant solvent, the residue was reconstituted in 100 μL deionized water and subsequently analyzed by CE-UV.

Results: The developed method has remarkable characteristics, including simplicity, good repeatability and appreciable accuracy. Under the best extraction conditions, a low limit of detection at 7.0 μg per liter level with good linearity in the range of 0.02-10 μg mL-1 was obtained.

Conclusion: UA-DLLME, using a binary mixed extraction solvent, was established for the determination of tramadol in human plasma samples via the CE method with UV-detection. In addition, the analysis of tramadol in some plasma samples of patients with abuse of tramadol indicated that the method has acceptable performance for the determination of tramadol in plasma samples, which indicates that the method is suitable for clinical applications.

Keywords: Capillary electrophoresis, dispersive liquid-liquid microextraction, human plasma, tramadol, ultrasound assisted, UV-detection.

« Previous
Graphical Abstract

[1]
Javanbakht, M.; Attaran, A.M.; Namjumanesh, M.H.; Esfandyari-Manesh, M.; Akbari-Adergani, B. Solid-phase extraction of tramadol from plasma and urine samples using a novel water-compatible molecularly imprinted polymer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(20), 1700-1706.
[http://dx.doi.org/10.1016/j.jchromb.2010.04.006] [PMID: 20452295]
[2]
Lintz, W.; Barth, H.; Becker, R.; Frankus, E.; Schmidt-Böthelt, E. Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations. 2nd communication: Drops with ethanol. Arzneimittelforschung, 1998, 48(5), 436-445.
[PMID: 9638309]
[3]
Regenthal, R.; Krueger, M.; Koeppel, C.; Preiss, R. Drug levels: Therapeutic and toxic serum/plasma concentrations of common drugs. J. Clin. Monit. Comput., 1999, 15(7-8), 529-544.
[http://dx.doi.org/10.1023/A:1009935116877] [PMID: 12578052]
[4]
Beakley, B.D.; Kaye, A.M.; Kaye, A.D. Tramadol, pharmacology, side effects, and serotonin syndrome: A review. Pain Physician, 2015, 18(4), 395-400.
[PMID: 26218943]
[5]
Ismaiel, O.A.; Hosny, M.M. Development and validation of a spectrophotometric method for the determination of tramadol in human urine using liquid-liquid extraction and ion pair formation. Int. J. Instrum. Sci., 2012, 1(3), 34-40.
[6]
Deiminiat, B.; Rounaghi, G.H.; Arbab-Zavar, M.H. Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol-gel and multiwall carbon nanotubes for determination of tramadol. Sens. Actuators B Chem., 2017, 238, 651-659.
[http://dx.doi.org/10.1016/j.snb.2016.07.110]
[7]
Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron., 2013, 44, 34-40.
[http://dx.doi.org/10.1016/j.bios.2012.11.030] [PMID: 23391704]
[8]
Javanbakht, M.; Moein, M.M.; Akbari-adergani, B. On-line clean-up and determination of tramadol in human plasma and urine samples using molecularly imprinted monolithic column coupling with HPLC. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 911, 49-54.
[http://dx.doi.org/10.1016/j.jchromb.2012.10.019] [PMID: 23217305]
[9]
Ebrahimzadeh, H.; Yamini, Y.; Sedighi, A.; Rouini, M.R. Determination of tramadol in human plasma and urine samples using liquid phase microextraction with back extraction combined with high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 863(2), 229-234.
[http://dx.doi.org/10.1016/j.jchromb.2008.01.005] [PMID: 18272441]
[10]
Yarbrough, J.; Greenacre, C.; Souza, M.; Cox, S. LC determination of tramadol, M1, M2, M4, and M5 in plasma. Chromatographia, 2010, 71(5-6), 523-527.
[http://dx.doi.org/10.1365/s10337-009-1451-y] [PMID: 20835381]
[11]
Tanaka, H.; Naito, T.; Mino, Y.; Kawakami, J. Validated determination method of tramadol and its desmethylates in human plasma using an isocratic LC-MS/MS and its clinical application to patients with cancer pain or non-cancer pain. J. Pharm. Health Care Sci., 2016, 2(1), 25.
[http://dx.doi.org/10.1186/s40780-016-0059-2] [PMID: 27729987]
[12]
Verri, P.; Rustichelli, C.; Palazzoli, F.; Vandelli, D.; Marchesi, F.; Ferrari, A.; Licata, M. Tramadol chronic abuse: an evidence from hair analysis by LC tandem MS. J. Pharm. Biomed. Anal., 2015, 102, 450-458.
[http://dx.doi.org/10.1016/j.jpba.2014.10.002] [PMID: 25459945]
[13]
Yu, H.; Choi, M.; Jang, J-H.; Park, B.; Seo, Y.H.; Jeong, C-H.; Bae, J-W.; Lee, S. Development of a column-switching LC-MS/MS method of tramadol and its metabolites in hair and application to a pharmacogenetic study. Arch. Pharm. Res., 2018, 41(5), 554-563.
[http://dx.doi.org/10.1007/s12272-018-1013-7] [PMID: 29524157]
[14]
Ebrahimzadeh, H.; Mollazadeh, N.; Asgharinezhad, A.A.; Shekari, N.; Mirbabaei, F. Multivariate optimization of surfactant-assisted directly suspended droplet microextraction combined with GC for the preconcentration and determination of tramadol in biological samples. J. Sep. Sci., 2013, 36(23), 3783-3790.
[http://dx.doi.org/10.1002/jssc.201300810] [PMID: 24115535]
[15]
Pinho, S.; Oliveira, A.; Costa, I.; Gouveia, C.A.; Carvalho, F.; Moreira, R.F.; Dinis-Oliveira, R.J. Simultaneous quantification of tramadol and O-desmethyltramadol in hair samples by gas chromatography-electron impact/mass spectrometry. Biomed. Chromatogr., 2013, 27(8), 1003-1011.
[http://dx.doi.org/10.1002/bmc.2894] [PMID: 23519701]
[16]
Barbera, N.; Fisichella, M.; Bosco, A.; Indorato, F.; Spadaro, G.; Romano, G. A suicidal poisoning due to tramadol. A metabolic approach to death investigation. J. Forensic Leg. Med., 2013, 20(5), 555-558.
[http://dx.doi.org/10.1016/j.jflm.2013.03.006] [PMID: 23756535]
[17]
Naghdi, E.; Fakhari, A.R. Simultaneous chiral separation of tramadol and methadone in tablets, human urine, and plasma by capillary electrophoresis using maltodextrin as the chiral selector. Chirality, 2018, 30(10), 1161-1168.
[http://dx.doi.org/10.1002/chir.23008] [PMID: 30126003]
[18]
Ruda, S.; Cherkaoui, S.; Dayer, P.; Fanali, S.; Veuthey, J-L. Simultaneous stereoselective analysis of tramadol and its main phase I metabolites by on-line capillary zone electrophoresis-electrospray ionization mass spectrometry. J. Chromatogr. A, 2000, 868(2), 295-303.
[http://dx.doi.org/10.1016/S0021-9673(99)01257-1 PMID: 10701679]
[19]
Soetebeer, U.B.; Schierenberg, M-O.; Schulz, H.; Andresen, P.; Blaschke, G. Direct chiral assay of tramadol and detection of the phase II metabolite O-demethyl tramadol glucuronide in human urine using capillary electrophoresis with laser-induced native fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl., 2001, 765(1), 3-13.
[http://dx.doi.org/10.1016/S0378-4347(01)00366-8 PMID: 11817307]
[20]
Jouyban, A.; Sorouraddin, M.H.; Farajzadeh, M.A.; Somi, M.H.; Fazeli-Bakhtiyari, R. Vortex-assisted liquid-liquid extraction combined with field-amplified sample injection and sweeping micellar electrokinetic chromatography for improved determination of β-blockers in human urine. Talanta, 2016, 149, 298-309.
[http://dx.doi.org/10.1016/j.talanta.2015.11.046] [PMID: 26717845]
[21]
Jong, Y-J.; Ho, Y-H.; Ko, W-K.; Wu, S-M. On-line stacking and sweeping capillary electrophoresis for detecting heroin metabolites in human urine. J. Chromatogr. A, 2009, 1216(44), 7570-7575.
[http://dx.doi.org/10.1016/j.chroma.2009.04.058] [PMID: 19439308]
[22]
Küçük, A.; Kadioğlu, Y.; Çelebi, F. Investigation of the pharmacokinetics and determination of tramadol in rabbit plasma by a high-performance liquid chromatography-diode array detector method using liquid-liquid extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 816(1-2), 203-208.
[http://dx.doi.org/10.1016/j.jchromb.2004.11.031] [PMID: 15664351]
[23]
Azodi-Deilami, S.; Abdouss, M.; Hasani, S. Preparation and utilization of a molecularly imprinted polymer for solid phase extraction of tramadol. Open Chem., 2010, 8(4), 861-869.
[http://dx.doi.org/10.2478/s11532-010-0059-2]
[24]
Fakhari, A.R.; Sahragard, A.; Ahmar, H.; Tabani, H. A novel platform sensing based on combination of electromembrane-assisted solid phase microextraction with linear sweep voltammetry for the determination of tramadol. J. Electroanal. Chem. (Lausanne Switz.), 2015, 747, 12-19.
[http://dx.doi.org/10.1016/j.jelechem.2015.01.032]
[25]
Sha, Y.F.; Shen, S.; Duan, G.L. Rapid determination of tramadol in human plasma by headspace solid-phase microextraction and capillary gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2005, 37(1), 143-147.
[http://dx.doi.org/10.1016/j.jpba.2004.09.050] [PMID: 15664754]
[26]
Xu, F.; Liu, L. Simultaneous determination of free methamphetamine, pethidine, ketamine and tramadol in urine by dispersive liquid-liquid microextraction combined with GC-MS. Forensic Sci. Rev., 2017, 4(2), 188-194.
[http://dx.doi.org/10.1080/20961790.2017.1377386 PMID: 31304447]
[27]
Kiarostami, V.; Rouini, M-R.; Mohammadian, R.; Lavasani, H.; Ghazaghi, M. Binary solvents dispersive liquid-liquid microextraction (BS-DLLME) method for determination of tramadol in urine using high-performance liquid chromatography. Daru, 2014, 22(1), 25.
[http://dx.doi.org/10.1186/2008-2231-22-25] [PMID: 24495475]
[28]
Habibollahi, S.; Tavakkoli, N.; Nasirian, V.; Khani, H. Determination of tramadol by dispersive liquid-liquid microextraction combined with GC-MS. J. Chromatogr. Sci., 2015, 53(5), 655-661.
[http://dx.doi.org/10.1093/chromsci/bmu118] [PMID: 25416733]
[29]
Merkle, S.; Kleeberg, K.; Fritsche, J. Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis-A Review. Chromatography (Basel), 2015, 2(3), 293-381.
[http://dx.doi.org/10.3390/chromatography2030293]
[30]
Wang, X.; Wang, Y.; Zou, X.; Cao, Y. Improved dispersive liquid-liquid microextraction based on the solidification of floating organic droplet method with a binary mixed solvent applied for determination of nicotine and cotinine in urine. Anal. Methods, 2014, 6(7), 2384.
[http://dx.doi.org/10.1039/c3ay42308e]
[31]
Maham, M.; Karami-Osboo, R.; Kiarostami, V.; Waqif-Husain, S. Novel binary solvents-dispersive liquid-liquid microextraction (BS-DLLME) method for determination of patulin in apple juice using high-performance liquid chromatography. Food Anal. Methods, 2013, 6(3), 761-766.
[http://dx.doi.org/10.1007/s12161-012-9483-6]
[32]
Yan, H.; Liu, B.; Du, J.; Yang, G.; Row, K.H. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of six pyrethroids in river water. J. Chromatogr. A, 2010, 1217(32), 5152-5157.
[http://dx.doi.org/10.1016/j.chroma.2010.06.008] [PMID: 20580006]
[33]
Hamidi, S.; Jouyban, A. Capillary electrophoresis with UV detection, on-line stacking and off-line dispersive liquid-liquid microextraction for determination of verapamil enantiomers in plasma. Anal. Methods, 2015, 7(14), 5820-5829.
[http://dx.doi.org/10.1039/C5AY00916B]
[34]
Zang, X-H.; Wu, Q-H.; Zhang, M-Y.; Xi, G-H.; Wang, Z. Developments of dispersive liquid-liquid microextraction technique. Chin. J. Anal. Chem., 2009, 37(2), 161-168.
[http://dx.doi.org/10.1016/S1872-2040(08)60082-1]
[35]
Kurth, B.; Blaschke, G. Achiral and chiral determination of tramadol and its metabolites in urine by capillary electrophoresis. Electrophoresis, 1999, 20(3), 555-563.
[http://dx.doi.org/10.1002/(SICI)1522-2683(19990301)20:3<555:AID-ELPS555>3.0.CO;2-B PMID: 10217171]
[36]
Rudaz, S.; Veuthey, J.L.; Desiderio, C.; Fanali, S. Simultaneous stereoselective analysis by capillary electrophoresis of tramadol enantiomers and their main phase I metabolites in urine. J. Chromatogr. A, 1999, 846(1-2), 227-237.
[http://dx.doi.org/10.1016/S0021-9673(99)00028-X PMID: 10420614]
[37]
Mohammadi, A.; Nojavan, S.; Rouini, M.; Fakhari, A.R. Stability evaluation of tramadol enantiomers using a chiral stability-indicating capillary electrophoresis method and its application to pharmaceutical analysis. J. Sep. Sci., 2011, 34(13), 1613-1620.
[http://dx.doi.org/10.1002/jssc.201100021] [PMID: 21626694]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy