Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Thermal and Mechanical Properties of Epoxy Resin Functionalized Copper and Graphene Hybrids using In-situ Polymerization Method

Author(s): Nadia A. Ali, Alaa M. Abd-Elnaiem*, Seenaa I. Hussein, Asmaa S. Khalil, Hatem R. Alamri and Hasan S. Assaedi

Volume 17, Issue 3, 2021

Published on: 20 August, 2020

Page: [494 - 502] Pages: 9

DOI: 10.2174/1573413716999200820145518

Abstract

Objective: In this work, graphene (Gr) or/and Cu particles are used to improve the thermal and mechanical properties of epoxy resin.

Methods: Various contents of Gr powder (0.1, 0.3, and 0.5 wt%), and Cu powder (10, 30, and 50 wt%) were loaded to epoxy to form Gr/epoxy and Cu/epoxy composites, respectively. In addition, hybrids epoxy/Cu/Gr samples were prepared with a selection of the lowest (0.1 and 10) and the highest (0.5 and 50) ratios of Gr, and Cu, respectively.

Results: The thermal conductivity increased with the increasing weight ratio of Gr and Cu as compared to the pure epoxy. The thermogravimetric analysis (TGA) of epoxy composites and hybrid composites revealed an improvement in the thermal stability. In addition, the mechanical properties such as hardness shore D and the wear resistance were enhanced for both the epoxy composites and hybrids composites. However, the Ep+0.5wt%Gr+50wt%Cu hybrid composite was found to have the maximum hardness 84, with the thermal conductivity of 3.84 W/m.K. It showed the lowest wear resistance 2.7×10-6 mm3/Nm at loading 10 N.

Conclusion: The hybrid composite containing 0.5wt%Gr and 50wt%Cu shows the maximum hardness and thermal conductivity, as well as the lowest wear resistance when compared to other composites. The physical properties of the hybrid composite can be controlled by the host blend, and hence the morphology, and interfacial characteristics.

Keywords: Epoxy, graphene, Cu, thermal conductivity, hardness, wear rate.

« Previous
Graphical Abstract

[1]
Janković, Z.; Pavlović, M.M.; Pantović Pavlović, M.R.; Pavlović, M.G.; Nikolić, N.D.; Stevanović, J.S.; Pršić, S. Electrical and thermal properties of poly (methylmetacrylate) composites filled with electrolytic copper powder. Int. J. Electrochem. Sci., 2018, 13, 45-57.
[http://dx.doi.org/10.20964/2018.01.24]
[2]
Xing, Y.; Cao, W.; Li, W.; Chen, H.; Wang, M.; Wei, H.; Hu, D.; Chen, M.; Li, Q. Carbon nanotube/Cu nanowires/epoxy composite mats with improved thermal and electrical conductivity. J. Nanosci. Nanotechnol., 2015, 15(4), 3265-3270.
[http://dx.doi.org/10.1166/jnn.2015.9677] [PMID: 26353575]
[3]
Kumar, R.; Mohanty, S.; Nayak, S.K. Study on epoxy resin based thermal adhesive composite incorporated with expanded graphite/silver flake hybrids. Mater. Today Comm., 2019, 20, 100561.
[http://dx.doi.org/10.1016/j.mtcomm.2019.100561]
[4]
Verma, R.; Nagendra, H.N.; Kumar, V.M.; Vivek, G.A.; Kasthurirengan, S.; Shivaprakash, N.C.; Behera, U. Performance improvement of cryosorption pump by enhancing thermal conductivity of epoxy-aluminum composite. Compos. B Eng., 2019, 176, 107163.
[http://dx.doi.org/10.1016/j.compositesb.2019.107163]
[5]
Yuan, W.; Xiao, Q.; Li, L.; Xu, T. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl. Therm. Eng., 2016, 106, 1067-1074.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.06.089]
[6]
Tian, Y.; Xie, Y.; Dai, F.; Huang, H.; Zhong, L.; Zhang, X. Ammonium-grafted graphene oxide for enhanced corrosion resistance of waterborne epoxy coatings. Surf. Coat. Tech., 2020, 383, 125227.
[http://dx.doi.org/10.1016/j.surfcoat.2019.125227]
[7]
Yetgin, H.; Veziroglu, S.; Aktas, O.C.; Yalçinkaya, T. Enhancing thermal conductivity of epoxy with a binary filler system of h-BN platelets and Al2O3 nanoparticles. Int. J. Adhes. Adhes., 2020, 98, 102540.
[http://dx.doi.org/10.1016/j.ijadhadh.2019.102540]
[8]
Yan, H.; Zhang, L.; Li, H.; Fan, X.; Zhu, M. Towards high-performance additive of Ti3C2/graphene hybrid with a novel wrapping structure in epoxy coating. Carbon, 2020, 15, 217-233.
[http://dx.doi.org/10.1016/j.carbon.2019.10.034]
[9]
Aradhana, R.; Mohanty, S.; Nayak, S.K. Novel electrically conductive epoxy/reduced graphite oxide/silica hollow microspheres adhesives with enhanced lap shear strength and thermal conductivity. Compos. Sci. Technol., 2019, 169, 86-94.
[http://dx.doi.org/10.1016/j.compscitech.2018.11.008]
[10]
Fu, Y.X.; He, Z.X.; Mo, D.C.; Lu, S.S. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng., 2014, 66, 493-498.
[http://dx.doi.org/10.1016/j.applthermaleng.2014.02.044]
[11]
Yeom, Y.S.; Cho, K.Y.; Seo, H.Y.; Lee, J.S.; Nam, C.Y.; Yoon, H.G. Unprecedentedly high thermal conductivity of carbon/epoxy composites derived from parameter optimization studies. Compos. Sci. Technol., 2020, 186, 107915.
[http://dx.doi.org/10.1016/j.compscitech.2019.107915]
[12]
Li, S.; Song, G.; Fu, Q.; Pan, C. Preparation of Cu-graphene coating via electroless plating for high mechanical property and corrosive resistance. J. Alloys Compd., 2019, 777, 877-885.
[http://dx.doi.org/10.1016/j.jallcom.2018.11.031]
[13]
Isarn, I.; Bonnaud, L.; Massagués, L.; Serra, À.; Ferrando, F. Enhancement of thermal conductivity in epoxy coatings through the combined addition of expanded graphite and boron nitride fillers. Prog. Org. Coat., 2019, 133, 299-308.
[http://dx.doi.org/10.1016/j.porgcoat.2019.04.064]
[14]
Han, Y.; Shi, X.; Yang, X.; Guo, Y.; Zhang, J.; Kong, J.; Gu, J. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol., 2020, 187, 107944.
[http://dx.doi.org/10.1016/j.compscitech.2019.107944]
[15]
Wang, S.; Cheng, Y.; Wang, R.; Sun, J.; Gao, L. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Appl. Mater. Interfaces, 2014, 6(9), 6481-6486.
[http://dx.doi.org/10.1021/am500009p] [PMID: 24716483]
[16]
Ahn, K.; Kim, K.; Kim, J. Thermal conductivity and electric properties of epoxy composites filled with TiO2-coated copper nanowire. Polymer (Guildf.), 2015, 12, 313-320.
[http://dx.doi.org/10.1016/j.polymer.2015.09.001]
[17]
Al-Saleh, M.H.; Gelves, G.A.; Sundararaj, U. Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding. Compos., Part A Appl. Sci. Manuf., 2011, 42, 92-97.
[http://dx.doi.org/10.1016/j.compositesa.2010.10.003]
[18]
Bloom, P.D.; Baikerikar, K.G.; Anderegg, J.W.; Sheares, V.V. Fabrication and wear resistance of Al–Cu–Fe quasicrystal-epoxy composite materials. Mater. Sci. Eng. A, 2003, 360, 46-57.
[http://dx.doi.org/10.1016/S0921-5093(03)00415-5]
[19]
Li, M.; Zinkle, S.J. Physical and Mechanical Properties of Copper and Copper Alloys.Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Amsterdam, Netherlands, 2012, Vol. 4, pp. 667-690.
[http://dx.doi.org/10.1016/B978-0-08-056033-5.00122-1]
[20]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[21]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3), 902-907.
[http://dx.doi.org/10.1021/nl0731872] [PMID: 18284217]
[22]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385-388.
[http://dx.doi.org/10.1126/science.1157996] [PMID: 18635798]
[23]
Berhanuddin, N.I.C.; Zaman, I.; Rozlan, S.A.M.; Karim, M.A.A.; Manshoor, B.; Khalid, A.; Chan, S.W.; Meng, Q. Enhancement of mechanical properties of epoxy/graphene nanocomposite. J. Phys. Conf. Ser., 2017, 2017(914), 012036.
[http://dx.doi.org/10.1088/1742-6596/914/1/012036]
[24]
Yu, A.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater., 2008, 20, 4740-4744.
[http://dx.doi.org/10.1002/adma.200800401]
[25]
Hussein, S.I. On Mechanical and Thermal Properties of Epoxy/Graphene Nanocomposites. Nano Hybrids and Composites; Al-Ahmed, A; Kim, Y.H., Ed.; Trans Tech Publications Ltd., 2018, Vol. 22, pp. 23-33.
[http://dx.doi.org/10.4028/www.scientific.net/NHC.22.23]
[26]
Wei, J.; Inam, F. Processing of epoxy/graphene nanocomposites: Effects of surfactants. J. Polym. Sci., 2017, 1, 1-7.
[http://dx.doi.org/10.4172/jpsa.1000101]
[27]
Yaman, K.; Taga, Ö. Thermal and electrical conductivity of unsaturated polyester resin filled with copper filler composites. Int. J. Polym. Sci., 2018, 2018, 8190190.
[http://dx.doi.org/10.1155/2018/8190190]
[28]
Chung, S.L.; Lin, J.S. Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules, 2016, 21(5), 670.
[http://dx.doi.org/10.3390/molecules21050670] [PMID: 27213325]
[29]
Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci., 2016, 59, 41-85.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.03.001]
[30]
Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev., 2012, 41(2), 666-686.
[http://dx.doi.org/10.1039/C1CS15078B] [PMID: 21796314]
[31]
Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci., 2010, 35, 1350-1375.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005]
[32]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065), 197-200.
[http://dx.doi.org/10.1038/nature04233] [PMID: 16281030]
[33]
Cataldi, P.; Athanassiou, A.; Bayer, I.S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. (Basel), 2018, 8, 1438.
[http://dx.doi.org/10.3390/app8091438]
[34]
Díez-Pascual, A.M.; Luceño Sánchez, J.A.; Peña Capilla, R.; García Díaz, P. Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers (Basel), 2018, 10(2), 217.
[http://dx.doi.org/10.3390/polym10020217] [PMID: 30966253]
[35]
Díez-Pascual, A.M.; Gómez-Fatou, M.A.; Ania, F.; Flores, A. Nanoindentation in polymer nanocomposites. Prog. Mater. Sci., 2015, 67, 1-94.
[http://dx.doi.org/10.1016/j.pmatsci.2014.06.002]
[36]
Daoush, W.; Swidan, A.; El-Aziz, G.A.; Abdelhalim, M. Fabrication, microstructure, thermal and electrical properties of copper heat sink composites. Mater. Sci. Appl., 2016, 7(9), 542-561.
[http://dx.doi.org/10.4236/msa.2016.79046]
[37]
Hussein, S.; Abd-Elnaiem, A.; Ali, N.; Mebed, A. Enhanced thermo-mechanical properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) polymer blended with nanographene. Curr. Nanosci., 2020, 16, 1-8.
[http://dx.doi.org/10.2174/1573413716666200310121947]
[38]
Hussein, S.I.; Abd-Elnaiem, A.M.; Asafa, T.B.; Jaafar, H.I. Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite. Appl. Phys., A Mater. Sci. Process., 2018, 124, 475.
[http://dx.doi.org/10.1007/s00339-018-1890-0]
[39]
Czichos, H. Introduction to friction and wear.Composite Materials Series; Elsevier, 1986, Vol. 1, pp. 1-23.
[40]
Chen, Y.; Gao, J.; Yan, Q.; Hou, X.; Shu, S.; Wu, M.; Jiang, N.; Li, X.; Xu, J.B.; Lin, C.T.; Yu, J. Advances in graphene-based polymer composites with high thermal conductivity; Veruscript Funct Nanomater, 2018.
[http://dx.doi.org/10.22261/OOSB06]
[41]
Misiura, A.I.; Mamunya, Y.P.; Kulish, M.P. Metal-filled epoxy composites: Mechanical properties and electrical/thermal conductivity. J. Macromol. Sci. B, 2020, 59, 121-136.
[http://dx.doi.org/10.1080/00222348.2019.1695820]
[42]
Hirmizi, N.H.; Bakar, M.A.; Tan, W.L.; Bakar, N.H.; Ismail, J.; See, C.H. Electrical and thermal behavior of copper-epoxy nanocomposites prepared via aqueous to organic phase transfer technique. J. Nanomater., 2012, 2012, 219073.
[http://dx.doi.org/10.1155/2012/219073]
[43]
Liu, H.; Dong, M.; Huang, W.; Gao, J.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5, 73-83.
[http://dx.doi.org/10.1039/C6TC03713E]

© 2024 Bentham Science Publishers | Privacy Policy