Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Adsorption and Photocatalytic Activity of Nano-magnetic Materials Fe3O4@C@TiO2-AgBr-Ag for Rhodamine B

Author(s): Xin Zheng, Xinyue Zhang, Qili Hu, Hongbin Sun, Linshan Wang* and Xiaowu Li

Volume 17, Issue 3, 2021

Published on: 20 August, 2020

Page: [484 - 493] Pages: 10

DOI: 10.2174/1573413716999200820144001

Price: $65

Abstract

Background: TiO2 nanoparticles possess adsorption capacity and photocatalytic activity, and are thus fitted for removal of dyes from water. However, TiO2 nanoparticles are difficult to separate from the bulk solution due to high loss. Moreover, TiO2 can only use light with a wavelength of less than 387.5 nm, so the utilization efficiency of solar energy is very low. The present work prepared Fe3O4@C@TiO2-AgBr-Ag composites to overcome the shortcomings of TiO2.

Objective: Adsorptive and photocatalytic performance of nano-magnetic materials Fe3O4@C@TiO2- AgBr-Ag.

Methods: Fe3O4@C@TiO2 and Fe3O4@C@TiO2-AgBr-Ag magnetic nanocomposites were prepared by the sol-gel method. Their structure was characterized. Performances of Fe3O4@C@TiO2 and Fe3O4@C@TiO2-AgBr-Ag for removing Rh B were thoroughly investigated and compared. Langmuir– Hinshelwood kinetic model was applied to analyze the heterogeneous processes of adsorption and photodegradation.

Results: Removal experiments were carried out with Rhodamine B as the subject. The effects of contacting time, pH, subject concentration, and doses of photocatalyst on the removal performance were studied. The removal of Rh B by Fe3O4@C@TiO2 and Fe3O4@C@TiO2-AgBr-Ag involved both adsorption and photodegradation, and the photocatalytic activity of Fe3O4@C@TiO2-AgBr-Ag was much higher than that of Fe3O4@C@TiO2. The optimum removal conditions were determined. Under the optimal conditions, the removal rate of Rhodamine B with Fe3O4@C@TiO2 was 77.8%, and the removal rate of Rhodamine B with Fe3O4@C@TiO2- AgBr-Ag was 87.3%.

Conclusion: The coupling of the nanostructured metal Ag to the outer surface of TiO2 could effectively increase photocatalytic efficiency under visible light. The photocatalysts could be separated from bulk solutions by using a magnet and be easily recycled. The removal reaction kinetics fitted with the first-order model.

Keywords: Nano-magnetic composites, TiO2, AgBr, photocatalysis, adsorption, rhodamine B.

Graphical Abstract

[1]
Kim, C.H.; Zhang, Z.F.; Wang, L.S.; Sun, T.; Hu, X.M. Core-shell magnetic manganese dioxide nanocomposites modified with citric acid for enhanced adsorption of basic dyes. J. Taiwan Inst. Chem. Eng., 2016, 67, 418-425.
[http://dx.doi.org/10.1016/j.jtice.2016.07.015]
[2]
Wang, L.S.; Kim, C.H.; Zhang, X.Y.; Fernandez, C.; Sun, T.; Hu, X.M. Synergistic and competitive adsorption of methylene blue and Rhodamine B on core-shell magnetic manganese dioxide nanocomposites. Curr. Nanosci., 2017, 13(6), 563-573.
[http://dx.doi.org/10.2174/1573413713666170706112204]
[3]
Bi, Y.G.; Liu, D. Rapid synthesis of recyclable and reusable magnetic TiO2@Fe3O4 for degradation of organic pollutant. Appl. Phys., A Mater. Sci. Process., 2019, 125(2), 77-89.
[http://dx.doi.org/10.1007/s00339-018-2334-6]
[4]
Abbas, N.; Shao, G.N.; Imran, S.M.; Haider, M.S.; Kim, H.T. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse. Front. Chem. Sci. Eng., 2016, 10(3), 405-416.
[http://dx.doi.org/10.1007/s11705-016-1579-x]
[5]
Zeng, L.; Lu, Z.; Li, M.H.; Yang, J.; Song, W.L.; Zeng, D.W.; Xie, C.S. A modular calcination method to prepare modified N-doped TiO2 nanoparticle with high photocatalytic activity. Appl. Catal. B, 2016, 183, 308-316.
[http://dx.doi.org/10.1016/j.apcatb.2015.10.048]
[6]
Wang, D.B.; Zhao, L.X.; Song, D.A.; Qiu, J.; Kong, F.Y.; Guo, L.H. A formation model of superoxide radicals photogenerated in nano-TiO2 suspensions. RSC Adv, 2019, 9(50), 29429-29432.
[http://dx.doi.org/10.1039/C9RA06323D]
[7]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
[http://dx.doi.org/10.1126/science.1061051] [PMID: 11452117]
[8]
Irie, H.; Watanabo, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B, 2003, 107(23), 5483-5486.
[http://dx.doi.org/10.1021/jp030133h]
[9]
Tahir, M.; Amin, N.S. Performance analysis of nanostructured NiO-In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chem. Eng. J., 2016, 285, 635-649.
[http://dx.doi.org/10.1016/j.cej.2015.10.033]
[10]
Sharma, A.; Lee, B.K. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media. J. Environ. Manage., 2016, 165, 1-10.
[http://dx.doi.org/10.1016/j.jenvman.2015.09.013] [PMID: 26386660]
[11]
Wang, B.; Zhang, G.; Leng, X.; Sun, Z.; Zheng, S. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts. J. Hazard. Mater., 2015, 285, 212-220.
[http://dx.doi.org/10.1016/j.jhazmat.2014.11.031] [PMID: 25497036]
[12]
Hu, C.; Lan, Y.; Qu, J.; Hu, X.; Wang, A. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. B, 2006, 110(9), 4066-4072.
[http://dx.doi.org/10.1021/jp0564400] [PMID: 16509698]
[13]
Wang, P. Ag-AgBr/TiO2/RGO nanocomposite: Synthesis, characterization, photocatalytic activity and aggregation evaluation. J. Environ. Sci., 2017, 56, 202-213.
[http://dx.doi.org/10.1016/j.jes.2016.04.032] [PMID: 28571856]
[14]
Sahoo, Y.; Goodarzi, A.; Swihart, M.T. Electrochemically assisted photocatalytic degradation of 4-Chlorophenol by ZnFe2O2-modified TiO2 nanotube array electrode under visible light irradiation. J. Chem. Phys. B, 2005, 109, 3879-3885.
[http://dx.doi.org/10.1021/jp045402y]
[15]
Huang, J.; Li, Y.; Jia, X.H.; Song, H.J. Preparation and tribological properties of core-shell Fe3O4@C microspheres. Tribol. Int., 2019, 29, 427-435.
[http://dx.doi.org/10.1016/j.triboint.2018.08.036]
[16]
Aghamali, A.; Khosravi, M.; Hamishehkar, H.; Modirshahla, N.; Behnajady, M.A. Preparation of novel high performance recoverable and natural sunlightdriven nanocomposite photocatalyst of Fe3O4/C/TiO2/N-CQDs. Mater. Sci. Semicond. Process., 2018, 87, 142-154.
[http://dx.doi.org/10.1016/j.mssp.2018.07.018]
[17]
Salamat, S.; Younesi, H.; Bahramifar, N. Synthesis of magnetic core-shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Adv, 2017, 7, 19391-19405.
[http://dx.doi.org/10.1039/C7RA01238A]
[18]
Zhang, Z.F.; Kim, C.H.; Fernandez, C.; Sundaram, M.M.; Ramakrishnappa, T.; Wang, Y.H.; Wang, L.S.; Sun, T.; Hu, X.M. Adsorption removal of methylene blue from aqueous solution on carbon-coated Fe3O4 microspheres functionalized with chloroacetic acid. Sci. Eng. Compos. Mater., 2018, 25(2), 353-361.
[http://dx.doi.org/10.1515/secm-2016-0138]
[19]
Li, Z.D.; Wang, H.L.; Wei, X.N. Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash. J. Alloys Compd., 2016, 659, 240-247.
[http://dx.doi.org/10.1016/j.jallcom.2015.10.297]
[20]
Beydoun, D.; Amal, R.; Low, G.; Mcevoy, S.L. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A, 2002, 180(2), 193-200.
[http://dx.doi.org/10.1016/S1381-1169(01)00429-0]
[21]
Li, S.K.; Huang, F.Z.; Wang, Y. Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants. J. Mater. Chem., 2011, 21, 7459-7466.
[http://dx.doi.org/10.1039/c0jm04569a]
[22]
Wang, P.; Chen, D.; Tang, F.Q. Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis. Langmuir, 2006, 22(10), 4832-4835.
[http://dx.doi.org/10.1021/la060112p] [PMID: 16649803]
[23]
Wang, W.; Jing, L.; Qu, Y.; Luan, Y.; Fu, H.; Xiao, Y. Facile fabrication of efficient AgBr-TiO2 nanoheterostructured photocatalyst for degrading pollutants and its photogenerated charge transfer mechanism. J. Hazard. Mater., 2012, 243, 169-178.
[http://dx.doi.org/10.1016/j.jhazmat.2012.10.017] [PMID: 23123002]
[24]
Wang, X.; Lim, T.T. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation. Water Res., 2013, 47(12), 4148-4158.
[http://dx.doi.org/10.1016/j.watres.2012.11.057] [PMID: 23562562]
[25]
Liu, X.X.; Zhang, D.; Guo, B. Recyclable and visible light sensitive Ag-AgBr/TiO2: Surface adsorption and photodegradation of MO. Appl. Surf. Sci., 2015, 353, 913-923.
[http://dx.doi.org/10.1016/j.apsusc.2015.06.206]
[26]
Wang, Y.; Liu, J.; Li, X.B. Organosilane-assisted transformation from core-shell to yolk-shell nanocomposites. Chem. Mater., 2011, 23(16), 3676-3684.
[http://dx.doi.org/10.1021/cm201182d]
[27]
Wang, H.; Wu, Y.; Xu, B.Q. Preparation and characterization of nano-sized anatase TiO2 cuboids for photocatalysis. Appl. Catal. B, 2005, 59, 139-146.
[http://dx.doi.org/10.1016/j.apcatb.2005.02.001]
[28]
Chadwick, M.D.; Goodwin, J.W.; Lawson, E.J.; Mills, P.D.A.; Vincent, B. Surface charge properties of colloidal titanium dioxide in ethylene glycol and water. Colloid Surf. A Physicochem. Eng. Asp., 2002, 203, 229-236.
[http://dx.doi.org/10.1016/S0927-7757(01)01101-3]
[29]
Tran, H.N.; You, S-J.; Hosseini-Bandegharaei, A.; Chao, H-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res., 2017, 120, 88-116.
[http://dx.doi.org/10.1016/j.watres.2017.04.014] [PMID: 28478298]
[30]
Lin, X.; Li, M.; Li, Y.J.; Chen, W. Enhancement of the catalytic activity of ordered mesoporous TiO2 by using carbon fiber support and appropriate evaluation of synergy between surface adsorption and photocatalysis by Langmuir-Hinshelwood (L-H) integration equation. RSC Adv, 2015, 5, 105227-105238.
[http://dx.doi.org/10.1039/C5RA21083F]
[31]
Asenjo, N.G.; Santamaria, R.; Blanco, C.; Granda, M.; Alvarez, P.; Menendez, R. Correct use of the Langmuir-Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon, 2013, 55, 62-69.
[http://dx.doi.org/10.1016/j.carbon.2012.12.010]
[32]
Kuai, L.; Geng, B.; Chen, X.; Zhao, Y.; Luo, Y. Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag-AgBr plasmonic photocatalyst. Langmuir, 2010, 26(24), 18723-18727.
[http://dx.doi.org/10.1021/la104022g] [PMID: 21114257]
[33]
Wang, X.P.; Lim, T.T. Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Appl. Catal. B, 2010, 100, 355-364.
[http://dx.doi.org/10.1016/j.apcatb.2010.08.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy