Review Article

纳米药物在乳腺癌和卵巢癌化疗中的应用前景:纳米制剂在临床研究中的应用

卷 28, 期 17, 2021

发表于: 19 August, 2020

页: [3271 - 3286] 页: 16

弟呕挨: 10.2174/0929867327666200819115403

价格: $65

摘要

背景:乳腺癌和卵巢癌是全世界妇女的主要健康问题。化疗构成了主要的治疗策略,而纳米载体的使用是一种改进它的好工具。一些纳米制剂已经获得批准,还有一些正在临床试验中,用于治疗这两种类型的癌症。 目的:这篇综述着重分析了目前临床研究中用于治疗这些肿瘤的纳米制剂。 结果:目前,有6种纳米制剂正在进行乳腺癌和卵巢癌的临床试验,其中大多数处于II期和III期。在乳腺癌治疗方面,这些纳米药物含有紫杉醇;对于卵巢癌,含有紫杉醇或喜树碱类似物的纳米制剂正在进行评估。这些抗肿瘤药物的纳米胶囊化便于给药并降低其全身毒性。然而,纳米制剂的最终批准和商业化可能会受到其他方面的限制,比如在体内和体外水平评价的疗效结果之间缺乏相关性,与常规抗肿瘤制剂相比,难以以可重复的方式大批量生产纳米制剂,且生产成本较高。然而,这些挑战并非不可克服,批准用于癌症治疗的纳米制剂的数量正在增加。 结论:总的来说,经过审查的纳米制剂显示出了优异的结果,显示出良好的安全性,更高的最大耐受剂量和类似甚至略优于免费药物的抗肿瘤疗效,加强了纳米化疗在乳腺和卵巢肿瘤中的应用。

关键词: 乳腺癌,喜树碱,化疗,脂质体,纳米载体,卵巢癌,紫杉醇

[1]
Ahmad, A. Breast cancer statistics: recent trends. Adv. Exp. Med. Biol., 2019, 1152, 1-7.
[http://dx.doi.org/10.1007/978-3-030-20301-6_1] [PMID: 31456176]
[2]
Waks, A.G.; Winer, E.P. Breast cancer treatment: a review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[3]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[4]
Watkins, E.J. Overview of breast cancer. JAAPA, 2019, 32(10), 13-17.
[http://dx.doi.org/10.1097/01.JAA.0000580524.95733.3d] [PMID: 31513033]
[5]
Phung, M.T.; Tin Tin, S.; Elwood, J.M. Prognostic models for breast cancer: a systematic review. BMC Cancer, 2019, 19(1), 230.
[http://dx.doi.org/10.1186/s12885-019-5442-6] [PMID: 30871490]
[6]
Merino Bonilla, J.A.; Torres Tabanera, M.; Ros Mendoza, L.H. Breast cancer in the 21st century: from early detection to new therapies. Radiologia (Madr.), 2017, 59(5), 368-379.
[http://dx.doi.org/10.1016/j.rx.2017.06.003] [PMID: 28712528]
[7]
Uifălean, A.; Ilieş, M.; Nicoară, R.; Rus, L.M.; Hegheş, S.C.; Iuga, C-A. Concepts and challenges of biosimilars in breast cancer: the emergence of trastuzumab biosimilars. Pharmaceutics, 2018, 10(4), 168.
[http://dx.doi.org/10.3390/pharmaceutics10040168]] [PMID: 30257528]
[8]
Fabi, A.; Malaguti, P.; Vari, S.; Cognetti, F. First-line therapy in HER2 positive metastatic breast cancer: is the mosaic fully completed or are we missing additional pieces? J. Exp. Clin. Cancer Res., 2016, 35, 104.
[http://dx.doi.org/10.1186/s13046-016-0380-5] [PMID: 27357210]
[9]
Puzhko, S.; Gagnon, J.; Simard, J.; Knoppers, B.M.; Siedlikowski, S.; Bartlett, G. Health professionals’ perspectives on breast cancer risk stratification: understanding evaluation of risk versus screening for disease. Public Health Rev., 2019, 40, 2.
[http://dx.doi.org/10.1186/s40985-019-0111-5] [PMID: 30858992]
[10]
de Melo Gagliato, D.; Chavez-MacGregor, M. Delays in adjuvant chemotherapy among breast cancer patients: an unintended consequence of breast surgery? Ann. Surg. Oncol., 2018, 25(7), 1786-1787.
[http://dx.doi.org/10.1245/s10434-018-6415-8] [PMID: 29600346]
[11]
Naito, Y.; Kai, Y.; Ishikawa, T.; Fujita, T.; Uehara, K.; Doihara, H.; Tokunaga, S.; Shimokawa, M.; Ito, Y.; Saeki, T. Chemotherapy-induced nausea and vomiting in patients with breast cancer: a prospective cohort study. Breast Cancer, 2020, 27(1), 122-128.
[http://dx.doi.org/10.1007/s12282-019-01001-1]] [PMID: 31407150]
[12]
Abdel-Fatah, T.M.A.; Ali, R.; Sadiq, M.; Moseley, P.M.; Mesquita, K.A.; Ball, G.; Green, A.R.; Rakha, E.A.; Chan, S.Y.T.; Madhusudan, S. ERCC1 is a predictor of anthracycline resistance and taxane sensitivity in early stage or locally advanced breast cancers. Cancers (Basel), 2019, 11(8), E1149.
[http://dx.doi.org/10.3390/cancers11081149] [PMID: 31405143]
[13]
Denduluri, N.; Somerfield, M.R.; Giordano, S.H. Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO clinical practice guideline focused update summary. J. Oncol. Pract., 2018, 14(8), 508-510.
[http://dx.doi.org/10.1200/JOP.18.00207] [PMID: 29924666]
[14]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[15]
Howard, D.; Garcia-Parra, J.; Healey, G.D.; Amakiri, C.; Margarit, L.; Francis, L.W.; Gonzalez, D.; Conlan, R.S. Antibody-drug conjugates and other nanomedicines: the frontier of gynaecological cancer treatment. Interface Focus, 2016, 6(6), 20160054.
[http://dx.doi.org/10.1098/rsfs.2016.0054] [PMID: 27920893]
[16]
Nieuwenhuyzen-de Boer, G.M.; van der Kooy, J.; van Beekhuizen, H.J. Effectiveness and safety of the PlasmaJet® device in advanced stage ovarian carcinoma: a systematic review. J. Ovarian Res., 2019, 12(1), 71.
[http://dx.doi.org/10.1186/s13048-019-0545-x] [PMID: 31362769]
[17]
Zhang, Y.; Sriraman, S.K.; Kenny, H.A.; Luther, E.; Torchilin, V.; Lengyel, E. Reversal of chemoresistance in ovarian cancer by co-delivery of a P-glycoprotein inhibitor and paclitaxel in a liposomal platform. Mol. Cancer Ther., 2016, 15(10), 2282-2293.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0986] [PMID: 27466355]
[18]
Nash, Z.; Menon, U. Ovarian cancer screening: current status and future directions. Best Pract. Res. Clin. Obstet. Gynaecol., 2020, 65, 32-45.
[http://dx.doi.org/10.1016/j.bpobgyn.2020.02.010] [PMID: 32273169]
[19]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[20]
Eisenhauer, E.A. Real-world evidence in the treatment of ovarian cancer., Ann. Oncol., 2017, 28(suppl_8), viii61-viii65.
[http://dx.doi.org/10.1093/annonc/mdx443 ] [PMID: 29232466]
[21]
Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol., 2016, 13(4), 255-261.
[http://dx.doi.org/10.1038/nrclinonc.2015.224] [PMID: 26787282]
[22]
Armstrong, D.K.; Alvarez, R.D.; Bakkum-Gamez, J.N.; Barroilhet, L.; Behbakht, K.; Berchuck, A.; Berek, J.S.; Chen, L.M.; Cristea, M.; DeRosa, M.; ElNaggar, A.C.; Gershenson, D.M.; Gray, H.J.; Hakam, A.; Jain, A.; Johnston, C.; Leath, C.A. III.; Liu, J.; Mahdi, H.; Matei, D.; McHale, M.; McLean, K.; O’Malley, D.M.; Penson, R.T.; Percac-Lima, S.; Ratner, E.; Remmenga, S.W.; Sabbatini, P.; Werner, T.L.; Zsiros, E.; Burns, J.L.; Engh, A.M. NCCN guidelines insights: ovarian cancer, version 1.2019. J. Natl. Compr. Canc. Netw., 2019, 17(8), 896-909.
[http://dx.doi.org/10.6004/jnccn.2019.0039] [PMID: 31390583]
[23]
Tsibulak, I.; Zeimet, A.G.; Marth, C. Hopes and failures in front-line ovarian cancer therapy. Crit. Rev. Oncol. Hematol., 2019, 143, 14-19.
[http://dx.doi.org/10.1016/j.critrevonc.2019.08.002] [PMID: 31449982]
[24]
Afzal, M. Ameeduzzafar; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F. A.; Al-Malki, A. A. L.; Kazmi, I.; Kumar, V.; Kamal, M. A.; Nadeem, M.S.; Aslam, M.; Anwar, F., Nanomedicine in treatment of breast cancer - a challenge to conventional therapy. Semin. Cancer Biol., 2021, 69, 279-292.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.016]] [PMID: 31870940]
[25]
Montané, X.; Bajek, A.; Roszkowski, K.; Montornés, J.M.; Giamberini, M.; Roszkowski, S.; Kowalczyk, O.; Garcia-Valls, R.; Tylkowski, B. Encapsulation for cancer therapy. Molecules, 2020, 25(7), E1605.
[http://dx.doi.org/10.3390/molecules25071605] [PMID: 32244513]
[26]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[27]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[28]
Fraguas-Sánchez, A.I.; Martín-Sabroso, C.; Fernández-Carballido, A.; Torres-Suárez, A.I. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacol., 2019, 84(4), 689-706.
[http://dx.doi.org/10.1007/s00280-019-03910-6] [PMID: 31367789]
[29]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[30]
Gupta, S.; Pathak, Y.; Gupta, M.K.; Vyas, S.P. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs. targeted. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4066-4088.
[http://dx.doi.org/10.1080/21691401.2019.1677680] [PMID: 31625408]
[31]
Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev., 2018, 130, 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[32]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[33]
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
[http://dx.doi.org/10.1007/978-1-60761-609-2_3] [PMID: 20217587]
[34]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[35]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[36]
Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Cont. Rel., 2016, 244(Pt A), 108-121. http://dx.doi.org/10.1016/j.jconrel.2016.11.015 PMID: 27871992.
[37]
Kopeckova, K.; Eckschlager, T.; Sirc, J.; Hobzova, R.; Plch, J.; Hrabeta, J.; Michalek, J. Nanodrugs used in cancer therapy. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2019, 163(2), 122-131.
[http://dx.doi.org/10.5507/bp.2019.010] [PMID: 30967685]
[38]
Kumar, P.; Huo, P.; Liu, B. Formulation strategies for folate-targeted liposomes and their biomedical applications. Pharmaceutics, 2019, 11(8), E381.
[http://dx.doi.org/10.3390/pharmaceutics11080381] [PMID: 31382369]
[39]
Ghosh, S.; Carter, K.A.; Lovell, J.F. Liposomal formulations of photosensitizers. Biomaterials, 2019, 218, 119341.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119341] [PMID: 31336279]
[40]
Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther., 2019, 34(1)
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[41]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[42]
Khan, A. A.; Allemailem, K. S.; Almatroodi, S. A.; Almatroudi, A.; Rahmani, A. H. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech., 2020, 10(4), 163. https://doi.org/10.1007/s13205-020-2144-3 PMID: 32206497.
[43]
Wakaskar, R.R. Promising effects of nanomedicine in cancer drug delivery. J. Drug Target., 2018, 26(4), 319-324.
[http://dx.doi.org/10.1080/1061186X.2017.1377207] [PMID: 28875739]
[44]
Tila, D.; Ghasemi, S.; Yazdani-Arazi, S.N.; Ghanbarzadeh, S. Functional liposomes in the cancer-targeted drug delivery. J. Biomater. Appl., 2015, 30(1), 3-16.
[http://dx.doi.org/10.1177/0885328215578111] [PMID: 25823898]
[45]
Deodhar, S.; Dash, A.K. Long circulating liposomes: challenges and opportunities. Ther. Deliv., 2018, 9(12), 857-872.
[http://dx.doi.org/10.4155/tde-2018-0035] [PMID: 30444455]
[46]
Barkat, M.A.; Beg, S.; Pottoo, F.H.; Ahmad, F.J. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine (Lond.), 2019, 14(10), 1323-1341.
[http://dx.doi.org/10.2217/nnm-2018-0313] [PMID: 31124758]
[47]
Giordano, G.; Pancione, M.; Olivieri, N.; Parcesepe, P.; Velocci, M.; Di Raimo, T.; Coppola, L.; Toffoli, G.; D’Andrea, M.R. Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions. World J. Gastroenterol., 2017, 23(32), 5875-5886.
[http://dx.doi.org/10.3748/wjg.v23.i32.5875] [PMID: 28932079]
[48]
Yardley, D.A. nab-Paclitaxel mechanisms of action and delivery. J. Control. Release, 2013, 170(3), 365-372.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.041] [PMID: 23770008]
[49]
Lamichhane, S.; Lee, S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res., 2020, 43(1), 118-133.
[http://dx.doi.org/10.1007/s12272-020-01204-7] [PMID: 31916145]
[50]
Weaver, B.A. How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[51]
Bernabeu, E.; Cagel, M.; Lagomarsino, E.; Moretton, M.; Chiappetta, D.A. Paclitaxel: What has been done and the challenges remain ahead. Int. J. Pharm., 2017, 526(1-2), 474-495.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.016] [PMID: 28501439]
[52]
Du, X.; Khan, A.R.; Fu, M.; Ji, J.; Yu, A.; Zhai, G. Current development in the formulations of non-injection administration of paclitaxel. Int. J. Pharm., 2018, 542(1-2), 242-252.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.030] [PMID: 29555439]
[53]
Sofias, A.M.; Dunne, M.; Storm, G.; Allen, C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev., 2017, 122, 20-30.
[http://dx.doi.org/10.1016/j.addr.2017.02.003] [PMID: 28257998]
[54]
Luo, C.; Wang, Y.; Chen, Q.; Han, X.; Liu, X.; Sun, J.; He, Z. Advances of paclitaxel formulations based on nanosystem delivery technology. Mini Rev. Med. Chem., 2012, 12(5), 434-444.
[http://dx.doi.org/10.2174/138955712800493924] [PMID: 22303950]
[55]
Zhang, J.A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I. Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm., 2005, 59(1), 177-187.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.009]] [PMID: 15567316]
[56]
Fetterly, G.J.; Grasela, T.H.; Sherman, J.W.; Dul, J.L.; Grahn, A.; Lecomte, D.; Fiedler-Kelly, J.; Damjanov, N.; Fishman, M.; Kane, M.P.; Rubin, E.H.; Tan, A.R. Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin. Cancer Res., 2008, 14(18), 5856-5863.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1046]] [PMID: 18794097]
[57]
Winer, E.P.; Berry, D.A.; Woolf, S.; Duggan, D.; Kornblith, A.; Harris, L.N.; Michaelson, R.A.; Kirshner, J.A.; Fleming, G.F.; Perry, M.C.; Graham, M.L.; Sharp, S.A.; Keresztes, R.; Henderson, I.C.; Hudis, C.; Muss, H.; Norton, L. Failure of higher-dose paclitaxel to improve outcome in patients with metastatic breast cancer: cancer and leukemia group B trial 9342. J. Clin. Oncol., 2004, 22(11), 2061-2068.
[http://dx.doi.org/10.1200/JCO.2004.08.048] [PMID: 15169793]
[58]
Slingerland, M.; Guchelaar, H.J.; Rosing, H.; Scheulen, M.E.; van Warmerdam, L.J.; Beijnen, J.H.; Gelderblom, H. Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin. Ther., 2013, 35(12), 1946-1954.
[http://dx.doi.org/10.1016/j.clinthera.2013.10.009] [PMID: 24290734]
[59]
Schmitt-Sody, M.; Strieth, S.; Krasnici, S.; Sauer, B.; Schulze, B.; Teifel, M.; Michaelis, U.; Naujoks, K.; Dellian, M. Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin. Cancer Res., 2003, 9(6), 2335-2341.
[PMID: 12796403]
[60]
Zhao, W.; Zhuang, S.; Qi, X.R. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int. J. Nanomed, 2011, 6, 3087-3098.
[http://dx.doi.org/10.2147/IJN.S25399] [PMID: 22163162]
[61]
Awada, A.; Bondarenko, I.N.; Bonneterre, J.; Nowara, E.; Ferrero, J.M.; Bakshi, A.V.; Wilke, C.; Piccart, M. CT4002 study group. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann. Oncol., 2014, 25(4), 824-831.
[http://dx.doi.org/10.1093/annonc/mdu025] [PMID: 24667715]
[62]
Ignatiadis, M.; Zardavas, D.; Lemort, M.; Wilke, C.; Vanderbeeken, M.C.; D’Hondt, V.; De Azambuja, E.; Gombos, A.; Lebrun, F.; Dal Lago, L.; Bustin, F.; Maetens, M.; Ameye, L.; Veys, I.; Michiels, S.; Paesmans, M.; Larsimont, D.; Sotiriou, C.; Nogaret, J.M.; Piccart, M.; Awada, A. Feasibility study of EndoTAG-1, a tumor endothelial targeting agent, in combination with paclitaxel followed by FEC as induction therapy in HER2-negative breast cancer. PLoS One, 2016, 11(7), e0154009.
[http://dx.doi.org/10.1371/journal.pone.0154009] [PMID: 27454930]
[63]
Caruso, F.; Hyeon, T.; Rotello, V.M. Nanomedicine. Chem. Soc. Rev., 2012, 41(7), 2537-2538.
[http://dx.doi.org/10.1039/c2cs90005j] [PMID: 22388450]
[64]
Mukai, H.; Kato, K.; Esaki, T.; Ohsumi, S.; Hozomi, Y.; Matsubara, N.; Hamaguchi, T.; Matsumura, Y.; Goda, R.; Hirai, T.; Nambu, Y. Phase I study of NK105, a nanomicellar paclitaxel formulation, administered on a weekly schedule in patients with solid tumors. Invest. New Drugs, 2016, 34(6), 750-759.
[http://dx.doi.org/10.1007/s10637-016-0381-4] [PMID: 27595901]
[65]
Fujiwara, Y.; Mukai, H.; Saeki, T.; Ro, J.; Lin, Y.C.; Nagai, S.E.; Lee, K.S.; Watanabe, J.; Ohtani, S.; Kim, S.B.; Kuroi, K.; Tsugawa, K.; Tokuda, Y.; Iwata, H.; Park, Y.H.; Yang, Y.; Nambu, Y. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br. J. Cancer, 2019, 120(5), 475-480.
[http://dx.doi.org/10.1038/s41416-019-0391-z] [PMID: 30745582]
[66]
Pu, X.; Zhang, C.R.; Zhu, L.; Li, Q.L.; Huang, Q.M.; Zhang, L.; Luo, Y.G. Possible clues for camptothecin biosynthesis from the metabolites in camptothecin-producing plants. Fitoterapia, 2019, 134, 113-128.
[http://dx.doi.org/10.1016/j.fitote.2019.02.014] [PMID: 30794920]
[67]
Liu, Y.Q.; Li, W.Q.; Morris-Natschke, S.L.; Qian, K.; Yang, L.; Zhu, G.X.; Wu, X.B.; Chen, A.L.; Zhang, S.Y.; Nan, X.; Lee, K.H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev., 2015, 35(4), 753-789.
[http://dx.doi.org/10.1002/med.21342] [PMID: 25808858]
[68]
Chernov, L.; Deyell, R.J.; Anantha, M.; Dos Santos, N.; Gilabert-Oriol, R.; Bally, M.B. Optimization of liposomal topotecan for use in treating neuroblastoma. Cancer Med., 2017, 6(6), 1240-1254.
[http://dx.doi.org/10.1002/cam4.1083] [PMID: 28544814]
[69]
Beretta, G.L.; Gatti, L.; Perego, P.; Zaffaroni, N. Camptothecin resistance in cancer: insights into the molecular mechanisms of a DNA-damaging drug. Curr. Med. Chem., 2013, 20(12), 1541-1565.
[http://dx.doi.org/10.2174/0929867311320120006] [PMID: 23432590]
[70]
Desjardins, J.P.; Abbott, E.A.; Emerson, D.L.; Tomkinson, B.E.; Leray, J.D.; Brown, E.N.; Hamilton, M.; Dihel, L.; Ptaszynski, M.; Bendele, R.A.; Richardson, F.C. Biodistribution of NX211, liposomal lurtotecan, in tumor-bearing mice. Anticancer Drugs, 2001, 12(3), 235-245.
[http://dx.doi.org/10.1097/00001813-200103000-00009] [PMID: 11290871]
[71]
Giles, F.J.; Tallman, M.S.; Garcia-Manero, G.; Cortes, J.E.; Thomas, D.A.; Wierda, W.G.; Verstovsek, S.; Hamilton, M.; Barrett, E.; Albitar, M.; Kantarjian, H.M. Phase I and pharmacokinetic study of a low-clearance, unilamellar liposomal formulation of lurtotecan, a topoisomerase 1 inhibitor, in patients with advanced leukemia. Cancer, 2004, 100(7), 1449-1458.
[http://dx.doi.org/10.1002/cncr.20132] [PMID: 15042679]
[72]
Emerson, D.L.; Bendele, R.; Brown, E.; Chiang, S.; Desjardins, J.P.; Dihel, L.C.; Gill, S.C.; Hamilton, M.; LeRay, J.D.; Moon-McDermott, L.; Moynihan, K.; Richardson, F.C.; Tomkinson, B.; Luzzio, M.J.; Baccanari, D. Antitumor efficacy, pharmacokinetics, and biodistribution of NX 211: a low-clearance liposomal formulation of lurtotecan. Clin. Cancer Res., 2000, 6(7), 2903-2912.
[PMID: 10914740]
[73]
Gelmon, K.; Hirte, H.; Fisher, B.; Walsh, W.; Ptaszynski, M.; Hamilton, M.; Onetto, N.; Eisenhauer, E. A phase 1 study of OSI-211 given as an intravenous infusion days 1, 2, and 3 every three weeks in patients with solid cancers. Invest. New Drugs, 2004, 22(3), 263-275.
[http://dx.doi.org/10.1023/B:DRUG.0000026252.86842.e2] [PMID: 15122073]
[74]
Seiden, M.V.; Muggia, F.; Astrow, A.; Matulonis, U.; Campos, S.; Roche, M.; Sivret, J.; Rusk, J.; Barrett, E. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol. Oncol., 2004, 93(1), 229-232.
[http://dx.doi.org/10.1016/j.ygyno.2003.12.037] [PMID: 15047241]
[75]
Zamboni, W.C.; Strychor, S.; Joseph, E.; Walsh, D.R.; Zamboni, B.A.; Parise, R.A.; Tonda, M.E.; Yu, N.Y.; Engbers, C.; Eiseman, J.L. Plasma, tumor, and tissue disposition of STEALTH liposomal CKD-602 (S-CKD602) and nonliposomal CKD-602 in mice bearing A375 human melanoma xenografts. Clin. Cancer Res., 2007, 13(23), 7217-7223.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1035] [PMID: 18056203]
[76]
Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res., 2005, 11(23), 8230-8234.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1895] [PMID: 16322279]
[77]
Lee, D.H.; Kim, S.W.; Suh, C.; Lee, J.S.; Lee, J.H.; Lee, S.J.; Ryoo, B.Y.; Park, K.; Kim, J.S.; Heo, D.S.; Kim, N.K. Belotecan, new camptothecin analogue, is active in patients with small-cell lung cancer: results of a multicenter early phase II study. Ann. Oncol., 2008, 19(1), 123-127.
[http://dx.doi.org/10.1093/annonc/mdm437] [PMID: 17823384]
[78]
Lee, J.H.; Lee, J.M.; Lim, K.H.; Kim, J.K.; Ahn, S.K.; Bang, Y.J.; Hong, C.I. Preclinical and phase I clinical studies with Ckd-602, a novel camptothecin derivative. Ann. N. Y. Acad. Sci., 2000, 922, 324-325.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07055.x] [PMID: 11193913]
[79]
Yu, N.Y.; Conway, C.; Pena, R.L.; Chen, J.Y. STEALTH liposomal CKD-602, a topoisomerase I inhibitor, improves the therapeutic index in human tumor xenograft models. Anticancer Res., 2007, 27(4B), 2541-2545.
[PMID: 17695551]
[80]
Zamboni, W.C.; Houghton, P.J.; Hulstein, J.L.; Kirstein, M.; Walsh, J.; Cheshire, P.J.; Hanna, S.K.; Danks, M.K.; Stewart, C.F. Relationship between tumor extracellular fluid exposure to topotecan and tumor response in human neuroblastoma xenograft and cell lines. Cancer Chemother. Pharmacol., 1999, 43(4), 269-276.
[http://dx.doi.org/10.1007/s002800050894] [PMID: 10071976]
[81]
Zamboni, W.C.; Ramalingam, S.; Friedland, D.M.; Edwards, R.P.; Stoller, R.G.; Strychor, S.; Maruca, L.; Zamboni, B.A.; Belani, C.P.; Ramanathan, R.K. Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin. Cancer Res., 2009, 15(4), 1466-1472.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1405] [PMID: 19190127]
[82]
Gaur, S.; Wang, Y.; Kretzner, L.; Chen, L.; Yen, T.; Wu, X.; Yuan, Y.C.; Davis, M.; Yen, Y. Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer. Nanomedicine (Lond.), 2014, 10(7), 1477-1486.
[http://dx.doi.org/10.1016/j.nano.2014.04.003] [PMID: 24768630]
[83]
Eliasof, S.; Lazarus, D.; Peters, C.G.; Case, R.I.; Cole, R.O.; Hwang, J.; Schluep, T.; Chao, J.; Lin, J.; Yen, Y.; Han, H.; Wiley, D.T.; Zuckerman, J.E.; Davis, M.E. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc. Natl. Acad. Sci. USA, 2013, 110(37), 15127-15132.
[http://dx.doi.org/10.1073/pnas.1309566110] [PMID: 23980155]
[84]
Voss, M.H.; Hussain, A.; Vogelzang, N.; Lee, J.L.; Keam, B.; Rha, S.Y.; Vaishampayan, U.; Harris, W.B.; Richey, S.; Randall, J.M.; Shaffer, D.; Cohn, A.; Crowell, T.; Li, J.; Senderowicz, A.; Stone, E.; Figlin, R.; Motzer, R.J.; Haas, N.B.; Hutson, T. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann. Oncol., 2017, 28(11), 2754-2760.
[http://dx.doi.org/10.1093/annonc/mdx493] [PMID: 28950297]
[85]
Weiss, G.J.; Chao, J.; Neidhart, J.D.; Ramanathan, R.K.; Bassett, D.; Neidhart, J.A.; Choi, C.H.J.; Chow, W.; Chung, V.; Forman, S.J.; Garmey, E.; Hwang, J.; Kalinoski, D.L.; Koczywas, M.; Longmate, J.; Melton, R.J.; Morgan, R.; Oliver, J.; Peterkin, J.J.; Ryan, J.L.; Schluep, T.; Synold, T.W.; Twardowski, P.; Davis, M.E.; Yen, Y. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest. New Drugs, 2013, 31(4), 986-1000.
[http://dx.doi.org/10.1007/s10637-012-9921-8] [PMID: 23397498]
[86]
Sanoff, H.K.; Moon, D.H.; Moore, D.T.; Boles, J.; Bui, C.; Blackstock, W.; O’Neil, B.H.; Subramaniam, S.; McRee, A.J.; Carlson, C.; Lee, M.S.; Tepper, J.E.; Wang, A.Z. Phase I/II trial of nano-camptothecin CRLX101 with capecitabine and radiotherapy as neoadjuvant treatment for locally advanced rectal cancer. Nanomedicine (Lond.), 2019, 18, 189-195.
[http://dx.doi.org/10.1016/j.nano.2019.02.021] [PMID: 30858085]
[87]
Pham, E.; Yin, M.; Peters, C.G.; Lee, C.R.; Brown, D.; Xu, P.; Man, S.; Jayaraman, L.; Rohde, E.; Chow, A.; Lazarus, D.; Eliasof, S.; Foster, F.S.; Kerbel, R.S. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res., 2016, 76(15), 4493-4503.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3435] [PMID: 27325647]
[88]
Krasner, C. N.; Birrer, M. J.; Berlin, S. T.; Horowitz, N. S.; Buss, M. K.; Eliasof, S.; Garmey, E. G.; Hennessy, M. G.; Konstantinopoulos, P.; Matulonis, U. Phase II clinical trial evaluating CRLX101 in recurrent ovarian, tubal, and peritoneal cancer. J. Clin. Onco., 2014, 32(15_suppl), 5581- 5581..
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.5581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy