Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Perspectives in Breast and Ovarian Cancer Chemotherapy by Nanomedicine Approach: Nanoformulations in Clinical Research

Author(s): Cristina Martín-Sabroso, Ana Isabel Fraguas-Sánchez, Rafaela Raposo-González and Ana Isabel Torres-Suárez*

Volume 28, Issue 17, 2021

Published on: 19 August, 2020

Page: [3271 - 3286] Pages: 16

DOI: 10.2174/0929867327666200819115403

Price: $65

Abstract

Background: Breast and ovarian carcinomas represent major health problems in women worldwide. Chemotherapy constitutes the main treatment strategy, and the use of nanocarriers, a good tool to improve it. Several nanoformulations have already been approved, and others are under clinical trials for the treatment of both types of cancers.

Objective: This review focuses on the analysis of the nanoformulations that are under clinical research in the treatment of these neoplasms.

Results: Currently, there are 6 nanoformulations in clinical trials for breast and ovarian carcinomas, most of them in phase II and phase III. In the case of breast cancer treatment, these nanomedicines contain paclitaxel; and, for ovarian cancer, nanoformulations containing paclitaxel or camptothecin analogs are being evaluated. The nanoencapsulation of these antineoplastics facilitates their administration and reduces their systemic toxicity. Nevertheless, the final approval and commercialization of nanoformulations may be limited by other aspects like lack of correlation between the efficacy results evaluated at in vitro and in vivo levels, difficulty in producing large batches of nanoformulations in a reproducible manner and high production costs compared to conventional formulations of antineoplastics. However, these challenges are not insurmountable and the number of approved nanoformulations for cancer therapy is growing.

Conclusion: Reviewed nanoformulations have shown, in general, excellent results, demonstrating a good safety profile, a higher maximum tolerated dose and a similar or even slightly better antitumor efficacy compared to the administration of free drugs, reinforcing the use of nano-chemotherapy in both breast and ovarian tumors.

Keywords: Breast cancer, camptothecin, chemotherapy, liposomes, nanocarriers, ovarian cancer, paclitaxel.

[1]
Ahmad, A. Breast cancer statistics: recent trends. Adv. Exp. Med. Biol., 2019, 1152, 1-7.
[http://dx.doi.org/10.1007/978-3-030-20301-6_1] [PMID: 31456176]
[2]
Waks, A.G.; Winer, E.P. Breast cancer treatment: a review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[3]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[4]
Watkins, E.J. Overview of breast cancer. JAAPA, 2019, 32(10), 13-17.
[http://dx.doi.org/10.1097/01.JAA.0000580524.95733.3d] [PMID: 31513033]
[5]
Phung, M.T.; Tin Tin, S.; Elwood, J.M. Prognostic models for breast cancer: a systematic review. BMC Cancer, 2019, 19(1), 230.
[http://dx.doi.org/10.1186/s12885-019-5442-6] [PMID: 30871490]
[6]
Merino Bonilla, J.A.; Torres Tabanera, M.; Ros Mendoza, L.H. Breast cancer in the 21st century: from early detection to new therapies. Radiologia (Madr.), 2017, 59(5), 368-379.
[http://dx.doi.org/10.1016/j.rx.2017.06.003] [PMID: 28712528]
[7]
Uifălean, A.; Ilieş, M.; Nicoară, R.; Rus, L.M.; Hegheş, S.C.; Iuga, C-A. Concepts and challenges of biosimilars in breast cancer: the emergence of trastuzumab biosimilars. Pharmaceutics, 2018, 10(4), 168.
[http://dx.doi.org/10.3390/pharmaceutics10040168]] [PMID: 30257528]
[8]
Fabi, A.; Malaguti, P.; Vari, S.; Cognetti, F. First-line therapy in HER2 positive metastatic breast cancer: is the mosaic fully completed or are we missing additional pieces? J. Exp. Clin. Cancer Res., 2016, 35, 104.
[http://dx.doi.org/10.1186/s13046-016-0380-5] [PMID: 27357210]
[9]
Puzhko, S.; Gagnon, J.; Simard, J.; Knoppers, B.M.; Siedlikowski, S.; Bartlett, G. Health professionals’ perspectives on breast cancer risk stratification: understanding evaluation of risk versus screening for disease. Public Health Rev., 2019, 40, 2.
[http://dx.doi.org/10.1186/s40985-019-0111-5] [PMID: 30858992]
[10]
de Melo Gagliato, D.; Chavez-MacGregor, M. Delays in adjuvant chemotherapy among breast cancer patients: an unintended consequence of breast surgery? Ann. Surg. Oncol., 2018, 25(7), 1786-1787.
[http://dx.doi.org/10.1245/s10434-018-6415-8] [PMID: 29600346]
[11]
Naito, Y.; Kai, Y.; Ishikawa, T.; Fujita, T.; Uehara, K.; Doihara, H.; Tokunaga, S.; Shimokawa, M.; Ito, Y.; Saeki, T. Chemotherapy-induced nausea and vomiting in patients with breast cancer: a prospective cohort study. Breast Cancer, 2020, 27(1), 122-128.
[http://dx.doi.org/10.1007/s12282-019-01001-1]] [PMID: 31407150]
[12]
Abdel-Fatah, T.M.A.; Ali, R.; Sadiq, M.; Moseley, P.M.; Mesquita, K.A.; Ball, G.; Green, A.R.; Rakha, E.A.; Chan, S.Y.T.; Madhusudan, S. ERCC1 is a predictor of anthracycline resistance and taxane sensitivity in early stage or locally advanced breast cancers. Cancers (Basel), 2019, 11(8), E1149.
[http://dx.doi.org/10.3390/cancers11081149] [PMID: 31405143]
[13]
Denduluri, N.; Somerfield, M.R.; Giordano, S.H. Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO clinical practice guideline focused update summary. J. Oncol. Pract., 2018, 14(8), 508-510.
[http://dx.doi.org/10.1200/JOP.18.00207] [PMID: 29924666]
[14]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[15]
Howard, D.; Garcia-Parra, J.; Healey, G.D.; Amakiri, C.; Margarit, L.; Francis, L.W.; Gonzalez, D.; Conlan, R.S. Antibody-drug conjugates and other nanomedicines: the frontier of gynaecological cancer treatment. Interface Focus, 2016, 6(6), 20160054.
[http://dx.doi.org/10.1098/rsfs.2016.0054] [PMID: 27920893]
[16]
Nieuwenhuyzen-de Boer, G.M.; van der Kooy, J.; van Beekhuizen, H.J. Effectiveness and safety of the PlasmaJet® device in advanced stage ovarian carcinoma: a systematic review. J. Ovarian Res., 2019, 12(1), 71.
[http://dx.doi.org/10.1186/s13048-019-0545-x] [PMID: 31362769]
[17]
Zhang, Y.; Sriraman, S.K.; Kenny, H.A.; Luther, E.; Torchilin, V.; Lengyel, E. Reversal of chemoresistance in ovarian cancer by co-delivery of a P-glycoprotein inhibitor and paclitaxel in a liposomal platform. Mol. Cancer Ther., 2016, 15(10), 2282-2293.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0986] [PMID: 27466355]
[18]
Nash, Z.; Menon, U. Ovarian cancer screening: current status and future directions. Best Pract. Res. Clin. Obstet. Gynaecol., 2020, 65, 32-45.
[http://dx.doi.org/10.1016/j.bpobgyn.2020.02.010] [PMID: 32273169]
[19]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[20]
Eisenhauer, E.A. Real-world evidence in the treatment of ovarian cancer., Ann. Oncol., 2017, 28(suppl_8), viii61-viii65.
[http://dx.doi.org/10.1093/annonc/mdx443 ] [PMID: 29232466]
[21]
Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol., 2016, 13(4), 255-261.
[http://dx.doi.org/10.1038/nrclinonc.2015.224] [PMID: 26787282]
[22]
Armstrong, D.K.; Alvarez, R.D.; Bakkum-Gamez, J.N.; Barroilhet, L.; Behbakht, K.; Berchuck, A.; Berek, J.S.; Chen, L.M.; Cristea, M.; DeRosa, M.; ElNaggar, A.C.; Gershenson, D.M.; Gray, H.J.; Hakam, A.; Jain, A.; Johnston, C.; Leath, C.A. III.; Liu, J.; Mahdi, H.; Matei, D.; McHale, M.; McLean, K.; O’Malley, D.M.; Penson, R.T.; Percac-Lima, S.; Ratner, E.; Remmenga, S.W.; Sabbatini, P.; Werner, T.L.; Zsiros, E.; Burns, J.L.; Engh, A.M. NCCN guidelines insights: ovarian cancer, version 1.2019. J. Natl. Compr. Canc. Netw., 2019, 17(8), 896-909.
[http://dx.doi.org/10.6004/jnccn.2019.0039] [PMID: 31390583]
[23]
Tsibulak, I.; Zeimet, A.G.; Marth, C. Hopes and failures in front-line ovarian cancer therapy. Crit. Rev. Oncol. Hematol., 2019, 143, 14-19.
[http://dx.doi.org/10.1016/j.critrevonc.2019.08.002] [PMID: 31449982]
[24]
Afzal, M. Ameeduzzafar; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F. A.; Al-Malki, A. A. L.; Kazmi, I.; Kumar, V.; Kamal, M. A.; Nadeem, M.S.; Aslam, M.; Anwar, F., Nanomedicine in treatment of breast cancer - a challenge to conventional therapy. Semin. Cancer Biol., 2021, 69, 279-292.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.016]] [PMID: 31870940]
[25]
Montané, X.; Bajek, A.; Roszkowski, K.; Montornés, J.M.; Giamberini, M.; Roszkowski, S.; Kowalczyk, O.; Garcia-Valls, R.; Tylkowski, B. Encapsulation for cancer therapy. Molecules, 2020, 25(7), E1605.
[http://dx.doi.org/10.3390/molecules25071605] [PMID: 32244513]
[26]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[27]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[28]
Fraguas-Sánchez, A.I.; Martín-Sabroso, C.; Fernández-Carballido, A.; Torres-Suárez, A.I. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacol., 2019, 84(4), 689-706.
[http://dx.doi.org/10.1007/s00280-019-03910-6] [PMID: 31367789]
[29]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[30]
Gupta, S.; Pathak, Y.; Gupta, M.K.; Vyas, S.P. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs. targeted. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4066-4088.
[http://dx.doi.org/10.1080/21691401.2019.1677680] [PMID: 31625408]
[31]
Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev., 2018, 130, 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[32]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[33]
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
[http://dx.doi.org/10.1007/978-1-60761-609-2_3] [PMID: 20217587]
[34]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[35]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[36]
Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Cont. Rel., 2016, 244(Pt A), 108-121. http://dx.doi.org/10.1016/j.jconrel.2016.11.015 PMID: 27871992.
[37]
Kopeckova, K.; Eckschlager, T.; Sirc, J.; Hobzova, R.; Plch, J.; Hrabeta, J.; Michalek, J. Nanodrugs used in cancer therapy. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2019, 163(2), 122-131.
[http://dx.doi.org/10.5507/bp.2019.010] [PMID: 30967685]
[38]
Kumar, P.; Huo, P.; Liu, B. Formulation strategies for folate-targeted liposomes and their biomedical applications. Pharmaceutics, 2019, 11(8), E381.
[http://dx.doi.org/10.3390/pharmaceutics11080381] [PMID: 31382369]
[39]
Ghosh, S.; Carter, K.A.; Lovell, J.F. Liposomal formulations of photosensitizers. Biomaterials, 2019, 218, 119341.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119341] [PMID: 31336279]
[40]
Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther., 2019, 34(1)
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[41]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[42]
Khan, A. A.; Allemailem, K. S.; Almatroodi, S. A.; Almatroudi, A.; Rahmani, A. H. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech., 2020, 10(4), 163. https://doi.org/10.1007/s13205-020-2144-3 PMID: 32206497.
[43]
Wakaskar, R.R. Promising effects of nanomedicine in cancer drug delivery. J. Drug Target., 2018, 26(4), 319-324.
[http://dx.doi.org/10.1080/1061186X.2017.1377207] [PMID: 28875739]
[44]
Tila, D.; Ghasemi, S.; Yazdani-Arazi, S.N.; Ghanbarzadeh, S. Functional liposomes in the cancer-targeted drug delivery. J. Biomater. Appl., 2015, 30(1), 3-16.
[http://dx.doi.org/10.1177/0885328215578111] [PMID: 25823898]
[45]
Deodhar, S.; Dash, A.K. Long circulating liposomes: challenges and opportunities. Ther. Deliv., 2018, 9(12), 857-872.
[http://dx.doi.org/10.4155/tde-2018-0035] [PMID: 30444455]
[46]
Barkat, M.A.; Beg, S.; Pottoo, F.H.; Ahmad, F.J. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine (Lond.), 2019, 14(10), 1323-1341.
[http://dx.doi.org/10.2217/nnm-2018-0313] [PMID: 31124758]
[47]
Giordano, G.; Pancione, M.; Olivieri, N.; Parcesepe, P.; Velocci, M.; Di Raimo, T.; Coppola, L.; Toffoli, G.; D’Andrea, M.R. Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions. World J. Gastroenterol., 2017, 23(32), 5875-5886.
[http://dx.doi.org/10.3748/wjg.v23.i32.5875] [PMID: 28932079]
[48]
Yardley, D.A. nab-Paclitaxel mechanisms of action and delivery. J. Control. Release, 2013, 170(3), 365-372.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.041] [PMID: 23770008]
[49]
Lamichhane, S.; Lee, S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res., 2020, 43(1), 118-133.
[http://dx.doi.org/10.1007/s12272-020-01204-7] [PMID: 31916145]
[50]
Weaver, B.A. How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[51]
Bernabeu, E.; Cagel, M.; Lagomarsino, E.; Moretton, M.; Chiappetta, D.A. Paclitaxel: What has been done and the challenges remain ahead. Int. J. Pharm., 2017, 526(1-2), 474-495.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.016] [PMID: 28501439]
[52]
Du, X.; Khan, A.R.; Fu, M.; Ji, J.; Yu, A.; Zhai, G. Current development in the formulations of non-injection administration of paclitaxel. Int. J. Pharm., 2018, 542(1-2), 242-252.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.030] [PMID: 29555439]
[53]
Sofias, A.M.; Dunne, M.; Storm, G.; Allen, C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev., 2017, 122, 20-30.
[http://dx.doi.org/10.1016/j.addr.2017.02.003] [PMID: 28257998]
[54]
Luo, C.; Wang, Y.; Chen, Q.; Han, X.; Liu, X.; Sun, J.; He, Z. Advances of paclitaxel formulations based on nanosystem delivery technology. Mini Rev. Med. Chem., 2012, 12(5), 434-444.
[http://dx.doi.org/10.2174/138955712800493924] [PMID: 22303950]
[55]
Zhang, J.A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I. Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm., 2005, 59(1), 177-187.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.009]] [PMID: 15567316]
[56]
Fetterly, G.J.; Grasela, T.H.; Sherman, J.W.; Dul, J.L.; Grahn, A.; Lecomte, D.; Fiedler-Kelly, J.; Damjanov, N.; Fishman, M.; Kane, M.P.; Rubin, E.H.; Tan, A.R. Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin. Cancer Res., 2008, 14(18), 5856-5863.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1046]] [PMID: 18794097]
[57]
Winer, E.P.; Berry, D.A.; Woolf, S.; Duggan, D.; Kornblith, A.; Harris, L.N.; Michaelson, R.A.; Kirshner, J.A.; Fleming, G.F.; Perry, M.C.; Graham, M.L.; Sharp, S.A.; Keresztes, R.; Henderson, I.C.; Hudis, C.; Muss, H.; Norton, L. Failure of higher-dose paclitaxel to improve outcome in patients with metastatic breast cancer: cancer and leukemia group B trial 9342. J. Clin. Oncol., 2004, 22(11), 2061-2068.
[http://dx.doi.org/10.1200/JCO.2004.08.048] [PMID: 15169793]
[58]
Slingerland, M.; Guchelaar, H.J.; Rosing, H.; Scheulen, M.E.; van Warmerdam, L.J.; Beijnen, J.H.; Gelderblom, H. Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin. Ther., 2013, 35(12), 1946-1954.
[http://dx.doi.org/10.1016/j.clinthera.2013.10.009] [PMID: 24290734]
[59]
Schmitt-Sody, M.; Strieth, S.; Krasnici, S.; Sauer, B.; Schulze, B.; Teifel, M.; Michaelis, U.; Naujoks, K.; Dellian, M. Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin. Cancer Res., 2003, 9(6), 2335-2341.
[PMID: 12796403]
[60]
Zhao, W.; Zhuang, S.; Qi, X.R. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int. J. Nanomed, 2011, 6, 3087-3098.
[http://dx.doi.org/10.2147/IJN.S25399] [PMID: 22163162]
[61]
Awada, A.; Bondarenko, I.N.; Bonneterre, J.; Nowara, E.; Ferrero, J.M.; Bakshi, A.V.; Wilke, C.; Piccart, M. CT4002 study group. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann. Oncol., 2014, 25(4), 824-831.
[http://dx.doi.org/10.1093/annonc/mdu025] [PMID: 24667715]
[62]
Ignatiadis, M.; Zardavas, D.; Lemort, M.; Wilke, C.; Vanderbeeken, M.C.; D’Hondt, V.; De Azambuja, E.; Gombos, A.; Lebrun, F.; Dal Lago, L.; Bustin, F.; Maetens, M.; Ameye, L.; Veys, I.; Michiels, S.; Paesmans, M.; Larsimont, D.; Sotiriou, C.; Nogaret, J.M.; Piccart, M.; Awada, A. Feasibility study of EndoTAG-1, a tumor endothelial targeting agent, in combination with paclitaxel followed by FEC as induction therapy in HER2-negative breast cancer. PLoS One, 2016, 11(7), e0154009.
[http://dx.doi.org/10.1371/journal.pone.0154009] [PMID: 27454930]
[63]
Caruso, F.; Hyeon, T.; Rotello, V.M. Nanomedicine. Chem. Soc. Rev., 2012, 41(7), 2537-2538.
[http://dx.doi.org/10.1039/c2cs90005j] [PMID: 22388450]
[64]
Mukai, H.; Kato, K.; Esaki, T.; Ohsumi, S.; Hozomi, Y.; Matsubara, N.; Hamaguchi, T.; Matsumura, Y.; Goda, R.; Hirai, T.; Nambu, Y. Phase I study of NK105, a nanomicellar paclitaxel formulation, administered on a weekly schedule in patients with solid tumors. Invest. New Drugs, 2016, 34(6), 750-759.
[http://dx.doi.org/10.1007/s10637-016-0381-4] [PMID: 27595901]
[65]
Fujiwara, Y.; Mukai, H.; Saeki, T.; Ro, J.; Lin, Y.C.; Nagai, S.E.; Lee, K.S.; Watanabe, J.; Ohtani, S.; Kim, S.B.; Kuroi, K.; Tsugawa, K.; Tokuda, Y.; Iwata, H.; Park, Y.H.; Yang, Y.; Nambu, Y. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br. J. Cancer, 2019, 120(5), 475-480.
[http://dx.doi.org/10.1038/s41416-019-0391-z] [PMID: 30745582]
[66]
Pu, X.; Zhang, C.R.; Zhu, L.; Li, Q.L.; Huang, Q.M.; Zhang, L.; Luo, Y.G. Possible clues for camptothecin biosynthesis from the metabolites in camptothecin-producing plants. Fitoterapia, 2019, 134, 113-128.
[http://dx.doi.org/10.1016/j.fitote.2019.02.014] [PMID: 30794920]
[67]
Liu, Y.Q.; Li, W.Q.; Morris-Natschke, S.L.; Qian, K.; Yang, L.; Zhu, G.X.; Wu, X.B.; Chen, A.L.; Zhang, S.Y.; Nan, X.; Lee, K.H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev., 2015, 35(4), 753-789.
[http://dx.doi.org/10.1002/med.21342] [PMID: 25808858]
[68]
Chernov, L.; Deyell, R.J.; Anantha, M.; Dos Santos, N.; Gilabert-Oriol, R.; Bally, M.B. Optimization of liposomal topotecan for use in treating neuroblastoma. Cancer Med., 2017, 6(6), 1240-1254.
[http://dx.doi.org/10.1002/cam4.1083] [PMID: 28544814]
[69]
Beretta, G.L.; Gatti, L.; Perego, P.; Zaffaroni, N. Camptothecin resistance in cancer: insights into the molecular mechanisms of a DNA-damaging drug. Curr. Med. Chem., 2013, 20(12), 1541-1565.
[http://dx.doi.org/10.2174/0929867311320120006] [PMID: 23432590]
[70]
Desjardins, J.P.; Abbott, E.A.; Emerson, D.L.; Tomkinson, B.E.; Leray, J.D.; Brown, E.N.; Hamilton, M.; Dihel, L.; Ptaszynski, M.; Bendele, R.A.; Richardson, F.C. Biodistribution of NX211, liposomal lurtotecan, in tumor-bearing mice. Anticancer Drugs, 2001, 12(3), 235-245.
[http://dx.doi.org/10.1097/00001813-200103000-00009] [PMID: 11290871]
[71]
Giles, F.J.; Tallman, M.S.; Garcia-Manero, G.; Cortes, J.E.; Thomas, D.A.; Wierda, W.G.; Verstovsek, S.; Hamilton, M.; Barrett, E.; Albitar, M.; Kantarjian, H.M. Phase I and pharmacokinetic study of a low-clearance, unilamellar liposomal formulation of lurtotecan, a topoisomerase 1 inhibitor, in patients with advanced leukemia. Cancer, 2004, 100(7), 1449-1458.
[http://dx.doi.org/10.1002/cncr.20132] [PMID: 15042679]
[72]
Emerson, D.L.; Bendele, R.; Brown, E.; Chiang, S.; Desjardins, J.P.; Dihel, L.C.; Gill, S.C.; Hamilton, M.; LeRay, J.D.; Moon-McDermott, L.; Moynihan, K.; Richardson, F.C.; Tomkinson, B.; Luzzio, M.J.; Baccanari, D. Antitumor efficacy, pharmacokinetics, and biodistribution of NX 211: a low-clearance liposomal formulation of lurtotecan. Clin. Cancer Res., 2000, 6(7), 2903-2912.
[PMID: 10914740]
[73]
Gelmon, K.; Hirte, H.; Fisher, B.; Walsh, W.; Ptaszynski, M.; Hamilton, M.; Onetto, N.; Eisenhauer, E. A phase 1 study of OSI-211 given as an intravenous infusion days 1, 2, and 3 every three weeks in patients with solid cancers. Invest. New Drugs, 2004, 22(3), 263-275.
[http://dx.doi.org/10.1023/B:DRUG.0000026252.86842.e2] [PMID: 15122073]
[74]
Seiden, M.V.; Muggia, F.; Astrow, A.; Matulonis, U.; Campos, S.; Roche, M.; Sivret, J.; Rusk, J.; Barrett, E. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol. Oncol., 2004, 93(1), 229-232.
[http://dx.doi.org/10.1016/j.ygyno.2003.12.037] [PMID: 15047241]
[75]
Zamboni, W.C.; Strychor, S.; Joseph, E.; Walsh, D.R.; Zamboni, B.A.; Parise, R.A.; Tonda, M.E.; Yu, N.Y.; Engbers, C.; Eiseman, J.L. Plasma, tumor, and tissue disposition of STEALTH liposomal CKD-602 (S-CKD602) and nonliposomal CKD-602 in mice bearing A375 human melanoma xenografts. Clin. Cancer Res., 2007, 13(23), 7217-7223.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1035] [PMID: 18056203]
[76]
Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res., 2005, 11(23), 8230-8234.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1895] [PMID: 16322279]
[77]
Lee, D.H.; Kim, S.W.; Suh, C.; Lee, J.S.; Lee, J.H.; Lee, S.J.; Ryoo, B.Y.; Park, K.; Kim, J.S.; Heo, D.S.; Kim, N.K. Belotecan, new camptothecin analogue, is active in patients with small-cell lung cancer: results of a multicenter early phase II study. Ann. Oncol., 2008, 19(1), 123-127.
[http://dx.doi.org/10.1093/annonc/mdm437] [PMID: 17823384]
[78]
Lee, J.H.; Lee, J.M.; Lim, K.H.; Kim, J.K.; Ahn, S.K.; Bang, Y.J.; Hong, C.I. Preclinical and phase I clinical studies with Ckd-602, a novel camptothecin derivative. Ann. N. Y. Acad. Sci., 2000, 922, 324-325.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07055.x] [PMID: 11193913]
[79]
Yu, N.Y.; Conway, C.; Pena, R.L.; Chen, J.Y. STEALTH liposomal CKD-602, a topoisomerase I inhibitor, improves the therapeutic index in human tumor xenograft models. Anticancer Res., 2007, 27(4B), 2541-2545.
[PMID: 17695551]
[80]
Zamboni, W.C.; Houghton, P.J.; Hulstein, J.L.; Kirstein, M.; Walsh, J.; Cheshire, P.J.; Hanna, S.K.; Danks, M.K.; Stewart, C.F. Relationship between tumor extracellular fluid exposure to topotecan and tumor response in human neuroblastoma xenograft and cell lines. Cancer Chemother. Pharmacol., 1999, 43(4), 269-276.
[http://dx.doi.org/10.1007/s002800050894] [PMID: 10071976]
[81]
Zamboni, W.C.; Ramalingam, S.; Friedland, D.M.; Edwards, R.P.; Stoller, R.G.; Strychor, S.; Maruca, L.; Zamboni, B.A.; Belani, C.P.; Ramanathan, R.K. Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin. Cancer Res., 2009, 15(4), 1466-1472.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1405] [PMID: 19190127]
[82]
Gaur, S.; Wang, Y.; Kretzner, L.; Chen, L.; Yen, T.; Wu, X.; Yuan, Y.C.; Davis, M.; Yen, Y. Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer. Nanomedicine (Lond.), 2014, 10(7), 1477-1486.
[http://dx.doi.org/10.1016/j.nano.2014.04.003] [PMID: 24768630]
[83]
Eliasof, S.; Lazarus, D.; Peters, C.G.; Case, R.I.; Cole, R.O.; Hwang, J.; Schluep, T.; Chao, J.; Lin, J.; Yen, Y.; Han, H.; Wiley, D.T.; Zuckerman, J.E.; Davis, M.E. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc. Natl. Acad. Sci. USA, 2013, 110(37), 15127-15132.
[http://dx.doi.org/10.1073/pnas.1309566110] [PMID: 23980155]
[84]
Voss, M.H.; Hussain, A.; Vogelzang, N.; Lee, J.L.; Keam, B.; Rha, S.Y.; Vaishampayan, U.; Harris, W.B.; Richey, S.; Randall, J.M.; Shaffer, D.; Cohn, A.; Crowell, T.; Li, J.; Senderowicz, A.; Stone, E.; Figlin, R.; Motzer, R.J.; Haas, N.B.; Hutson, T. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann. Oncol., 2017, 28(11), 2754-2760.
[http://dx.doi.org/10.1093/annonc/mdx493] [PMID: 28950297]
[85]
Weiss, G.J.; Chao, J.; Neidhart, J.D.; Ramanathan, R.K.; Bassett, D.; Neidhart, J.A.; Choi, C.H.J.; Chow, W.; Chung, V.; Forman, S.J.; Garmey, E.; Hwang, J.; Kalinoski, D.L.; Koczywas, M.; Longmate, J.; Melton, R.J.; Morgan, R.; Oliver, J.; Peterkin, J.J.; Ryan, J.L.; Schluep, T.; Synold, T.W.; Twardowski, P.; Davis, M.E.; Yen, Y. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest. New Drugs, 2013, 31(4), 986-1000.
[http://dx.doi.org/10.1007/s10637-012-9921-8] [PMID: 23397498]
[86]
Sanoff, H.K.; Moon, D.H.; Moore, D.T.; Boles, J.; Bui, C.; Blackstock, W.; O’Neil, B.H.; Subramaniam, S.; McRee, A.J.; Carlson, C.; Lee, M.S.; Tepper, J.E.; Wang, A.Z. Phase I/II trial of nano-camptothecin CRLX101 with capecitabine and radiotherapy as neoadjuvant treatment for locally advanced rectal cancer. Nanomedicine (Lond.), 2019, 18, 189-195.
[http://dx.doi.org/10.1016/j.nano.2019.02.021] [PMID: 30858085]
[87]
Pham, E.; Yin, M.; Peters, C.G.; Lee, C.R.; Brown, D.; Xu, P.; Man, S.; Jayaraman, L.; Rohde, E.; Chow, A.; Lazarus, D.; Eliasof, S.; Foster, F.S.; Kerbel, R.S. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res., 2016, 76(15), 4493-4503.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3435] [PMID: 27325647]
[88]
Krasner, C. N.; Birrer, M. J.; Berlin, S. T.; Horowitz, N. S.; Buss, M. K.; Eliasof, S.; Garmey, E. G.; Hennessy, M. G.; Konstantinopoulos, P.; Matulonis, U. Phase II clinical trial evaluating CRLX101 in recurrent ovarian, tubal, and peritoneal cancer. J. Clin. Onco., 2014, 32(15_suppl), 5581- 5581..
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.5581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy