Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

轻度认知障碍中基质金属蛋白酶,其组织抑制剂与白色物质病变之间的关联

卷 17, 期 6, 2020

页: [547 - 555] 页: 9

弟呕挨: 10.2174/1567205017666200810171322

价格: $65

摘要

背景:白质病变常见于轻度认知障碍和阿尔茨海默氏病。基质金属蛋白酶和金属蛋白酶的组织抑制剂与β-淀粉样蛋白分解代谢和血脑屏障通透性有关。但是,尚不清楚它们是否与阿尔茨海默氏病的白质病变有关。 目的:本研究的目的是探讨淀粉样蛋白阳性轻度认知障碍患者中基质金属蛋白酶和金属蛋白酶组织抑制剂与白质变性的关系。 方法:对30名轻度轻度认知障碍患者(男14例,女16例;平均年龄75.6±5.8岁)进行了磁共振成像,11C-匹兹堡复合B正电子发射断层显像和18F-氟脱氧葡萄糖正电子发射断层显像。使用多重测定法测量血浆基质金属蛋白酶和金属蛋白酶组织抑制剂的水平。所有受试者的脑淀粉样蛋白负荷异常。使用Fazekas量表根据白质病变的存在将受试者分为两组。比较两组的认知功能测试结果,即平均11 C-匹兹堡化合物B和18 F-氟脱氧葡萄糖的摄取,基质金属蛋白酶和金属蛋白酶组织抑制剂的浓度,以及基质金属蛋白酶/组织金属蛋白酶抑制剂的比率。进行了相关性分析,以研究Fazekas量表评分与临床和神经影像变量以及基质金属蛋白酶浓度和金属蛋白酶组织抑制剂之间的关系。 结果:基质金属蛋白酶-2,-8和-9水平,基质金属蛋白酶-2 /金属蛋白酶-2组织抑制剂,基质金属蛋白酶-8 /金属蛋白酶-1组织抑制剂和基质金属蛋白酶-9 /金属蛋白酶组织抑制剂-与无白质病变的组相比,有白质病变的组中1显着增加,金属蛋白酶-1和2的组织抑制剂水平显着降低。基质金属蛋白酶-2,-8和-9水平与Fazekas量表评分呈负相关,金属蛋白酶-1和-2组织抑制剂水平与Fazekas量表评分呈负相关。 结论:在阿尔茨海默氏病轻度认知障碍阶段,血浆基质金属蛋白酶2,-8,-9和金属蛋白酶-1和-2的组织抑制剂与白质病变有关。

关键词: 脑淀粉样蛋白负荷,认知功能,基质金属蛋白酶,轻度认知障碍,金属蛋白酶组织抑制剂,白质病变。

[1]
Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: A pathoanatomical study. Ann Neurol 1986; 19(3): 253-62.
[http://dx.doi.org/10.1002/ana.410190306] [PMID: 3963770]
[2]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[3]
Lazarus R, Prettyman R, Cherryman G. White matter lesions on magnetic resonance imaging and their relationship with vascular risk factors in memory clinic attenders. Int J Geriatr Psychiatry 2005; 20(3): 274-9.
[http://dx.doi.org/10.1002/gps.1283] [PMID: 15717341]
[4]
Kimura N, Nakama H, Nakamura K, Aso Y, Kumamoto T. Effect of white matter lesions on brain perfusion in Alzheimer’s disease. Dement Geriatr Cogn Disord 2012; 34(3-4): 256-61.
[http://dx.doi.org/10.1159/000345184] [PMID: 23183589]
[5]
Amar K, Bucks RS, Lewis T, Scott M, Wilcock GK. The effect of white matter low attenuation on cognitive performance in dementia of the Alzheimer type. Age Ageing 1996; 25(6): 443-8.
[http://dx.doi.org/10.1093/ageing/25.6.443] [PMID: 9003880]
[6]
Almkvist O, Wahlund LO, Andersson-Lundman G, Basun H, Bäckman L. White-matter hyperintensity and neuropsychological functions in dementia and healthy aging. Arch Neurol 1992; 49(6): 626-32.
[http://dx.doi.org/10.1001/archneur.1992.00530300062011] [PMID: 1596198]
[7]
Ishibashi M, Kimura N, Aso Y, Matsubara E. Effects of white matter lesions on brain perfusion in patients with mild cognitive impairment. Clin Neurol Neurosurg 2018; 168: 7-11.
[http://dx.doi.org/10.1016/j.clineuro.2018.02.030] [PMID: 29499394]
[8]
Shim YS, Yang DW, Roe CM, et al. Pathological correlates of white matter hyperintensities on magnetic resonance imaging. Dement Geriatr Cogn Disord 2015; 39(1-2): 92-104.
[http://dx.doi.org/10.1159/000366411] [PMID: 25401390]
[9]
Wardlaw JM, Smith EE, Biessels GJ, et al. STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12(8): 822-38.
[http://dx.doi.org/10.1016/S1474-4422(13)70124-8] [PMID: 23867200]
[10]
Freeze WM, Jacobs HIL, de Jong JJ, et al. White matter hyperintensities mediate the association between blood-brain barrier leakage and information processing speed. Neurobiol Aging 2020; 85: 113-22.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.017] [PMID: 31718926]
[11]
Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2001; 2(7): 502-11.
[http://dx.doi.org/10.1038/35081571] [PMID: 11433375]
[12]
Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: Structures, evolution, and diversification. FASEB J 1998; 12(12): 1075-95.
[http://dx.doi.org/10.1096/fasebj.12.12.1075] [PMID: 9737711]
[13]
Bruno MA, Mufson EJ, Wuu J, Cuello AC. Increased matrix metalloproteinase 9 activity in mild cognitive impairment. J Neuropathol Exp Neurol 2009; 68(12): 1309-18.
[http://dx.doi.org/10.1097/NEN.0b013e3181c22569] [PMID: 19915485]
[14]
Whelan CD, Mattsson N, Nagle MW, et al. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol Commun 2019; 7(1): 169.
[http://dx.doi.org/10.1186/s40478-019-0795-2] [PMID: 31694701]
[15]
Duits FH, Hernandez-Guillamon M, Montaner J, et al. Matrix metalloproteinases in Alzheimer’s disease and concurrent cerebral microbleeds. J Alzheimers Dis 2015; 48(3): 711-20.
[http://dx.doi.org/10.3233/JAD-143186] [PMID: 26402072]
[16]
Lim NK, Villemagne VL, Soon CP, et al. Investigation of matrix metalloproteinases, MMP-2 and MMP-9, in plasma reveals a decrease of MMP-2 in Alzheimer’s disease. J Alzheimers Dis 2011; 26(4): 779-86.
[http://dx.doi.org/10.3233/JAD-2011-101974] [PMID: 21694463]
[17]
Tuna G, Yener GG, Oktay G, İşlekel GH. Kİrkalİ FG. Kİrkalİ FG. Evaluation of Matrix Metalloproteinase-2 (MMP-2) and -9 (MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) in plasma from patients with neurodegenerative dementia. J Alzheimers Dis 2018; 66(3): 1265-73.
[http://dx.doi.org/10.3233/JAD-180752] [PMID: 30412498]
[18]
Nakaji K, Ihara M, Takahashi C, et al. Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents. Stroke 2006; 37(11): 2816-23.
[http://dx.doi.org/10.1161/01.STR.0000244808.17972.55] [PMID: 17008622]
[19]
Feng S, Cen J, Huang Y, et al. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 2011; 6(8) e20599
[http://dx.doi.org/10.1371/journal.pone.0020599] [PMID: 21857898]
[20]
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36(9): 1481-507.
[http://dx.doi.org/10.1177/0271678X16655551] [PMID: 27323783]
[21]
Brkic M, Balusu S, Van Wonterghem E, et al. Amyloid β oligomers disrupt Blood-CSF barrier integrity by activating matrix Metalloproteinases. J Neurosci 2015; 35(37): 12766-78.
[http://dx.doi.org/10.1523/JNEUROSCI.0006-15.2015] [PMID: 26377465]
[22]
Molgaard CA. Multivariate analysis of Hachinski’s Scale for discriminating senile dementia of the Alzheimer’s Type from multiinfarct dementia. Neuroepidemiology 1987; 6(3): 153-60.
[http://dx.doi.org/10.1159/000110111] [PMID: 3658084]
[23]
Jack CR Jr, Bennett DA, Blennow K, et al. Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[24]
Yi HA, Won KS, Chang HW, Kim HW. Association between white matter lesions and cerebral Aβ burden. PLoS One 2018; 13(9) e0204313
[http://dx.doi.org/10.1371/journal.pone.0204313] [PMID: 30248123]
[25]
Eguchi A, Kimura N, Aso Y, et al. Relationship between the Japanese version of the Montreal cognitive assessment and PET imaging in subjects with mild cognitive impairment. Curr Alzheimer Res 2019; 16(9): 852-60.
[http://dx.doi.org/10.2174/1567205016666190805155230] [PMID: 31385770]
[26]
Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002; 17(1): 302-16.
[http://dx.doi.org/10.1006/nimg.2002.1208] [PMID: 12482085]
[27]
Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 2008; 131(Pt 3): 665-80.
[http://dx.doi.org/10.1093/brain/awm336] [PMID: 18263627]
[28]
Egashira Y, Zhao H, Hua Y, Keep RF, Xi G. White matter injury after subarachnoid hemorrhage: Role of blood-brain barrier disruption and matrix metalloproteinase-9. Stroke 2015; 46(10): 2909-15.
[http://dx.doi.org/10.1161/STROKEAHA.115.010351] [PMID: 26374478]
[29]
Corbin ZA, Rost NS, Lorenzano S, et al. White matter hyperintensity volume correlates with matrix metalloproteinase-2 in acute ischemic stroke. J Stroke Cerebrovasc Dis 2014; 23(6): 1300-6.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2013.11.002] [PMID: 24439130]
[30]
Palm F, Pussinen PJ, Safer A, et al. Serum matrix metalloproteinase-8, tissue inhibitor of metalloproteinase and myeloperoxidase in ischemic stroke. Atherosclerosis 2018; 271: 9-14.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.02.012] [PMID: 29453088]
[31]
Tokuchi R, Hishikawa N, Kurata T, et al. Clinical and demographic predictors of mild cognitive impairment for converting to Alzheimer’s disease and reverting to normal cognition. J Neurol Sci 2014; 346(1-2): 288-92.
[http://dx.doi.org/10.1016/j.jns.2014.09.012] [PMID: 25248955]
[32]
Puzo C, Labriola C, Sugarman MA, et al. Independent effects of white matter hyperintensities on cognitive, neuropsychiatric, and functional decline: A longitudinal investigation using the National Alzheimer’s Coordinating Center Uniform Data Set. Alzheimers Res Ther 2019; 11(1): 64.
[http://dx.doi.org/10.1186/s13195-019-0521-0] [PMID: 31351489]
[33]
Liang Y, Sun X, Xu S, Liu Y, Huang R, Jia J, et al. Preclinical cerebral network connectivity evidence of deficits in mild white matter lesions. Front Aging Neurosci 2016; 8: 27.
[http://dx.doi.org/10.3389/fnagi.2016.00027]
[34]
Bjerke M, Zetterberg H, Edman Å, Blennow K, Wallin A, Andreasson U. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers Dis 2011; 27(3): 665-76.
[http://dx.doi.org/10.3233/JAD-2011-110566] [PMID: 21860087]
[35]
Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer’s disease and other neurodegenerative disorders. Cell Mol Life Sci 2019; 76(16): 3167-91.
[http://dx.doi.org/10.1007/s00018-019-03178-2] [PMID: 31197405]
[36]
Ihara M, Tomimoto H, Kinoshita M, et al. Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of white matter. J Cereb Blood Flow Metab 2001; 21(7): 828-34.
[http://dx.doi.org/10.1097/00004647-200107000-00008] [PMID: 11435795]
[37]
Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 2001; 21(19): 7724-32.
[http://dx.doi.org/10.1523/JNEUROSCI.21-19-07724.2001] [PMID: 11567062]
[38]
Romero JR, Vasan RS, Beiser AS, et al. Association of matrix metalloproteinases with MRI indices of brain ischemia and aging. Neurobiol Aging 2010; 31(12): 2128-35.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.11.004] [PMID: 19128858]
[39]
Lenglet S, Mach F, Montecucco F. Role of matrix metalloproteinase-8 in atherosclerosis. Mediators Inflamm 2013; 2013 659282
[http://dx.doi.org/10.1155/2013/659282] [PMID: 23365489]
[40]
Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 2006; 26(43): 10939-48.
[http://dx.doi.org/10.1523/JNEUROSCI.2085-06.2006] [PMID: 17065436]
[41]
Lorenzl S, Buerger K, Hampel H, Beal MF. Profiles of matrix metalloproteinases and their inhibitors in plasma of patients with dementia. Int Psychogeriatr 2008; 20(1): 67-76.
[http://dx.doi.org/10.1017/S1041610207005790] [PMID: 17697439]
[42]
Hedden T, Mormino EC, Amariglio RE, et al. Cognitive profile of amyloid burden and white matter hyperintensities in cognitively normal older adults. J Neurosci 2012; 32(46): 16233-42.
[http://dx.doi.org/10.1523/JNEUROSCI.2462-12.2012] [PMID: 23152607]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy