Review Article

弥漫性内源性脑桥胶质瘤(DIPG):突破与临床展望

卷 28, 期 17, 2021

发表于: 06 August, 2020

页: [3287 - 3317] 页: 31

弟呕挨: 10.2174/0929867327666200806110206

价格: $65

摘要

弥漫性内源性脑桥胶质瘤(DIPG)主要影响中位年龄为6-7岁的儿童。占所有儿童肿瘤的10%。不幸的是,DIPG预后较差,中位生存期一般小于16-24个月,独立于所接受的治疗。到目前为止,患有DIPG的儿童只能接受局部放疗或联合抗肿瘤药物治疗。在过去的十年里,ONC201被称为多巴胺受体拮抗剂,通过对公共化合物库的高通量筛选,被发现具有对几种癌细胞株的细胞毒活性。努力确定真正的ONC201目标,负责其抗扩散效果。假设的靶点是肿瘤坏死因子相关凋亡诱导配体刺激(TRAIL),靶向相同肿瘤抑制基因(FOXO3a)的两种致癌激酶(ERK/AKT系统),多巴胺受体(DRD2和DRD3亚型),最后是线粒体Caseynolitic蛋白酶P (ClpP)。ONC201综述,讨论了结构与活性关系与其他两类化合物,即动物脂肪和D9,已知的抗生素活性,但值得注意的是讨论和研究作为潜在的“领导”发展的新药物用于治疗DIPG。在这篇综述中,我们对ONC201、ADEPs和D9促凋亡活性进行了详细和关键的描述,并特别关注了其与靶标建立的特定相互作用。文献来源为Pubmed近十年发表的专利和临床试验报告。

关键词: 弥漫性内在脑桥胶质瘤(DIPG), ONC201

[1]
Harris, W. Case of pontine glioma, with special reference to the paths of gustatory sensation., Proc. R. Soc. Med., 1926, 19(Neurol Sect), 1-5..
[http://dx.doi.org/10.1177/003591572601900901 ] [PMID: 19985059]
[2]
Freeman, C.R.; Farmer, J.P. Pediatric brain stem gliomas: a review. Int. J. Radiat. Oncol. Biol. Phys., 1998, 40(2), 265-271.
[http://dx.doi.org/10.1016/S0360-3016(97)00572-5] [PMID: 9457808]
[3]
Cooney, T.; Lane, A.; Bartels, U.; Bouffet, E.; Goldman, S.; Leary, S.E.S.; Foreman, N.K.; Packer, R.J.; Broniscer, A.; Minturn, J.E.; Shih, C.S.; Chintagumpala, M.; Hassall, T.; Gottardo, N.G.; Dholaria, H.; Hoffman, L.; Chaney, B.; Baugh, J.; Doughman, R.; Leach, J.L.; Jones, B.V.; Fouladi, M.; Warren, K.E.; Monje, M. Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry study. Neuro-oncol., 2017, 19(9), 1279-1280.
[http://dx.doi.org/10.1093/neuonc/nox107] [PMID: 28821206]
[4]
Hargrave, D.; Bartels, U.; Bouffet, E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol., 2006, 7(3), 241-248.
[http://dx.doi.org/10.1016/S1470-2045(06)70615-5] [PMID: 16510333]
[5]
Gupta, N.; Goumnerova, L.C.; Manley, P.; Chi, S.N.; Neuberg, D.; Puligandla, M.; Fangusaro, J.; Goldman, S.; Tomita, T.; Alden, T.; DiPatri, A.; Rubin, J.B.; Gauvain, K.; Limbrick, D.; Leonard, J.; Geyer, J.R.; Leary, S.; Browd, S.; Wang, Z.; Sood, S.; Bendel, A.; Nagib, M.; Gardner, S.; Karajannis, M.A.; Harter, D.; Ayyanar, K.; Gump, W.; Bowers, D.C.; Weprin, B.; MacDonald, T.J.; Aguilera, D.; Brahma, B.; Robison, N.J.; Kiehna, E.; Krieger, M.; Sandler, E.; Aldana, P.; Khatib, Z.; Ragheb, J.; Bhatia, S.; Mueller, S.; Banerjee, A.; Bredlau, A-L.; Gururangan, S.; Fuchs, H.; Cohen, K.J.; Jallo, G.; Dorris, K.; Handler, M.; Comito, M.; Dias, M.; Nazemi, K.; Baird, L.; Murray, J.; Lindeman, N.; Hornick, J.L.; Malkin, H.; Sinai, C.; Greenspan, L.; Wright, K.D.; Prados, M.; Bandopadhayay, P.; Ligon, K.L.; Kieran, M.W. Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro-oncol., 2018, 20(11), 1547-1555.
[http://dx.doi.org/10.1093/neuonc/noy070] [PMID: 29741745]
[6]
Schwartzentruber, J.; Korshunov, A.; Liu, X-Y.; Jones, D.T.W.; Pfaff, E.; Jacob, K.; Sturm, D.; Fontebasso, A.M.; Quang, D.A.; Tönjes, M.; Hovestadt, V.; Albrecht, S.; Kool, M.; Nantel, A.; Konermann, C.; Lindroth, A.; Jäger, N.; Rausch, T.; Ryzhova, M.; Korbel, J-O.; Hielscher, T.; Hauser, P.; Garami, M.; Klekner, A.; Bognar, L.; Ebinger, M.; Schuhmann, M.U.; Scheurlen, W.; Pekrun, A.; Frühwald, M.C.; Roggendorf, W.; Kramm, C.; Dürken, M.; Atkinson, J.; Lepage, P.; Montpetit, A.; Zakrzewska, M.; Zakrzewski, K.; Liberski, P.P.; Dong, Z.; Siegel, P.; Kulozik, A.E.; Zapatka, M.; Guha, A.; Malkin, D.; Felsberg, J.; Reifenberger, G.; von Deimling, A.; Ichimura, K.; Collins, V.P.; Witt, H.; Milde, T.; Witt, O.; Zhang, C.; Castelo-Branco, P.; Lichter, P.; Faury, D.; Tabori, U.; Plass, C.; Majewski, J.; Pfister, S.M.; Jabado, N. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482(7384), 226-231.
[http://dx.doi.org/10.1038/nature10833] [PMID: 22286061]
[7]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[8]
Robison, N.J.; Kieran, M.W. Diffuse intrinsic pontine glioma: a reassessment. J. Neurooncol., 2014, 119(1), 7-15.
[http://dx.doi.org/10.1007/s11060-014-1448-8] [PMID: 24792486]
[9]
Li, J.; Zhu, S.; Kozono, D.; Ng, K.; Futalan, D.; Shen, Y.; Akers, J.C.; Steed, T.; Kushwaha, D.; Schlabach, M.; Carter, B.S.; Kwon, C-H.; Furnari, F.; Cavenee, W.; Elledge, S.; Chen, C.C. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget, 2014, 5(4), 882-893.
[http://dx.doi.org/10.18632/oncotarget.1801] [PMID: 24658464]
[10]
Langmoen, I.A.; Lundar, T.; Storm-Mathisen, I.; Lie, S.O.; Hovind, K.H. Management of pediatric pontine gliomas. Childs Nerv. Syst., 1991, 7(1), 13-15.
[http://dx.doi.org/10.1007/BF00263825] [PMID: 2054800]
[11]
[12]
Allen, J.E.; Krigsfeld, G.; Mayes, P.A.; Patel, L.; Dicker, D.T.; Patel, A.S.; Dolloff, N.G.; Messaris, E.; Scata, K.A.; Wang, W.; Zhou, J-Y.; Wu, G.S.; El-Deiry, W.S. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci. Transl. Med., 2013, 5(171)171ra17
[http://dx.doi.org/10.1126/scitranslmed.3004828] [PMID: 23390247]
[13]
Caragher, S.P.; Hall, R.R.; Ahsan, R.; Ahmed, A.U. Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro-oncol., 2018, 20(8), 1014-1025.
[http://dx.doi.org/10.1093/neuonc/nox210] [PMID: 29126252]
[14]
Madhukar, N.S.; Elemento, O.; Benes, C.H.; Garnett, M.J.; Stein, M.; Bertino, J.R.; Kaufman, H.L.; Arrillaga-Romany, I.; Batchelor, T.T.; Schalop, L.; Oster, W.; Stogniew, M.; Andreeff, M.; El-Deiry, W.S.; Allen, J.E. Proceedings of the 107th Annual Meeting of the American Association for Cancer Research (AACR), New Orleans, LA, Philadelphia (PA)April 16-20, 2016
[15]
Allen, J.E.; Krigsfeld, G.; Patel, L.; Mayes, P.A.; Dicker, D.T.; Wu, G.S.; El-Deiry, W.S. Identification of TRAIL-inducing compounds highlights small molecule ONC201/TIC10 as a unique anti-cancer agent that activates the TRAIL pathway. Mol. Cancer, 2015, 14(99), 99.
[http://dx.doi.org/10.1186/s12943-015-0346-9] [PMID: 25927855]
[16]
Refaat, A.; Abd-Rabou, A.; Reda, A. TRAIL combinations: the new ‘trail’ for cancer therapy.(Review) Oncol. Lett. , 2014, 7(5), 1327-1332.
[http://dx.doi.org/10.3892/ol.2014.1922] [PMID: 24765133]
[17]
Ukrainskaya, V.M.; Stepanov, A.V.; Glagoleva, I.S.; Knorre, V.D.; Belogurov, A.A. Death receptors: new opportunities in cancer therapy. Acta Naturae, 2017, 9(3), 55-63.
[PMID: 29104776]
[18]
Dai, X.; Zhang, J.; Arfuso, F.; Chinnathambi, A.; Zayed, M-E.; Alharbi, S.A.; Kumar, A.P.; Ahn, K.S.; Sethi, G. Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp. Biol. Med. (Maywood), 2015, 240(6), 760-773.
[http://dx.doi.org/10.1177/1535370215579167] [PMID: 25854879]
[19]
Allen, J.E.; Kline, C.L.B.; Prabhu, V.V.; Wagner, J.; Ishizawa, J.; Madhukar, N.; Lev, A.; Baumeister, M.; Zhou, L.; Lulla, A.; Stogniew, M.; Schalop, L.; Benes, C.; Kaufman, H.L.; Pottorf, R.S.; Nallaganchu, B.R.; Olson, G.L.; Al-Mulla, F.; Duvic, M.; Wu, G.S.; Dicker, D.T.; Talekar, M.K.; Lim, B.; Elemento, O.; Oster, W.; Bertino, J.; Flaherty, K.; Wang, M.L.; Borthakur, G.; Andreeff, M.; Stein, M.; El-Deiry, W.S. Discovery and clinical introduction of first-in-class imipridone ONC201. Oncotarget, 2016, 7(45), 74380-74392.
[http://dx.doi.org/10.18632/oncotarget.11814] [PMID: 27602582]
[20]
Kline, C.L.B.; Van den Heuvel, A.P.; Allen, J.E.; Prabhu, V.V.; Dicker, D.T.; El-Deiry, W.S. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci. Signal., 2016, 9(415), ra18.
[http://dx.doi.org/10.1126/scisignal.aac4374] [PMID: 26884600]
[21]
Allen, J.E.; Crowder, R.N.; El-Deiry, W.S. First-in-class small molecule ONC201 induces DR5 and cell death in tumor but not normal cells to provide a wide therapeutic index as an anti-cancer agent. PLoS One, 2015, 10(11)e0143082
[http://dx.doi.org/10.1371/journal.pone.0143082] [PMID: 26580220]
[22]
Greer, Y.E.; Porat-Shliom, N.; Nagashima, K.; Stuelten, C.; Crooks, D.; Koparde, V.N.; Gilbert, S.F.; Islam, C.; Ubaldini, A.; Ji, Y.; Gattinoni, L.; Soheilian, F.; Wang, X.; Hafner, M.; Shetty, J.; Tran, B.; Jailwala, P.; Cam, M.; Lang, M.; Voeller, D.; Reinhold, W.C.; Rajapakse, V.; Pommier, Y.; Weigert, R.; Linehan, W.M.; Lipkowitz, S. ONC201 kills breast cancer cells in vitro by targeting mitochondria. Oncotarget, 2018, 9(26), 18454-18479.
[http://dx.doi.org/10.18632/oncotarget.24862] [PMID: 29719618]
[23]
Ralff, M.D.; Kline, C.L.B.; Küçükkase, O.C.; Wagner, J.; Lim, B.; Dicker, D.T.; Prabhu, V.V.; Oster, W.; El-Deiry, W.S. ONC201 demonstrates anti-tumor effects in both triple negative and non-triple negative breast cancers through TRAIL-dependent and TRAIL-independent mechanisms. Mol. Cancer Ther., 2017, 16(7), 1290-1298.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0121] [PMID: 28424227]
[24]
Ishizawa, J.; Kojima, K.; Chachad, D.; Ruvolo, P.; Ruvolo, V.; Jacamo, R.O.; Borthakur, G.; Mu, H.; Zeng, Z.; Tabe, Y.; Allen, J.E.; Wang, Z.; Ma, W.; Lee, H.C.; Orlowski, R.; Sarbassov, D.; Lorenzi, P.L.; Huang, X.; Neelapu, S.S.; McDonnell, T.; Miranda, R.N.; Wang, M.; Kantarjian, H.; Konopleva, M.; Davis, R.E.; Andreeff, M. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies. Sci. Signal., 2016, 9(415), ra17.
[http://dx.doi.org/10.1126/scisignal.aac4380] [PMID: 26884599]
[25]
Yuan, X.; Kho, D.; Xu, J.; Gajan, A.; Wu, K.; Wu, G.S. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells. Oncotarget, 2017, 8(13), 21626-21638.
[http://dx.doi.org/10.18632/oncotarget.15451] [PMID: 28423492]
[26]
Cao, Z.; Liao, Q.; Su, M.; Huang, K.; Jin, J.; Cao, D. AKT and ERK dual inhibitors: The way forward? Cancer Lett., 2019, 459, 30-40.
[http://dx.doi.org/10.1016/j.canlet.2019.05.025] [PMID: 31128213]
[27]
Liu, Y.; Ao, X.; Ding, W.; Ponnusamy, M.; Wu, W.; Hao, X.; Yu, W.; Wang, Y.; Li, P.; Wang, J. Critical role of FOXO3a in carcinogenesis. Mol. Cancer, 2018, 17(1), 104.
[http://dx.doi.org/10.1186/s12943-018-0856-3] [PMID: 30045773]
[28]
Hannenhalli, S.; Kaestner, K.H. The evolution of Fox genes and their role in development and disease. Nat. Rev. Genet., 2009, 10(4), 233-240.
[http://dx.doi.org/10.1038/nrg2523] [PMID: 19274050]
[29]
Nho, R.S.; Hergert, P. FoxO3a and disease progression. World J. Biol. Chem., 2014, 5(3), 346-354.
[http://dx.doi.org/10.4331/wjbc.v5.i3.346] [PMID: 25225602]
[30]
Klotz, L-O.; Sánchez-Ramos, C.; Prieto-Arroyo, I.; Urbánek, P.; Steinbrenner, H.; Monsalve, M. Redox regulation of FoxO transcription factors. Redox Biol., 2015, 6, 51-72.
[http://dx.doi.org/10.1016/j.redox.2015.06.019] [PMID: 26184557]
[31]
Wang, X.; Hu, S.; Liu, L. Phosphorylation and acetylation modifications of FOXO3a: Independently or synergistically? Oncol. Lett., 2017, 13(5), 2867-2872.
[http://dx.doi.org/10.3892/ol.2017.5851] [PMID: 28521392]
[32]
Yang, W.; Dolloff, N.G.; El-Deiry, W.S. ERK and MDM2 prey on FOXO3a. Nat. Cell Biol., 2008, 10(2), 125-126.
[http://dx.doi.org/10.1038/ncb0208-125] [PMID: 18246039]
[33]
Yang, J-Y.; Hung, M-C. A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin. Cancer Res., 2009, 15(3), 752-757.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0124] [PMID: 19188143]
[34]
Beretta, G.L.; Corno, C.; Zaffaroni, N.; Perego, P. Role of FoxO proteins in cellular response to antitumor agents. Cancers (Basel), 2019, 11(1), 90.
[http://dx.doi.org/10.3390/cancers11010090] [PMID: 30646603]
[35]
Madhukar, N.S.; Khade, P.; Huang, L.; Gayvert, K.; Galletti, G.; Stogniew, M.; Allen, J.E.; Giannakakou, P.; Elemento, O. O. A new big-data paradigm for target identification and drug discovery. bioRxiv, 2017, 134973. [Preprint paper]..
[http://dx.doi.org/10.1101/134973]
[36]
Kline, C.L.B.; Ralff, M.D.; Lulla, A.R.; Wagner, J.M.; Abbosh, P.H.; Dicker, D.T.; Allen, J.E.; El-Deiry, W.S. Role of dopamine receptors in the anticancer activity of ONC201. Neoplasia, 2018, 20(1), 80-91.
[http://dx.doi.org/10.1016/j.neo.2017.10.002] [PMID: 29216597]
[37]
Prabhu, V.V.; Madhukar, N.S.; Gilvary, C.; Kline, C.L.B.; Oster, S.; El-Deiry, W.S.; Elemento, O.; Doherty, F.; VanEngelenburg, A.; Durrant, J.; Tarapore, R.S.; Deacon, S.; Charter, N.; Jung, J.; Park, D.M.; Gilbert, M.R.; Rusert, J.; Wechsler-Reya, R.; Arrillaga-Romany, I.; Batchelor, T.T.; Wen, P.Y.; Oster, W.; Allen, J.E. Dopamine receptor D5 is a modulator of tumor response to dopamine receptor D2 antagonism. Clin. Cancer Res., 2019, 25(7), 2305-2313.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2572] [PMID: 30559168]
[38]
Birtwistle, J.; Baldwin, D. Role of dopamine in schizophrenia and Parkinson’s disease. Br. J. Nurs., 1998, 7(14), 832-834, 836, 838-841.
[http://dx.doi.org/10.12968/bjon.1998.7.14.5636] [PMID: 9849144]
[39]
Cheng, H.W.; Liang, Y.H.; Kuo, Y.L.; Chuu, C.P.; Lin, C.Y.; Lee, M.H.; Wu, A.T.; Yeh, C.T.; Chen, E.I.; Whang-Peng, J.; Su, C-L.; Huang, C-Y.F. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis., 2015, 6(5)e1753
[http://dx.doi.org/10.1038/cddis.2015.77] [PMID: 25950483]
[40]
Chi, A.S.; Stafford, J.M.; Sen, N.; Possemato, R.; Placantonakis, D.; Hidalgo, E.T.; Harter, D.; Wisoff, J.; Golfinos, J.; Arrillaga-Romany, I.; Batchelor, T.; Wen, P.; Wakimoto, H.; Cahill, D.; Allen, J.E.; Oster, W.; Snuderl, M. Exth-42. H3K27M mutant gliomas are selectively killed by ONC201, a small molecule inhibitor of dopamine receptor D2. Neuro-Oncology, 2017, 19(suppl_6), vi81..
[http://dx.doi.org/10.1093/neuonc/nox168.334]
[41]
Stein, M.N.; Bertino, J.R.; Kaufman, H.L.; Mayer, T.; Moss, R.; Silk, A.; Chan, N.; Malhotra, J.; Rodriguez, L.; Aisner, J.; Aiken, R.D.; Haffty, B.G.; DiPaola, R.S.; Saunders, T.; Zloza, A.; Damare, S.; Beckett, Y.; Yu, B.; Najmi, S.; Gabel, C.; Dickerson, S.; Zheng, L.; El-Deiry, W.S.; Allen, J.E.; Stogniew, M.; Oster, W.; Mehnert, J.M. First-in-human clinical trial of oral ONC201 in patients with refractory solid tumors. Clin. Cancer Res., 2017, 23(15), 4163-4169.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2658] [PMID: 28331050]
[42]
Stein, M.N.; Malhotra, J.; Tarapore, R.S.; Malhotra, U.; Silk, A.W.; Chan, N.; Rodriguez, L.; Aisner, J.; Aiken, R.D.; Mayer, T.; Haffty, B.G.; Newman, J.H.; Aspromonte, S.M.; Bommareddy, P.K.; Estupinian, R.; Chesson, C.B.; Sadimin, E.T.; Li, S.; Medina, D.J.; Saunders, T.; Frankel, M.; Kareddula, A.; Damare, S.; Wesolowsky, E.; Gabel, C.; El-Deiry, W.S.; Prabhu, V.V.; Allen, J.E.; Stogniew, M.; Oster, W.; Bertino, J.R.; Libutti, S.K.; Mehnert, J.M.; Zloza, A. Safety and enhanced immunostimulatory activity of the DRD2 antagonist ONC201 in advanced solid tumor patients with weekly oral administration. J. Immunother. Cancer, 2019, 7(1), 136.
[http://dx.doi.org/10.1186/s40425-019-0599-8] [PMID: 31118108]
[43]
Arrillaga-Romany, I.; Chi, A.S.; Allen, J.E.; Oster, W.; Wen, P.Y.; Batchelor, T.T. A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma. Oncotarget, 2017, 8(45), 79298-79304.
[http://dx.doi.org/10.18632/oncotarget.17837] [PMID: 29108308]
[44]
Hall, M.D.; Odia, Y.; Allen, J.E.; Tarapore, R.; Khatib, Z.; Niazi, T.N.; Daghistani, D.; Schalop, L.; Chi, A.S.; Oster, W.; Mehta, M.P. First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M-mutant pediatric diffuse intrinsic pontine glioma: a case report. J. Neurosurg. Pediatr., 2019, 23(6), 1-7.
[http://dx.doi.org/10.3171/2019.2.PEDS18480] [PMID: 30952114]
[45]
Chi, A.S.; Tarapore, R.S.; Hall, M.D.; Shonka, N.; Gardner, S.; Umemura, Y.; Sumrall, A.; Khatib, Z.; Mueller, S.; Kline, C.; Zaky, W.; Khatua, S.; Weathers, S-P.; Odia, Y.; Niazi, T.N.; Daghistani, D.; Cherrick, I.; Korones, D.; Karajannis, M.A.; Kong, X-T.; Minturn, J.; Waanders, A.; Arillaga-Romany, I.; Batchelor, T.; Wen, P.Y.; Merdinger, K.; Schalop, L.; Stogniew, M.; Allen, J.E.; Oster, W.; Mehta, M.P. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J. Neurooncol., 2019, 145(1), 97-105.
[http://dx.doi.org/10.1007/s11060-019-03271-3] [PMID: 31456142]
[46]
Weissenrieder, J.S.; Neighbors, J.D.; Mailman, R.B.; Hohl, R.J. Cancer and the dopamine d2 receptor: a pharmacological perspective. J. Pharmacol. Exp. Ther., 2019, 370(1), 111-126.
[http://dx.doi.org/10.1124/jpet.119.256818] [PMID: 31000578]
[47]
Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 2018, 555(7695), 269-273.
[http://dx.doi.org/10.1038/nature25758] [PMID: 29466326]
[48]
Oncoceutics, ONC201, Briefing Document, Oncologic Drugs Advisory Committee Pediatric Subcommittee,. 2019.https://www.fda.gov/media/128027/download
[49]
Ishizawa, J.; Zarabi, S.F.; Davis, R.E.; Halgas, O.; Nii, T.; Jitkova, Y.; Zhao, R.; St-Germain, J.; Heese, L.E.; Egan, G.; Ruvolo, V.R.; Barghout, S.H.; Nishida, Y.; Hurren, R.; Ma, W.; Gronda, M.; Link, T.; Wong, K.; Mabanglo, M.; Kojima, K.; Borthakur, G.; MacLean, N.; Ma, M.C.J.; Leber, A.B.; Minden, M.D.; Houry, W.; Kantarjian, H.; Stogniew, M.; Raught, B.; Pai, E.F.; Schimmer, A.D.; Andreeff, M. Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell, 2019, 35(5), 721-737.e9.
[http://dx.doi.org/10.1016/j.ccell.2019.03.014] [PMID: 31056398]
[50]
Wang, S.; Dougan, D.A. The direct molecular target for Imipridone ONC201 is finally established. Cancer Cell, 2019, 35(5), 707-708.
[http://dx.doi.org/10.1016/j.ccell.2019.04.010] [PMID: 31085171]
[51]
Wong, K.S.; Houry, W.A. Chemical modulation of human mitochondrial ClpP: potential application in cancer therapeutics. ACS Chem. Biol., 2019, 14(11), 2349-2360.
[http://dx.doi.org/10.1021/acschembio.9b00347] [PMID: 31241890]
[52]
Amor, A.J.; Schmitz, K.R.; Baker, T.A.; Sauer, R.T. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Protein Sci., 2019, 28(4), 756-765.
[http://dx.doi.org/10.1002/pro.3590] [PMID: 30767302]
[53]
Pustylnikov, S.; Costabile, F.; Beghi, S.; Facciabene, A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl. Res., 2018, 202, 35-51.
[http://dx.doi.org/10.1016/j.trsl.2018.07.013] [PMID: 30144423]
[54]
Seo, J.H.; Rivadeneira, D.B.; Caino, M.C.; Chae, Y.C.; Speicher, D.W.; Tang, H.Y.; Vaira, V.; Bosari, S.; Palleschi, A.; Rampini, P.; Kossenkov, A.V.; Languino, L.R.; Altieri, D.C. The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis. PLoS Biol., 2016, 14(7)e1002507
[http://dx.doi.org/10.1371/journal.pbio.1002507] [PMID: 27389535]
[55]
Wong, K.S.; Houry, W.A. Recent advances in targeting human mitochondrial. Mitochondria in Health and in Sickness; Urbani, A; Babu, M., Ed.; Springer Nature Singapore Pte. Ltd., 2019, pp. 119-142.
[http://dx.doi.org/10.1007/978-981-13-8367-0_8]
[56]
Moreno-Cinos, C.; Goossens, K.; Salado, I.G.; Van Der Veken, P.; De Winter, H.; Augustyns, K.; Clp, P. ClpP protease, a promising antimicrobial target. Int. J. Mol. Sci., 2019, 20(9), 2232.
[http://dx.doi.org/10.3390/ijms20092232] [PMID: 31067645]
[57]
Zeiler, E.; Korotkov, V.S.; Lorenz-Baath, K.; Böttcher, T.; Sieber, S.A. Development and characterization of improved β-lactone-based anti-virulence drugs targeting ClpP. Bioorg. Med. Chem., 2012, 20(2), 583-591.
[http://dx.doi.org/10.1016/j.bmc.2011.07.047] [PMID: 21855356]
[58]
Brötz-Oesterhelt, H.; Beyer, D.; Kroll, H.P.; Endermann, R.; Ladel, C.; Schroeder, W.; Hinzen, B.; Raddatz, S.; Paulsen, H.; Henninger, K.; Bandow, J.E.; Sahl, H-G.; Labischinski, H. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat. Med., 2005, 11(10), 1082-1087.
[http://dx.doi.org/10.1038/nm1306] [PMID: 16200071]
[59]
Ye, F.; Li, J.; Yang, C.G. The development of small-molecule modulators for ClpP protease activity. Mol. Biosyst., 2016, 13(1), 23-31.
[http://dx.doi.org/10.1039/C6MB00644B] [PMID: 27831584]
[60]
Socha, A.M.; Tan, N.Y.; LaPlante, K.L.; Sello, J.K. Diversity-oriented synthesis of cyclic acyldepsipeptides leads to the discovery of a potent antibacterial agent. Bioorg. Med. Chem., 2010, 18(20), 7193-7202.
[http://dx.doi.org/10.1016/j.bmc.2010.08.032] [PMID: 20833054]
[61]
Stahl, M.; Korotkov, V.S.; Balogh, D.; Kick, L.M.; Gersch, M.; Pahl, A.; Kielkowski, P.; Richter, K.; Schneider, S.; Sieber, S.A. Selective activation of human caseinolytic protease P (ClpP). Angew. Chem. Int. Ed. Engl., 2018, 57(44), 14602-14607.
[http://dx.doi.org/10.1002/anie.201808189] [PMID: 30129683]
[62]
Stein, M.N.; Mayer, T.M.; Moss, R.A.; Silk, A.W.; Chan, N.; Haffty, B.G.; DiPaola, R.S.; Beckett, Y.; Bentlyewski, E.; Zheng, L.; Fang, B.; Allen, J.E.; Mehnert, J.M. First-inhuman dose escalation study of oral ONC201 in advanced solid tumors. J. Clin. Oncol., 2015, 33(15_suppl), TPS2623-TPS2623..
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.tps2623]
[63]
Graves, P.R.; Aponte-Collazo, L.J.; Fennell, E.M.J.; Graves, A.C.; Hale, A.E.; Dicheva, N.; Herring, L.E.; Gilbert, T.S.K.; East, M.P.; McDonald, I.M.; Lockett, M.R.; Ashamalla, H.; Moorman, N.J.; Karanewsky, D.S.; Iwanowicz, E.J.; Holmuhamedov, E.; Graves, L.M. Mitochondrial protease ClpP is a target for the anticancer compounds ONC201 and related analogues. ACS Chem. Biol., 2019, 14(5), 1020-1029.
[http://dx.doi.org/10.1021/acschembio.9b00222] [PMID: 31021596]
[64]
Wagner, J.; Kline, C.L.; Ralff, M.D.; Lev, A.; Lulla, A.; Zhou, L.; Olson, G.L.; Nallaganchu, B.R.; Benes, C.H.; Allen, J.E.; Prabhu, V.V.; Stogniew, M.; Oster, W.; El-Deiry, W.S. Preclinical evaluation of the imipridone family, analogs of clinical stage anti-cancer small molecule ONC201, reveals potent anti-cancer effects of ONC212. Cell Cycle, 2017, 16(19), 1790-1799.
[http://dx.doi.org/10.1080/15384101.2017.1325046] [PMID: 28489985]
[65]
Jacob, N.T.; Lockner, J.W.; Kravchenko, V.V.; Janda, K.D. Pharmacophore reassignment for induction of the immunosurveillance cytokine TRAIL. Angew. Chem. Int. Ed. Engl., 2014, 53(26), 6628-6631.
[http://dx.doi.org/10.1002/anie.201402133] [PMID: 24838721]
[66]
Ma, Z.; Gao, G.; Fang, K.; Sun, H. Development of novel anticancer agents with a scaffold of tetrahydropyrido[4,3-d]pyrimidine-2,4-dione. ACS Med. Chem. Lett., 2019, 10(2), 191-195.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00531] [PMID: 30783502]
[67]
Xu, R.L.Y. Imidazo-pyrimidine compounds, and preparation methods and application thereof.International Patent WO2016/184437, 2016.
[68]
Iwanowicz, E.J. Protein kinase regulators.International Patent WO2018/0319872018, , 2018.
[69]
Iwanowicz, E.J. Protein kinase regulators. International Patent WO2018/031990A1 , 2018.
[70]
Allen, J.E.; Prabhu, V.V.; Stogniew, M. Imipridones for Gliomas US.Patent US2020/0022982, 2020.
[71]
Kang, S.G.; Maurizi, M.R.; Thompson, M.; Mueser, T.; Ahvazi, B. Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP. J. Struct. Biol., 2004, 148(3), 338-352.
[http://dx.doi.org/10.1016/j.jsb.2004.07.004] [PMID: 15522782]
[72]
Wong, K.S.; Mabanglo, M.F.; Seraphim, T.V.; Mollica, A.; Mao, Y.Q.; Rizzolo, K.; Leung, E.; Moutaoufik, M.T.; Hoell, L.; Phanse, S.; Goodreid, J.; Barbosa, L.R.S.; Ramos, C.H.I.; Babu, M.; Mennella, V.; Batey, R.A.; Schimmer, A.D.; Houry, W.A. Acyldepsipeptide analogs dysregulate human mitochondrial ClpP protease activity and cause apoptotic cell death. Cell Chem. Biol., 2018, 25(8), 1017-1030.e9.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.014] [PMID: 30126533]
[73]
Greenberger, J.S.; Cassady, J.R.; Levene, M.B. Radiation therapy of thalamic, midbrain and brain stem gliomas. Radiology, 1977, 122(2), 463-468.
[http://dx.doi.org/10.1148/122.2.463] [PMID: 402018]
[74]
Halperin, E.C. Pediatric brain stem tumors: patterns of treatment failure and their implications for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 1985, 11(7), 1293-1298.
[http://dx.doi.org/10.1016/0360-3016(85)90244-5] [PMID: 2989230]
[75]
Packer, R.J.; Boyett, J.M.; Zimmerman, R.A.; Albright, A.L.; Kaplan, A.M.; Rorke, L.B.; Selch, M.T.; Cherlow, J.M.; Finlay, J.L.; Wara, W.M. Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy. A Childrens Cancer Group Phase I/II Trial. Cancer, 1994, 74(6), 1827-1834.
[http://dx.doi.org/10.1002/1097-0142(19940915)74:6<1827:AID-CNCR2820740628>3.0.CO;2-Q] [PMID: 8082086]
[76]
Zaghloul, M.S.; Eldebawy, E.; Ahmed, S.; Mousa, A.G.; Amin, A.; Refaat, A.; Zaky, I.; Elkhateeb, N.; Sabry, M. Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): a randomized controlled trial. Radiother. Oncol., 2014, 111(1), 35-40.
[http://dx.doi.org/10.1016/j.radonc.2014.01.013] [PMID: 24560760]
[77]
Janssens, G.O.; Gandola, L.; Bolle, S.; Mandeville, H.; Ramos-Albiac, M.; van Beek, K.; Benghiat, H.; Hoeben, B.; Morales La Madrid, A.; Kortmann, R.D.; Hargrave, D.; Menten, J.; Pecori, E.; Biassoni, V.; von Bueren, A.O.; van Vuurden, D.G.; Massimino, M.; Sturm, D.; Peters, M.; Kramm, C.M. Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: a matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. Eur. J. Cancer, 2017, 73, 38-47.
[http://dx.doi.org/10.1016/j.ejca.2016.12.007] [PMID: 28161497]
[78]
Lassaletta, A.; Strother, D.; Laperriere, N.; Hukin, J.; Vanan, M.I.; Goddard, K.; Lafay-Cousin, L.; Johnston, D.L.; Zelcer, S.; Zapotocky, M.; Rajagopal, R.; Ramaswamy, V.; Hawkins, C.; Tabori, U.; Huang, A.; Bartels, U.; Bouffet, E. Reirradiation in patients with diffuse intrinsic pontine gliomas: the Canadian experience. Pediatr. Blood Cancer, 2018, 65(6)e26988
[http://dx.doi.org/10.1002/pbc.26988] [PMID: 29369515]
[79]
Freeman, C.R.; Kepner, J.; Kun, L.E.; Sanford, R.A.; Kadota, R.; Mandell, L.; Friedman, H. A detrimental effect of a combined chemotherapy-radiotherapy approach in children with diffuse intrinsic brain stem gliomas? Int. J. Radiat. Oncol. Biol. Phys., 2000, 47(3), 561-564.
[http://dx.doi.org/10.1016/S0360-3016(00)00471-5] [PMID: 10837936]
[80]
Kilburn, L.B.; Kocak, M.; Baxter, P.; Poussaint, T.Y.; Paulino, A.C.; McIntyre, C.; Lemenuel-Diot, A.; Lopez-Diaz, C.; Kun, L.; Chintagumpala, M.; Su, J.M.; Broniscer, A.; Baker, J.N.; Hwang, E.I.; Fouladi, M.; Boyett, J.M.; Blaney, S.M. A pediatric brain tumor consortium phase II trial of capecitabine rapidly disintegrating tablets with concomitant radiation therapy in children with newly diagnosed diffuse intrinsic pontine gliomas. Pediatr. Blood Cancer, 2018, 65(2) , 10.1002/pbc.26832.
[http://dx.doi.org/10.1002/pbc.26832] [PMID: 29090526]
[81]
Cohen, K.J.; Heideman, R.L.; Zhou, T.; Holmes, E.J.; Lavey, R.S.; Bouffet, E.; Pollack, I.F. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children’s Oncology Group. Neuro-oncol., 2011, 13(4), 410-416.
[http://dx.doi.org/10.1093/neuonc/noq205] [PMID: 21345842]
[82]
Chassot, A.; Canale, S.; Varlet, P.; Puget, S.; Roujeau, T.; Negretti, L.; Dhermain, F.; Rialland, X.; Raquin, M.A.; Grill, J.; Dufour, C. Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J. Neurooncol., 2012, 106(2), 399-407.
[http://dx.doi.org/10.1007/s11060-011-0681-7] [PMID: 21858607]
[83]
Rizzo, D.; Scalzone, M.; Ruggiero, A.; Maurizi, P.; Attinà, G.; Mastrangelo, S.; Lazzareschi, I.; Ridola, V.; Colosimo, C.; Caldarelli, M.; Balducci, M.; Riccardi, R. Temozolomide in the treatment of newly diagnosed diffuse brainstem glioma in children: a broken promise? J. Chemother., 2015, 27(2), 106-110.
[http://dx.doi.org/10.1179/1973947814Y.0000000228] [PMID: 25466729]
[84]
Haas-Kogan, D.A.; Banerjee, A.; Poussaint, T.Y.; Kocak, M.; Prados, M.D.; Geyer, J.R.; Fouladi, M.; Broniscer, A.; Minturn, J.E.; Pollack, I.F.; Packer, R.J.; Boyett, J.M.; Kun, L.E. Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. Neuro-oncol., 2011, 13(3), 298-306.
[http://dx.doi.org/10.1093/neuonc/noq202] [PMID: 21339191]
[85]
Pollack, I.F.; Jakacki, R.I.; Blaney, S.M.; Hancock, M.L.; Kieran, M.W.; Phillips, P.; Kun, L.E.; Friedman, H.; Packer, R.; Banerjee, A.; Geyer, J.R.; Goldman, S.; Poussaint, T.Y.; Krasin, M.J.; Wang, Y.; Hayes, M.; Murgo, A.; Weiner, S.; Boyett, J.M. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro-oncol., 2007, 9(2), 145-160.
[http://dx.doi.org/10.1215/15228517-2006-031] [PMID: 17293590]
[86]
Jenkin, R.D.; Boesel, C.; Ertel, I.; Evans, A.; Hittle, R.; Ortega, J.; Sposto, R.; Wara, W.; Wilson, C.; Anderson, J. Brain-stem tumors in childhood: a prospective randomized trial of irradiation with and without adjuvant CCNU, VCR, and prednisone. A report of the Childrens Cancer Study Group. J. Neurosurg., 1987, 66(2), 227-233.
[http://dx.doi.org/10.3171/jns.1987.66.2.0227] [PMID: 3806204]
[87]
Jennings, M.T.; Sposto, R.; Boyett, J.M.; Vezina, L.G.; Holmes, E.; Berger, M.S.; Bruggers, C.S.; Bruner, J.M.; Chan, K.W.; Dusenbery, K.E.; Ettinger, L.J.; Fitz, C.R.; Lafond, D.; Mandelbaum, D.E.; Massey, V.; McGuire, W.; McNeely, L.; Moulton, T.; Pollack, I.F.; Shen, V. Preradiation chemotherapy in primary high-risk brainstem tumors: phase II study CCG-9941 of the Children’s Cancer Group. J. Clin. Oncol., 2002, 20(16), 3431-3437.
[http://dx.doi.org/10.1200/JCO.2002.04.109] [PMID: 12177103]
[88]
Ruggiero, A.; Rizzo, D.; Attinà, G.; Lazzareschi, I.; Maurizi, P.; Ridola, V.; Mastrangelo, S.; Migliorati, R.; Bertolini, P.; Colosimo, C.; Riccardi, R. Phase I study of temozolomide combined with oral etoposide in children with malignant glial tumors. J. Neurooncol., 2013, 113(3), 513-518.
[http://dx.doi.org/10.1007/s11060-013-1145-z] [PMID: 23666235]
[89]
Jansen, M.H.; van Vuurden, D.G.; Vandertop, W.P.; Kaspers, G.J. Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat. Rev., 2012, 38(1), 27-35.
[http://dx.doi.org/10.1016/j.ctrv.2011.06.007] [PMID: 21764221]
[90]
Ho, S.L.; Singh, R.; Zhou, Z.; Lavi, E.; Souweidane, M.M. Toxicity evaluation of prolonged convection-enhanced delivery of small-molecule kinase inhibitors in naïve rat brainstem. Childs Nerv. Syst., 2015, 31(2), 221-226.
[http://dx.doi.org/10.1007/s00381-014-2568-3] [PMID: 25269544]
[91]
Luther, N.; Cheung, N.K.; Souliopoulos, E.P.; Karampelas, I.; Bassiri, D.; Edgar, M.A.; Guo, H.F.; Pastan, I.; Gutin, P.H.; Souweidane, M.M. Interstitial infusion of glioma-targeted recombinant immunotoxin 8H9scFv-PE38. Mol. Cancer Ther., 2010, 9(4), 1039-1046.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0996] [PMID: 20371725]
[92]
Souweidane, M.M.; Occhiogrosso, G.; Mark, E.B.; Edgar, M.A. Interstitial infusion of IL13-PE38QQR in the rat brain stem. J. Neurooncol., 2004, 67(3), 287-293.
[http://dx.doi.org/10.1023/B:NEON.0000024219.47447.91] [PMID: 15164984]
[93]
Grasso, C.S.; Tang, Y.; Truffaux, N.; Berlow, N.E.; Liu, L.; Debily, M.A.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; Ponnuswami, A.; Chen, S.; Johung, T.B.; Sun, W.; Kogiso, M.; Du, Y.; Qi, L.; Huang, Y.; Hütt-Cabezas, M.; Warren, K.E.; Le Dret, L.; Meltzer, P.S.; Mao, H.; Quezado, M.; van Vuurden, D.G.; Abraham, J.; Fouladi, M.; Svalina, M.N.; Wang, N.; Hawkins, C.; Nazarian, J.; Alonso, M.M.; Raabe, E.H.; Hulleman, E.; Spellman, P.T.; Li, X.N.; Keller, C.; Pal, R.; Grill, J.; Monje, M. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med., 2015, 21(6), 555-559.
[http://dx.doi.org/10.1038/nm.3855] [PMID: 25939062]
[94]
Pollack, I.F.; Stewart, C.F.; Kocak, M.; Poussaint, T.Y.; Broniscer, A.; Banerjee, A.; Douglas, J.G.; Kun, L.E.; Boyett, J.M.; Geyer, J.R. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro-oncol., 2011, 13(3), 290-297.
[http://dx.doi.org/10.1093/neuonc/noq199] [PMID: 21292687]
[95]
Van Gool, S.W.; Makalowski, J.; Bonner, E.R.; Feyen, O.; Domogalla, M.P.; Prix, L.; Schirrmacher, V.; Nazarian, J.; Stuecker, W. Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience. Medicines (Basel), 2020, 7(5), 29-45.
[http://dx.doi.org/10.3390/medicines7050029] [PMID: 32438648]
[96]
Ensan, D.; Smil, D.; Zepeda-Velázquez, C.A.; Panagopoulos, D.; Wong, J.F.; Williams, E.P.; Adamson, R.; Bullock, A.N.; Kiyota, T.; Aman, A.; Roberts, O.G.; Edwards, A.M.; O’Meara, J.A.; Isaac, M.B.; Al-Awar, R. Targeting ALK2: an open science approach to developing therapeutics for the treatment of diffuse intrinsic pontine glioma. J. Med. Chem., 2020, 63(9), 4978-4996.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00395] [PMID: 32369358]
[97]
Bailey, C.P.; Figueroa, M.; Gangadharan, A.; Yang, Y.; Romero, M.M.; Kennis, B.A.; Yadavilli, S.; Henry, V.; Collier, T.; Monje, M.; Lee, D.A.; Wang, L.; Nazarian, J.; Gopalakrishnan, V.; Zaky, W.; Becher, O.J.; Chandra, J. Pharmacologic inhibition of lysine specific demethylase-1 (LSD1) as a therapeutic and immune-sensitization strategy in pediatric high grade glioma (pHGG). Neuro-oncol., 2020, 22(9), 1302-1314.
[http://dx.doi.org/10.1093/neuonc/noaa058]] [PMID: 32166329]
[98]
Ralff, M.D.; Lulla, A.R.; Wagner, J.; El-Deiry, W.S. ONC201: a new treatment option being tested clinically for recurrent glioblastoma. Transl. Cancer Res., 2017, 6(Suppl. 7), S1239-S1243.
[http://dx.doi.org/10.21037/tcr.2017.10.03] [PMID: 30175049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy