Review Article

一篇文献综述:西地那非在癌症联合治疗中的应用

卷 28, 期 11, 2021

发表于: 30 July, 2020

页: [2248 - 2259] 页: 12

弟呕挨: 10.2174/0929867327666200730165338

价格: $65

摘要

药物再利用的概念和西地那非或蓝色药丸多年来紧密联系在一起。事实上,除了最初作为肺系统降压药物的临床应用,西地那非还因其对勃起功能障碍的有益作用而闻名。此外,已有证据支持其在抗癌治疗中的价值,无论是单独使用还是与其他临床有效的化疗药物联合使用。在这篇综述中,我们重点关注了过去和最近的体内和体外研究,这些研究证明了西地那非在多种癌症中联合治疗的细胞和分子基础。我们强调了癌症细胞中不同的分子靶点以及不同的信号通路。西地那非通过一氧化氮(NO)/磷酸二酯酶5型(PDE5)依赖的方式促进细胞凋亡是最常见的机制之一。然而,自噬的激活以及抗肿瘤免疫的调节构成了西地那非触发的其他途径。总的来说,这些研究揭示了西地那非抗癌潜能的复杂性。因此,通过我们的审查,我们的目的是提出一个更新和简化的图片,这种重新利用西地那非在肿瘤学领域。

关键词: 西地那非,药物再利用,PDE-5抑制剂,癌症,联合治疗,癌症治疗

[1]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[2]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[3]
Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M-H.D.B. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov. Today, 2015, 20(8), 1027-1034.
[http://dx.doi.org/10.1016/j.drudis.2015.05.001] [PMID: 25975957]
[4]
Jourdan, J-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: a brief overview. J. Pharm. Pharmacol., 2020, 72(9), 1145-1151.
[http://dx.doi.org/10.1111/jphp.13273] [PMID: 32301512]
[5]
Naylor, S.; Schonfeld, J. Therapeutic drug repurposing, repositioning and rescue., Drug Discov. World Spring, 2014, 50-63..
[6]
Ghofrani, H.A.; Osterloh, I.H.; Grimminger, F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov., 2006, 5(8), 689-702.
[http://dx.doi.org/10.1038/nrd2030] [PMID: 16883306]
[7]
Morales, A.; Gingell, C.; Collins, M.; Wicker, P.A.; Osterloh, I.H. Clinical safety of oral sildenafil citrate (VIAGRA) in the treatment of erectile dysfunction. Int. J. Impot. Res., 1998, 10(2), 69-73.
[http://dx.doi.org/10.1038/sj.ijir.3900354] [PMID: 9647940]
[8]
Worldwide revenue of Pfizer's Viagra from 2003 to 2019. Available at:; https://www.statista.com/statistics/264827/pfizers-worldwide-viagra-revenue-since-2003/ (Accessed date: April 2020)..
[9]
Langtry, H.D.; Markham, A. Sildenafil: a review of its use in erectile dysfunction. Drugs, 1999, 57(6), 967-989.
[http://dx.doi.org/10.2165/00003495-199957060-00015] [PMID: 10400408]
[10]
Corbin, J.D.; Francis, S.H. Cyclic GMP phosphodiesterase-5: target of sildenafil. J. Biol. Chem., 1999, 274(20), 13729-13732.
[http://dx.doi.org/10.1074/jbc.274.20.13729] [PMID: 10318772]
[11]
Kosier, J.H.; Newton, M.; Smith, D. Sildenafil citrate (Viagra): oral medication for treating erectile dysfunction. Urol. Nurs., 1999, 19(2), 158-160.
[PMID: 10633767]
[12]
Krishnappa, P.; Fernandez-Pascual, E.; Carballido, J.; Martinez-Salamanca, J.I. Sildenafil/Viagra in the treatment of premature ejaculation. Int. J. Impot. Res., 2019, 31(2), 65-70.
[http://dx.doi.org/10.1038/s41443-018-0099-2] [PMID: 30837718]
[13]
Pantziarka, P.; Sukhatme, V.; Crispino, S.; Bouche, G.; Meheus, L.; Sukhatme, V.P. Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience, 2018, 12, 824.
[http://dx.doi.org/10.3332/ecancer.2018.824] [PMID: 29743944]
[14]
Das, A.; Durrant, D.; Salloum, F.N.; Xi, L.; Kukreja, R.C. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol. Ther., 2015, 147, 12-21.
[http://dx.doi.org/10.1016/j.pharmthera.2014.10.003] [PMID: 25444755]
[15]
Kouvelas, D.; Goulas, A.; Papazisis, G.; Sardeli, C.; Pourzitaki, C. PDE5 inhibitors: in vitro and in vivo pharmacological profile. Curr. Pharm. Des., 2009, 15(30), 3464-3475.
[http://dx.doi.org/10.2174/138161209789206971] [PMID: 19860692]
[16]
Keats, T.; Rosengren, R.J.; Ashton, J.C. The rationale for repurposing sildenafil for lung cancer treatment. Anticancer. Agents Med. Chem., 2018, 18(3), 367-374.
[http://dx.doi.org/10.2174/1871520617666171103100959] [PMID: 29110626]
[17]
Booth, L.; Roberts, J.L.; Rais, R.; Cutler, R.E. Jr.; Diala, I.; Lalani, A.S.; Hancock, J.F.; Poklepovic, A.; Dent, P. Neratinib augments the lethality of. [regorafenib + sildenafil]. J. Cell. Physiol., 2019, 234(4), 4874-4887.
[http://dx.doi.org/10.1002/jcp.27276] [PMID: 30203445]
[18]
Booth, L.; Roberts, J.L.; Poklepovic, A.; Gordon, S.; Dent, P. PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide. Oncotarget, 2017, 8(1), 1449-1468.
[http://dx.doi.org/10.18632/oncotarget.13640] [PMID: 27903966]
[19]
Domankevich, V.; Cohen, A.; Efrati, M.; Schmidt, M.; Rammensee, H-G.; Nair, S.S.; Tewari, A.; Kelson, I.; Keisari, Y. Combining alpha radiation-based brachytherapy with immunomodulators promotes complete tumor regression in mice via tumor-specific long-term immune response. Cancer Immunol. Immunother., 2019, 68(12), 1949-1958.
[http://dx.doi.org/10.1007/s00262-019-02418-5] [PMID: 31637474]
[20]
Tavallai, M.; Hamed, H.A.; Roberts, J.L.; Cruickshanks, N.; Chuckalovcak, J.; Poklepovic, A.; Booth, L.; Dent, P. Nexavar/Stivarga and viagra interact to kill tumor cells. J. Cell. Physiol., 2015, 230(9), 2281-2298.
[http://dx.doi.org/10.1002/jcp.24961] [PMID: 25704960]
[21]
Islam, B.N.; Sharman, S.K.; Hou, Y.; Bridges, A.E.; Singh, N.; Kim, S.; Kolhe, R.; Trillo-Tinoco, J.; Rodriguez, P.C.; Berger, F.G.; Sridhar, S.; Browning, D.D. Sildenafil suppresses inflammation-driven colorectal cancer in mice. Cancer Prev. Res. (Phila.), 2017, 10(7), 377-388.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0015] [PMID: 28468928]
[22]
Dhayade, S.; Kaesler, S.; Sinnberg, T.; Dobrowinski, H.; Peters, S.; Naumann, U.; Liu, H.; Hunger, R.E.; Thunemann, M.; Biedermann, T.; Schittek, B.; Simon, H.U.; Feil, S.; Feil, R. Sildenafil potentiates a cGMP-dependent pathway to promote melanoma growth. Cell Rep., 2016, 14(11), 2599-2610.
[http://dx.doi.org/10.1016/j.celrep.2016.02.028] [PMID: 26971999]
[23]
Loeb, S.; Ventimiglia, E.; Salonia, A.; Folkvaljon, Y.; Stattin, P. Meta-analysis of the association between phosphodiesterase inhibitors (PDE5Is) and risk of melanoma. J. Natl. Cancer Inst., 2017, 109(8)djx086
[http://dx.doi.org/10.1093/jnci/djx086] [PMID: 29117385]
[24]
Loeb, S.; Folkvaljon, Y.; Lambe, M.; Robinson, D.; Garmo, H.; Ingvar, C.; Stattin, P. Use of phosphodiesterase type 5 inhibitors for erectile dysfunction and risk of malignant melanoma. JAMA, 2015, 313(24), 2449-2455.
[http://dx.doi.org/10.1001/jama.2015.6604] [PMID: 26103029]
[25]
Adjei, A.A. Pharmacology and mechanism of action of pemetrexed. Clin. Lung Cancer, 2004, 5(Suppl. 2), S51-S55.
[http://dx.doi.org/10.3816/CLC.2004.s.003] [PMID: 15117425]
[26]
Park, J-H.; Lee, Y-R.; So, H-S.; Lee, K-K.; Lee, S-Y.; Moon, S-R.; Jo, H-J.; Lee, S.; Jeong, K.; Kwon, K-B.; Yang, S.H. The role of autophagy induced by pemetrexed in lung adenocarcinoma cells. Oncol. Rep., 2014, 31(5), 2365-2370.
[http://dx.doi.org/10.3892/or.2014.3071] [PMID: 24626722]
[27]
Booth, L.; Roberts, J.L.; Poklepovic, A.; Dent, P. PDE5 inhibitors enhance the lethality of.[pemetrexed + sorafenib]. Oncotarget, 2017, 8(8), 13464-13475.
[http://dx.doi.org/10.18632/oncotarget.14562] [PMID: 28088782]
[28]
Booth, L.; Roberts, J.L.; Poklepovic, A.; Dent, P. [pemetrexed + sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol. Ther., 2017, 18(9), 705-714.
[http://dx.doi.org/10.1080/15384047.2017.1362511] [PMID: 28812434]
[29]
Nowicki, T.S.; Hu-Lieskovan, S.; Ribas, A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J., 2018, 24(1), 47-53.
[http://dx.doi.org/10.1097/PPO.0000000000000303] [PMID: 29360728]
[30]
Heqing, Y.; Bin, L.; Xuemei, Y.; Linfa, L. The role and mechanism of autophagy in sorafenib targeted cancer therapy. Crit. Rev. Oncol. Hematol., 2016, 100, 137-140.
[http://dx.doi.org/10.1016/j.critrevonc.2016.02.006] [PMID: 26920575]
[31]
Domvri, K.; Zarogoulidis, K.; Zogas, N.; Zarogoulidis, P.; Petanidis, S.; Porpodis, K.; Kioseoglou, E.; Hohenforst-Schmidt, W. Potential synergistic effect of phosphodiesterase inhibitors with chemotherapy in lung cancer. J. Cancer, 2017, 8(18), 3648-3656.
[http://dx.doi.org/10.7150/jca.21783] [PMID: 29151951]
[32]
de Melo-Diogo, D.; Gaspar, V.M.; Costa, E.C.; Moreira, A.F.; Oppolzer, D.; Gallardo, E.; Correia, I.J. Combinatorial delivery of Crizotinib-Palbociclib-Sildenafil using TPGS-PLA micelles for improved cancer treatment. Eur. J. Pharm. Biopharm., 2014, 88(3), 718-729.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.013] [PMID: 25308930]
[33]
Xie, Y-H.; Chen, Y-X.; Fang, J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[34]
Roberts, J.L.; Poklepovic, A.; Booth, L. Curcumin interacts with sildenafil to kill GI tumor cells via endoplasmic reticulum stress and reactive oxygen/nitrogen species. Oncotarget, 2017, 8(59), 99451-99469.
[http://dx.doi.org/10.18632/oncotarget.19807] [PMID: 29245915]
[35]
Zhu, J.; Zhao, B.; Xiong, P.; Wang, C.; Zhang, J.; Tian, X.; Huang, Y. Curcumin induces autophagy via inhibition of yes-associated protein (YAP) in human colon cancer cells. Med. Sci. Monit., 2018, 24, 7035-7042.
[http://dx.doi.org/10.12659/MSM.910650] [PMID: 30281585]
[36]
Dent, P.; Booth, L.; Roberts, J.L.; Poklepovic, A.; Hancock, J.F. (Curcumin+sildenafil) enhances the efficacy of 5FU and anti-PD1 therapies in vivo. J. Cell. Physiol., 2020, 235(10), 6862-6874.
[http://dx.doi.org/10.1002/jcp.29580] [PMID: 31985048]
[37]
Mei, X-L.; Yang, Y.; Zhang, Y-J.; Li, Y.; Zhao, J-M.; Qiu, J-G.; Zhang, W-J.; Jiang, Q-W.; Xue, Y-Q.; Zheng, D-W.; Chen, Y.; Qin, W.M.; Wei, M.N.; Shi, Z. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am. J. Cancer Res., 2015, 5(11), 3311-3324.
[PMID: 26807313]
[38]
Booth, L.; Roberts, J.L.; Cruickshanks, N.; Grant, S.; Poklepovic, A.; Dent, P. Regulation of OSU-03012 toxicity by ER stress proteins and ER stress-inducing drugs. Mol. Cancer Ther., 2014, 13(10), 2384-2398.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0172] [PMID: 25103559]
[39]
Das, A.; Durrant, D.; Mitchell, C.; Mayton, E.; Hoke, N.N.; Salloum, F.N.; Park, M.A.; Qureshi, I.; Lee, R.; Dent, P.; Kukreja, R.C. Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc. Natl. Acad. Sci. USA, 2010, 107(42), 18202-18207.
[http://dx.doi.org/10.1073/pnas.1006965107] [PMID: 20884855]
[40]
Das, A.; Durrant, D.; Mitchell, C.; Dent, P.; Batra, S.K.; Kukreja, R.C. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget, 2016, 7(4), 4399-4413.
[http://dx.doi.org/10.18632/oncotarget.6749] [PMID: 26716643]
[41]
Poklepovic, A.; Qu, Y.; Dickinson, M.; Kontos, M.C.; Kmieciak, M.; Schultz, E.; Bandopadhyay, D.; Deng, X.; Kukreja, R.C. Randomized study of doxorubicin-based chemotherapy regimens, with and without sildenafil, with analysis of intermediate cardiac markers. Cardiooncology, 2018, 4(1), 7.
[http://dx.doi.org/10.1186/s40959-018-0033-2] [PMID: 30221011]
[42]
Webb, T.; Carter, J.; Roberts, J.L.; Poklepovic, A.; McGuire, W.P.; Booth, L.; Dent, P. Celecoxib enhances [sorafenib + sildenafil] lethality in cancer cells and reverts platinum chemotherapy resistance. Cancer Biol. Ther., 2015, 16(11), 1660-1670.
[http://dx.doi.org/10.1080/15384047.2015.1099769] [PMID: 26417912]
[43]
World Health Organization. World Health Statistics 2014 World Health Organization: Geneve, 2014. Available at:. https://www.who.int/news/item/15-05-2014-world-health-statistics-2014(Accessed date: April 2020).
[44]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[45]
Di, X.; Gennings, C.; Bear, H.D.; Graham, L.J.; Sheth, C.M.; White, K.L., Jr; Gewirtz, D.A. Influence of the phosphodiesterase-5 inhibitor, sildenafil, on sensitivity to chemotherapy in breast tumor cells. Breast Cancer Res. Treat., 2010, 124(2), 349-360.
[http://dx.doi.org/10.1007/s10549-010-0765-7] [PMID: 20155316]
[46]
Greish, K.; Fateel, M.; Abdelghany, S.; Rachel, N.; Alimoradi, H.; Bakhiet, M.; Alsaie, A. Sildenafil citrate improves the delivery and anticancer activity of doxorubicin formulations in a mouse model of breast cancer. J. Drug Target., 2018, 26(7), 610-615.
[http://dx.doi.org/10.1080/1061186X.2017.1405427] [PMID: 29148852]
[47]
El-Naa, M.M.; Othman, M.; Younes, S. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis. Drug Des. Devel. Ther., 2016, 10, 3661-3672.
[http://dx.doi.org/10.2147/DDDT.S107490] [PMID: 27895461]
[48]
Kaaijk, P.; Schouten-van Meeteren, A.Y.N.; Slotman, B.J.; Kaspers, G.J.L. Past, current and future protocols for combined modality therapy in childhood medulloblastoma. Expert Rev. Anticancer Ther., 2003, 3(1), 79-90.
[http://dx.doi.org/10.1586/14737140.3.1.79] [PMID: 12597352]
[49]
Roberts, J.L.; Booth, L.; Conley, A.; Cruickshanks, N.; Malkin, M.; Kukreja, R.C.; Grant, S.; Poklepovic, A.; Dent, P. PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol. Ther., 2014, 15(6), 758-767.
[http://dx.doi.org/10.4161/cbt.28553] [PMID: 24651037]
[50]
Booth, L.; Roberts, J.L.; Cruickshanks, N.; Conley, A.; Durrant, D.E.; Das, A.; Fisher, P.B.; Kukreja, R.C.; Grant, S.; Poklepovic, A.; Dent, P. Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol. Pharmacol., 2014, 85(3), 408-419.
[http://dx.doi.org/10.1124/mol.113.090043] [PMID: 24353313]
[51]
Shi, Z.; Tiwari, A.K.; Patel, A.S.; Fu, L-W.; Chen, Z-S. Roles of sildenafil in enhancing drug sensitivity in cancer. Cancer Res., 2011, 71(11), 3735-3738.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0375] [PMID: 21610107]
[52]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[53]
Fletcher, J.I.; Haber, M.; Henderson, M.J.; Norris, M.D. ABC transporters in cancer: more than just drug efflux pumps. Nat. Rev. Cancer, 2010, 10(2), 147-156.
[http://dx.doi.org/10.1038/nrc2789] [PMID: 20075923]
[54]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[55]
Shi, Z.; Tiwari, A.K.; Shukla, S.; Robey, R.W.; Singh, S.; Kim, I-W.; Bates, S.E.; Peng, X.; Abraham, I.; Ambudkar, S.V.; Talele, T.T.; Fu, L.W.; Chen, Z.S. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res., 2011, 71(8), 3029-3041.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3820] [PMID: 21402712]
[56]
Chen, J-J.; Sun, Y-L.; Tiwari, A.K.; Xiao, Z-J.; Sodani, K.; Yang, D-H.; Vispute, S.G.; Jiang, W-Q.; Chen, S-D.; Chen, Z-S. PDE5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding Cassette C10) transporter. Cancer Sci., 2012, 103(8), 1531-1537.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02328.x] [PMID: 22578167]
[57]
Ding, P-R.; Tiwari, A.K.; Ohnuma, S.; Lee, J.W.K.K.; An, X.; Dai, C-L.; Lu, Q-S.; Singh, S.; Yang, D-H.; Talele, T.T.; Ambudkar, S.V.; Chen, Z.S. The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter. PLoS One, 2011, 6(4)e19329
[http://dx.doi.org/10.1371/journal.pone.0019329] [PMID: 21552528]
[58]
Lin, F.; Hoogendijk, L.; Buil, L.; Beijnen, J.H.; van Tellingen, O. Sildenafil is not a useful modulator of ABCB1 and ABCG2 mediated drug resistance in vivo. Eur. J. Cancer, 2013, 49(8), 2059-2064.
[http://dx.doi.org/10.1016/j.ejca.2012.12.028] [PMID: 23422148]
[59]
Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology, 2010, 115(2), 155-162.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[60]
Kalivendi, S.V.; Kotamraju, S.; Zhao, H.; Joseph, J.; Kalyanaraman, B. Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Effect of antiapoptotic antioxidants and calcium. J. Biol. Chem., 2001, 276(50), 47266-47276.
[http://dx.doi.org/10.1074/jbc.M106829200] [PMID: 11579094]
[61]
Wang, L.; Ma, W.; Markovich, R.; Chen, J.W.; Wang, P.H. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ. Res., 1998, 83(5), 516-522.
[http://dx.doi.org/10.1161/01.RES.83.5.516] [PMID: 9734474]
[62]
Zhao, L.; Zhang, B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci. Rep., 2017, 7, 44735.
[http://dx.doi.org/10.1038/srep44735] [PMID: 28300219]
[63]
Fisher, P.W.; Salloum, F.; Das, A.; Hyder, H.; Kukreja, R.C. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation, 2005, 111(13), 1601-1610.
[http://dx.doi.org/10.1161/01.CIR.0000160359.49478.C2] [PMID: 15811867]
[64]
Sastry, J.; Kellie, S.J. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr. Hematol. Oncol., 2005, 22(5), 441-445.
[http://dx.doi.org/10.1080/08880010590964381] [PMID: 16020136]
[65]
Volarevic, V.; Djokovic, B.; Jankovic, M.G.; Harrell, C.R.; Fellabaum, C.; Djonov, V.; Arsenijevic, N. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci., 2019, 26(1), 25.
[http://dx.doi.org/10.1186/s12929-019-0518-9] [PMID: 30866950]
[66]
Ali, B.H.; Abdelrahman, A.M.; Al-Salam, S.; Sudhadevi, M.; AlMahruqi, A.S.; Al-Husseni, I.S.; Beegam, S.; Dhanasekaran, S.; Nemmar, A.; Al-Moundhri, M. The effect of sildenafil on cisplatin nephrotoxicity in rats. Basic Clin. Pharmacol. Toxicol., 2011, 109(4), 300-308.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00724.x] [PMID: 21575139]
[67]
Lee, K.W.; Jeong, J.Y.; Lim, B.J.; Chang, Y.K.; Lee, S.J.; Na, K.R.; Shin, Y.T.; Choi, D.E. Sildenafil attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Toxicology, 2009, 257(3), 137-143.
[http://dx.doi.org/10.1016/j.tox.2008.12.017] [PMID: 19152827]
[68]
Morgan, S.; Lopes, F.; Gourley, C.; Anderson, R.A.; Spears, N. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin. PLoS One, 2013, 8(7)e70117
[http://dx.doi.org/10.1371/journal.pone.0070117] [PMID: 23922929]
[69]
Taskin, M.I.; Yay, A.; Adali, E.; Balcioglu, E.; Inceboz, U. Protective effects of sildenafil citrate administration on cisplatin-induced ovarian damage in rats. Gynecol. Endocrinol., 2015, 31(4), 272-277.
[http://dx.doi.org/10.3109/09513590.2014.984679] [PMID: 25483005]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy