Abstract
Gas sensing materials essentially dominate the performances of the gas sensors which are widely applied in environmental monitoring, industrial production and medical diagnosis. However, most of the traditional gas sensing materials show excellent performances only at high operating temperatures, which are high energy consumptive and have potential issues in terms of reliability and safety of the sensors. Therefore, the development of Room Temperature (RT) gas sensing materials becomes a research hotspot in this field. In recent years, graphene-based materials have been studied as a class of promising RT gas sensing materials because graphene has a unique twodimensional (2D) structure with high electron mobility and superior feasibility of assembling with other “guest components” (mainly small organic molecules, macromolecules and nanoparticles). More interestingly, its electrical properties become even more sensitive toward gas molecules at RT after surface modification. In this review, we have summarized the recently reported graphenebased RT gas sensing materials for the detection of NO2, H2S, NH3, CO2, CO, SO2, Volatile Organic Compounds (VOCs) (i.e. formaldehyde, acetone, toluene, ethanol), as well as Liquefied Petroleum Gas (LPG) and highlighted the latest researches with respect to supramolecular modification of graphene for gas sensing. The corresponding structural features and gas sensing mechanisms of the graphene-based gas sensors have also been generalized.
Keywords: Gas sensor, graphene, room temperature, supramolecular assembly, composite, volatile organic compounds.
Graphical Abstract
[http://dx.doi.org/10.1016/j.snb.2015.04.062;] ; (b) Wang T, Huang D, Yang Z, et al. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 2016; 8(2): 95-119.
[http://dx.doi.org/10.1007/s40820-015-0073-1] [PMID: 30460270] ; (c) Tripathi KM, Kim T, Losic D, Tung TT. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 2016; 110: 97-129.
[http://dx.doi.org/10.1016/j.carbon.2016.08.040]
[http://dx.doi.org/10.1021/cm0617283]
[http://dx.doi.org/10.1021/am301712t] [PMID: 23088615]
[http://dx.doi.org/10.1039/C8NR07393G] [PMID: 30543231]
[http://dx.doi.org/10.1021/acsami.9b10861] [PMID: 31592637]
[http://dx.doi.org/10.1021/am404397f] [PMID: 24309131] ; (b) Choi SJ, Jang B-H, Lee S-J, Min BK, Rothschild A, Kim I-D. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 2014; 6(4): 2588-97.
[http://dx.doi.org/10.1021/am405088q] [PMID: 24456186]
[http://dx.doi.org/10.1038/nature11458] [PMID: 23060189] ; (b) Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev . 2012; 41(2): 666-86.
[http://dx.doi.org/10.1039/C1CS15078B] [PMID: 21796314] ; (c) He Q, Wu S, Yin Z, Zhang H. Graphene-based electronic sensors. Chem Sci (Camb) 2012; 3(6): 1764.
[http://dx.doi.org/10.1039/c2sc20205k]
[http://dx.doi.org/10.1038/nmat1967] [PMID: 17660825]
[http://dx.doi.org/10.1021/am5032456] [PMID: 25073562] ; (b) Liu L, Yang M, Gao S, et al. Co3O4 hollow nanosphere-decorated graphene sheets for H2S sensing near room temperature. ACS Appl Nano Mater 2019; 2(9): 5409-19.
[http://dx.doi.org/10.1021/acsanm.9b01038]
[http://dx.doi.org/10.1088/0957-4484/20/44/445502] [PMID: 19809107] ; (b) Hu N, Yang Z, Wang Y, et al. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 2014; 25(2)025502
[http://dx.doi.org/10.1088/0957-4484/25/2/025502] [PMID: 24334417] ; (c) Yuan W, Liu A, Huang L, Li C, Shi G. High-performance NO2 sensors based on chemically modified graphene. Adv Mater 2013; 25(5): 766-71.
[http://dx.doi.org/10.1002/adma.201203172] [PMID: 23139053]
[http://dx.doi.org/10.1039/C6RA05659H] ; (b) Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett 2008; 8(10): 3137-40.
[http://dx.doi.org/10.1021/nl8013007] [PMID: 18763832]
[http://dx.doi.org/10.1039/c2jm30378g]
[http://dx.doi.org/10.1021/acsami.9b13827] [PMID: 31453680]
[http://dx.doi.org/10.1021/am5084122] [PMID: 25597697]
[http://dx.doi.org/10.1039/C9RA08707A]
[http://dx.doi.org/10.1088/1361-6528/aa79e6] [PMID: 28617668] ; (b) Wang X, Gu D, Li X, et al. Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature. Sens Actuators B Chem 2019; 282: 290-9.
[http://dx.doi.org/10.1016/j.snb.2018.11.080] ; (c) Wang J, Deng H, Li X, Yang C, Xia Y. Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sens Actuators B Chem 2020.304127317
[http://dx.doi.org/10.1016/j.snb.2019.127317]
[http://dx.doi.org/10.1039/C5NR01770J] [PMID: 25990644] ; (b) Pei W, Zhang T, Wang Y, et al. Enhancement of charge transfer between graphene and donor-π-acceptor molecule for ultrahigh sensing performance. Nanoscale 2017; 9(42): 16273-80.
[http://dx.doi.org/10.1039/C7NR04209D] [PMID: 29046916] ; (c) Chen Z, Wang J, Pan D, et al. Mimicking a dog’s nose: scrolling graphene nanosheets. ACS Nano 2018; 12(3): 2521-30.
[http://dx.doi.org/10.1021/acsnano.7b08294] [PMID: 29512386]
[http://dx.doi.org/10.1039/c3ta11070b]
[http://dx.doi.org/10.1021/acsami.6b12501] [PMID: 27966870] ; (b) Zhang D, Liu A, Chang H, Xia B. Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Advances 2015; 5(4): 3016-22.
[http://dx.doi.org/10.1039/C4RA10942B] ; (c) Lee H-Y, Heish Y-C, Lee C-T. High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane. J Alloys Compd 2019; 773: 950-4.
[http://dx.doi.org/10.1016/j.jallcom.2018.09.290] ; (d) Tian Z, Song P, Yang Z, Wang Q. Reduced graphene oxide-porous In2O3 nanocubes hybrid nanocomposites for room-temperature NH3 sensing. Chin Chem Lett 2020; 31: 2067-70.
[http://dx.doi.org/10.1016/j.cclet.2020.01.025]
[http://dx.doi.org/10.1016/j.matlet.2016.11.046]
[http://dx.doi.org/10.1021/acsami.7b01229] [PMID: 28299928]
[http://dx.doi.org/10.1039/c3nr00747b] [PMID: 23661278]
[http://dx.doi.org/10.3762/bjnano.9.264] [PMID: 30498655] ; (b) Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Mikrochim Acta 2018; 185(4): 213.
[http://dx.doi.org/10.1007/s00604-018-2750-5] [PMID: 29594538] ; (c) Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK. Graphene metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B Chem 2015; 221: 1170-81.
[http://dx.doi.org/10.1016/j.snb.2015.07.070]
[http://dx.doi.org/10.1039/C6NR08975E] [PMID: 28155928] ; (b) Buzaglo M, Ruse E, Levy I, et al. Top-down, scalable graphene sheets production: it is all about the precipitate. Chem Mater 2017; 29(23): 9998-10006.
[http://dx.doi.org/10.1021/acs.chemmater.7b03428]
[http://dx.doi.org/10.1016/j.colsurfa.2018.10.049]
[http://dx.doi.org/10.1021/nl801827v] [PMID: 19046078]
[http://dx.doi.org/10.1039/c1cp22347j] [PMID: 22006173]
[http://dx.doi.org/10.1016/j.snb.2017.08.202]
[http://dx.doi.org/10.1063/1.4720074]
[http://dx.doi.org/10.5714/CL.2013.14.3.186]
[http://dx.doi.org/10.1016/j.snb.2019.127458]
[http://dx.doi.org/10.1016/j.snb.2017.10.043]
[http://dx.doi.org/10.1016/j.snb.2016.12.111]
[http://dx.doi.org/10.1016/j.carbon.2011.06.029]
[http://dx.doi.org/10.1063/1.4940128]
[http://dx.doi.org/10.1088/0957-4484/20/18/185504] [PMID: 19420616]
[http://dx.doi.org/10.1016/j.snb.2018.09.095]
[http://dx.doi.org/10.1088/1361-6528/aaf3d7] [PMID: 30523993]
[http://dx.doi.org/10.1021/acsomega.9b00935] [PMID: 31508539]
[http://dx.doi.org/10.1021/acsomega.8b03540] [PMID: 31459592]
[http://dx.doi.org/10.1007/s00604-019-4097-y]
[http://dx.doi.org/10.1016/j.carbon.2019.10.011]
[http://dx.doi.org/10.1021/acsami.8b15284] [PMID: 30419750]
[http://dx.doi.org/10.1021/am501394r] [PMID: 24844154] ; (b) Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces 2015; 7(5): 3077-92.
[http://dx.doi.org/10.1021/acsami.5b00161] [PMID: 25602118]
[http://dx.doi.org/10.1016/j.snb.2019.127445]
[http://dx.doi.org/10.1109/LED.2016.2544954]
[http://dx.doi.org/10.1021/acsami.9b14952] [PMID: 31825202]
[http://dx.doi.org/10.1016/j.snb.2015.04.119]
[http://dx.doi.org/10.1016/j.snb.2016.02.069]
[http://dx.doi.org/10.1016/j.snb.2018.01.143]
[http://dx.doi.org/10.1088/1361-6528/ab37ed] [PMID: 31370055]
[http://dx.doi.org/10.1021/acsomega.9b02185] [PMID: 31646238]
[http://dx.doi.org/10.1021/acsami.9b18155] [PMID: 31894961]
[http://dx.doi.org/10.1016/j.snb.2020.127690]
[http://dx.doi.org/10.1038/nnano.2007.451] [PMID: 18654470]
[http://dx.doi.org/10.1016/j.snb.2013.09.078]
[http://dx.doi.org/10.1002/adma.201304334]
[http://dx.doi.org/10.1016/j.ceramint.2019.10.255]
[http://dx.doi.org/10.1063/1.1690114]
[http://dx.doi.org/10.1016/j.snb.2017.03.108]
[http://dx.doi.org/10.1039/C6NR06465E] [PMID: 27763653]
[http://dx.doi.org/10.1016/j.snb.2015.05.133]
[http://dx.doi.org/10.1016/j.snb.2015.07.102]
[http://dx.doi.org/10.1021/acs.iecr.6b00418]
[http://dx.doi.org/10.1016/j.snb.2016.07.099]
[http://dx.doi.org/10.1002/advs.201600319] [PMID: 28331786]
[http://dx.doi.org/10.1016/j.snb.2017.01.200]
[http://dx.doi.org/10.1016/j.snb.2016.08.085]
[http://dx.doi.org/10.1021/acsami.9b09901] [PMID: 31390858]
[http://dx.doi.org/10.1039/C9RA08065A]
[http://dx.doi.org/10.1021/acsami.0c00578] [PMID: 32297738]
[http://dx.doi.org/10.1016/j.snb.2016.12.075]
[http://dx.doi.org/10.1002/adfm.201401992]
[http://dx.doi.org/10.1186/s11671-016-1343-7] [PMID: 26956599]
[http://dx.doi.org/10.1016/j.snb.2011.12.007]
[http://dx.doi.org/10.1021/acsami.9b21765] [PMID: 32040289]
[http://dx.doi.org/10.1021/acs.chemmater.5b04850]
[http://dx.doi.org/10.1016/j.snb.2015.09.102]
[http://dx.doi.org/10.1016/j.snb.2015.09.021]
[http://dx.doi.org/10.1021/acsami.7b06461] [PMID: 28825301]
[http://dx.doi.org/10.1016/j.snb.2017.07.199]
[http://dx.doi.org/10.1088/2053-1591/aaddcc]
[http://dx.doi.org/10.1007/s00604-017-2537-0] [PMID: 29594642]
[http://dx.doi.org/10.1007/s00604-018-3170-2] [PMID: 30627873]
[http://dx.doi.org/10.1039/C9TA11550A]
[http://dx.doi.org/10.1016/j.snb.2019.127423]
[http://dx.doi.org/10.1039/C9RA06223H]