Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

HCA587 Protein Vaccine Induces Specific Antitumor Immunity Mediated by CD4+ T-cells Expressing Granzyme B in a Mouse Model of Melanoma

Author(s): Weiming Yang, Weiheng Zhang, Xiaozhong Wang, Liming Tan, Hua Li, Jiemin Wu, Qiong Wu, Wanlei Sun, Juanjuan Chen* and Yanhui Yin*

Volume 21, Issue 6, 2021

Published on: 28 July, 2020

Page: [738 - 746] Pages: 9

DOI: 10.2174/1871520620666200728131951

Price: $65

Abstract

Background: The antigen HCA587 (also known as MAGE-C2), which is considered a cancer-testis antigen, exhibits upregulated expression in a wide range of malignant tumors with unique immunological properties, and may thus serve as a promising target for tumor immunotherapy.

Objective: The study aimed to explore the antitumor effect of the HCA587 protein vaccine and the response of humoral and cell-mediated immunity.

Methods: The HCA587 protein vaccine was formulated with adjuvants CpG and ISCOM. B16 melanoma cells were subcutaneously inoculated to C57BL/6 mice, followed by treatment with HCA587 protein vaccine subcutaneously. Mouse survival was monitored daily, and tumor volume was measured every 2 to 3 days. The tumor sizes, survival time and immune cells in tumor tissues were detected. And the vital immune cell subset and effector molecules were explored.

Results: After treatment with HCA587 protein vaccine, the vaccination elicited significant immune responses, which delayed tumor growth and improved animal survival. The vaccination increased the proportion of CD4+ T cells expressing IFN-γ and granzyme B in tumor tissues. The depletion of CD4+T cells resulted in an almost complete abrogation of the antitumor effect of the vaccination, suggesting that the antitumor efficacy was mediated by CD4+ T cells. In addition, knockout of IFN-γ resulted in a decrease in granzyme B levels, which were secreted by CD4+ T cells, and the antitumor effect was also significantly attenuated.

Conclusion: The HCA587 protein vaccine may increase the levels of granzyme B expressed by CD4+ T cells, and this increase is dependent on IFN-γ, and the vaccine resulted in a specific tumor immune response and subsequent eradication of the tumor.

Keywords: HCA587 protein vaccine, antitumor immunity, granzyme B, cytotoxic CD4+ T cell, immunotherapy, melanoma.

Graphical Abstract

[1]
Eisenstein, M. Making cancer immunotherapy a surer bet. Nature, 2017, 552(7685), S72-S73.
[http://dx.doi.org/10.1038/d41586-017-08704-5]
[2]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489.
[http://dx.doi.org/10.1038/nature10673] [PMID: 22193102]
[3]
Laheru, D.; Biedrzycki, B.; Jaffee, E.M. Development of a cytokine-modified allogeneic whole cell pancreatic cancer vaccine. Methods Mol. Biol., 2013, 980, 175-203.
[http://dx.doi.org/10.1007/978-1-62703-287-2_9] [PMID: 23359154]
[4]
Zendman, A.J.; Ruiter, D.J.; Van Muijen, G.N. Cancer/testis-associated genes: Identification, expression profile, and putative function. J. Cell. Physiol., 2003, 194(3), 272-288.
[http://dx.doi.org/10.1002/jcp.10215] [PMID: 12548548]
[5]
Rosenbaum, P.; Artaud, C.; Bay, S.; Ganneau, C.; Campone, M.; Delaloge, S.; Gourmelon, C.; Loirat, D.; Medioni, J.; Pein, F.; Sablin, M.P.; Tredan, O.; Varga, A.; Leclerc, C. The fully synthetic glycopeptide MAG-Tn3 therapeutic vaccine induces tumor-specific cytotoxic antibodies in breast cancer patients. Cancer Immunol. Immunother., 2020, 69(5), 703-716.
[http://dx.doi.org/10.1007/s00262-020-02503-0] [PMID: 32034426]
[6]
Wu, A.A.; Jaffee, E.; Lee, V. Current status of immunotherapies for treating pancreatic cancer. Curr. Oncol. Rep., 2019, 21(7), 60-60.
[http://dx.doi.org/10.1007/s11912-019-0811-5] [PMID: 31101991]
[7]
Caballero, O.L.; Chen, Y.T. Cancer/Testis (CT) antigens: Potential targets for immunotherapy. Cancer Sci., 2009, 100(11), 2014-2021.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01303.x] [PMID: 19719775]
[8]
Quaglino, E.; Conti, L.; Cavallo, F. Breast cancer stem cell antigens as targets for immunotherapy. Semin. Immunol., 2020, 47, 101386-101386.
[http://dx.doi.org/10.1016/j.smim.2020.101386] [PMID: 31932198]
[9]
Wang, Y.; Han, K.J.; Pang, X.W.; Vaughan, H.A.; Qu, W.; Dong, X.Y.; Peng, J.R.; Zhao, H.T.; Rui, J.A.; Leng, X.S.; Cebon, J.; Burgess, A.W.; Chen, W.F. Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies. J. Immunol., 2002, 169(2), 1102-1109.
[http://dx.doi.org/10.4049/jimmunol.169.2.1102] [PMID: 12097419]
[10]
Zhao, L.; Mou, D.C.; Leng, X.S.; Peng, J.R.; Wang, W.X.; Huang, L.; Li, S.; Zhu, J.Y. Expression of cancer-testis antigens in hepatocellular carcinoma. World J. Gastroenterol., 2004, 10(14), 2034-2038.
[http://dx.doi.org/10.3748/wjg.v10.i14.2034] [PMID: 15237429]
[11]
Li, B.; Qian, X.P.; Pang, X.W.; Zou, W.Z.; Wang, Y.P.; Wu, H.Y.; Chen, W.F. HCA587 antigen expression in normal tissues and cancers: Correlation with tumor differentiation in hepatocellular carcinoma. Lab. Invest., 2003, 83(8), 1185-1192.
[http://dx.doi.org/10.1097/01.LAB.0000080605.73839.96] [PMID: 12920247]
[12]
Riener, M.O.; Wild, P.J.; Soll, C.; Knuth, A.; Jin, B.; Jungbluth, A.; Hellerbrand, C.; Clavien, P.A.; Moch, H.; Jochum, W. Frequent expression of the novel cancer testis antigen MAGE-C2/CT-10 in hepatocellular carcinoma. Int. J. Cancer, 2009, 124(2), 352-357.
[http://dx.doi.org/10.1002/ijc.23966] [PMID: 18942708]
[13]
Kariyama, K.; Higashi, T.; Kobayashi, Y.; Nouso, K.; Nakatsukasa, H.; Yamano, T.; Ishizaki, M.; Kaneyoshi, T.; Toshikuni, N.; Ohnishi, T.; Fujiwara, K.; Nakayama, E.; Terracciano, L.; Spagnoli, G.C.; Tsuji, T. Expression of MAGE-1 and -3 genes and gene products in human hepatocellular carcinoma. Br. J. Cancer, 1999, 81(6), 1080-1087.
[http://dx.doi.org/10.1038/sj.bjc.6690810] [PMID: 10576668]
[14]
Xu, H.; Gu, N.; Liu, Z.B.; Zheng, M.; Xiong, F.; Wang, S.Y.; Li, N.; Lu, J. NY-ESO-1 expression in hepatocellular carcinoma: A potential new marker for early recurrence after surgery. Oncol. Lett., 2012, 3(1), 39-44.
[http://dx.doi.org/10.3892/ol.2011.441] [PMID: 22740853]
[15]
Nakamura, S.; Nouso, K.; Noguchi, Y.; Higashi, T.; Ono, T.; Jungbluth, A.; Chen, Y.T.; Old, L.J.; Nakayama, E.; Shiratori, Y. Expression and immunogenicity of NY-ESO-1 in hepatocellular carcinoma. J. Gastroenterol. Hepatol., 2006, 21(8), 1281-1285.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04271.x] [PMID: 16872310]
[16]
Li, B.; He, X.; Pang, X.; Zhang, H.; Chen, J.; Chen, W. Elicitation of both CD4 and CD8 T-cell-mediated specific immune responses to HCA587 protein by autologous dendritic cells. Scand. J. Immunol., 2004, 60(5), 506-513.
[http://dx.doi.org/10.1111/j.0300-9475.2004.01503.x] [PMID: 15541044]
[17]
Atanackovic, D.; Altorki, N.K.; Cao, Y.; Ritter, E.; Ferrara, C.A.; Ritter, G.; Hoffman, E.W.; Bokemeyer, C.; Old, L.J.; Gnjatic, S. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1650-1655.
[http://dx.doi.org/10.1073/pnas.0707140104] [PMID: 18216244]
[18]
Chen, J.; Zhang, L.; Wen, W.; Hao, J.; Zeng, P.; Qian, X.; Zhang, Y.; Yin, Y. Induction of HCA587-specific antitumor immunity with HCA587 protein formulated with CpG and ISCOM in mice. PLoS One, 2012, 7(10)e47219
[http://dx.doi.org/10.1371/journal.pone.0047219] [PMID: 23071764]
[19]
Pang, Y.L.; Zhang, H.G.; Peng, J.R.; Pang, X.W.; Yu, S.; Xing, Q.; Yu, X.; Gong, L.; Yin, Y.H.; Zhang, Y.; Chen, W.F. The immunosuppressive tumor microenvironment in hepatocellular carcinoma. Cancer Immunol. Immunother., 2009, 58(6), 877-886.
[http://dx.doi.org/10.1007/s00262-008-0603-5] [PMID: 18941744]
[20]
Wang, X.; Rivière, I. Clinical manufacturing of CAR T cells: Foundation of a promising therapy. Mol. Ther. Oncolytics, 2016, 3, 16015.
[http://dx.doi.org/10.1038/mto.2016.15] [PMID: 27347557]
[21]
Lugade, A.A.; Sorensen, E.W.; Gerber, S.A.; Moran, J.P.; Frelinger, J.G.; Lord, E.M. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J. Immunol., 2008, 180(5), 3132-3139.
[http://dx.doi.org/10.4049/jimmunol.180.5.3132] [PMID: 18292536]
[22]
Zhao, Q.; Tong, L.; He, N.; Feng, G.; Leng, L.; Sun, W.; Xu, Y.; Wang, Y.; Xiang, R.; Li, Z. IFN-γ mediates graft-versus-breast cancer effects via enhancing cytotoxic T lymphocyte activity. Exp. Ther. Med., 2014, 8(2), 347-354.
[http://dx.doi.org/10.3892/etm.2014.1760] [PMID: 25009582]
[23]
Connett, J.M.; Hunt, S.R.; Hickerson, S.M.; Wu, S.J.; Doherty, G.M. Localization of IFN-gamma-activated Stat1 and IFN regulatory factors 1 and 2 in breast cancer cells. J. Interferon Cytokine Res., 2003, 23(11), 621-630.
[http://dx.doi.org/10.1089/107999003322558755] [PMID: 14651776]
[24]
Murphy, K.A.; Erickson, J.R.; Johnson, C.S.; Seiler, C.E.; Bedi, J.; Hu, P.; Pluhar, G.E.; Epstein, A.L.; Ohlfest, J.R. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J. Immunol., 2014, 192(1), 224-233.
[http://dx.doi.org/10.4049/jimmunol.1301633] [PMID: 24293627]
[25]
Pardoll, D.M.; Topalian, S.L. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol., 1998, 10(5), 588-594.
[http://dx.doi.org/10.1016/S0952-7915(98)80228-8] [PMID: 9794842]
[26]
Nelles, M.E.; Paige, C.J. CD4+ T cell plasticity engenders robust immunity in response to cytokine therapy. OncoImmunology, 2015, 4(3)e994370
[http://dx.doi.org/10.4161/2162402X.2014.994370] [PMID: 25949915]
[27]
Mucida, D.; Husain, M.M.; Muroi, S.; van Wijk, F.; Shinnakasu, R.; Naoe, Y.; Reis, B.S.; Huang, Y.; Lambolez, F.; Docherty, M.; Attinger, A.; Shui, J.W.; Kim, G.; Lena, C.J.; Sakaguchi, S.; Miyamoto, C.; Wang, P.; Atarashi, K.; Park, Y.; Nakayama, T.; Honda, K.; Ellmeier, W.; Kronenberg, M.; Taniuchi, I.; Cheroutre, H. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol., 2013, 14(3), 281-289.
[http://dx.doi.org/10.1038/ni.2523] [PMID: 23334788]
[28]
Curran, M.A.; Geiger, T.L.; Montalvo, W.; Kim, M.; Reiner, S.L.; Al-Shamkhani, A.; Sun, J.C.; Allison, J.P. Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin. J. Exp. Med., 2013, 210(4), 743-755.
[http://dx.doi.org/10.1084/jem.20121190] [PMID: 23547098]
[29]
Quezada, S.A.; Simpson, T.R.; Peggs, K.S.; Merghoub, T.; Vider, J.; Fan, X.; Blasberg, R.; Yagita, H.; Muranski, P.; Antony, P.A.; Restifo, N.P.; Allison, J.P. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med., 2010, 207(3), 637-650.
[http://dx.doi.org/10.1084/jem.20091918] [PMID: 20156971]
[30]
Qui, H.Z.; Hagymasi, A.T.; Bandyopadhyay, S.; St Rose, M.C.; Ramanarasimhaiah, R.; Ménoret, A.; Mittler, R.S.; Gordon, S.M.; Reiner, S.L.; Vella, A.T.; Adler, A.J. CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J. Immunol., 2011, 187(7), 3555-3564.
[http://dx.doi.org/10.4049/jimmunol.1101244] [PMID: 21880986]
[31]
Ding, Z.C.; Liu, C.; Cao, Y.; Habtetsion, T.; Kuczma, M.; Pi, W.; Kong, H.; Cacan, E.; Greer, S.F.; Cui, Y.; Blazar, B.R.; Munn, D.H.; Zhou, G. IL-7 signaling imparts polyfunctionality and stemness potential to CD4(+) T cells. OncoImmunology, 2016, 5(6)e1171445
[http://dx.doi.org/10.1080/2162402X.2016.1171445] [PMID: 27471650]
[32]
Kitano, S.; Tsuji, T.; Liu, C.; Hirschhorn-Cymerman, D.; Kyi, C.; Mu, Z.; Allison, J.P.; Gnjatic, S.; Yuan, J.D.; Wolchok, J.D. Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol. Res., 2013, 1(4), 235-244.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0068] [PMID: 24396833]
[33]
Anthony, D.A.; Andrews, D.M.; Watt, S.V.; Trapani, J.A.; Smyth, M.J. Functional dissection of the granzyme family: Cell death and inflammation. Immunol. Rev., 2010, 235(1), 73-92.
[http://dx.doi.org/10.1111/j.0105-2896.2010.00907.x] [PMID: 20536556]
[34]
Prizment, A.E.; Vierkant, R.A.; Smyrk, T.C.; Tillmans, L.S.; Nelson, H.H.; Lynch, C.F.; Pengo, T.; Thibodeau, S.N.; Church, T.R.; Cerhan, J.R.; Anderson, K.E.; Limburg, P.J. Cytotoxic T-cells and granzyme B associated with improved colorectal cancer survival in a prospective cohort of older women. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 622-631.
[PMID: 27979806]
[35]
He, X.; Lin, H.; Yuan, L.; Li, B. Combination therapy with L-arginine and alpha-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol. Ther., 2017, 18(2), 94-100.
[36]
Hinrichs, C.S.; Gattinoni, L.; Restifo, N.P. Programming CD8+ T cells for effective immunotherapy. Curr. Opin. Immunol., 2006, 18(3), 363-370.
[http://dx.doi.org/10.1016/j.coi.2006.03.009] [PMID: 16616471]
[37]
Li, L.; Ma, Y.; Liu, S.; Zhang, J.; Xu, X.Y. Interleukin 10 promotes immune response by increasing the survival of activated CD8+ T cells in human papillomavirus 16-infected cervical cancer. Tumour Biol., 2016, 37(12), 16093-16101.
[http://dx.doi.org/10.1007/s13277-016-5466-3] [PMID: 27730541]
[38]
Kawahara, M.; Takaku, H. A tumor lysate is an effective vaccine antigen for the stimulation of CD4(+) T-cell function and subsequent induction of antitumor immunity mediated by CD8(+) T cells. Cancer Biol. Ther., 2015, 16(11), 1616-1625.
[http://dx.doi.org/10.1080/15384047.2015.1078027] [PMID: 26391871]
[39]
Cheroutre, H.; Husain, M.M. CD4 CTL: Living up to the challenge. Semin. Immunol., 2013, 25(4), 273-281.
[http://dx.doi.org/10.1016/j.smim.2013.10.022] [PMID: 24246226]
[40]
Brentville, V.A.; Metheringham, R.L.; Gunn, B.; Symonds, P.; Daniels, I.; Gijon, M.; Cook, K.; Xue, W.; Durrant, L.G. Citrullinated vimentin presented on MHC-II in tumor cells is a target for CD4+ T-cell-mediated antitumor immunity. Cancer Res., 2016, 76(3), 548-560.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1085] [PMID: 26719533]
[41]
Vendrell, A.; Mongini, C.; Gravisaco, M.J.; Canellada, A.; Tesone, A.I.; Goin, J.C.; Waldner, C.I. An oral Salmonella-based vaccine inhibits liver metastases by promoting tumor-specific T-cell-mediated immunity in celiac and portal lymph nodes: A preclinical study. Front. Immunol., 2016, 7, 72.
[http://dx.doi.org/10.3389/fimmu.2016.00072] [PMID: 26973649]
[42]
Loschko, J.; Heink, S.; Hackl, D.; Dudziak, D.; Reindl, W.; Korn, T.; Krug, A.B. Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J. Immunol., 2011, 187(12), 6346-6356.
[http://dx.doi.org/10.4049/jimmunol.1102307] [PMID: 22079988]
[43]
Bossi, G.; Griffiths, G.M. CTL secretory lysosomes: Biogenesis and secretion of a harmful organelle. Semin. Immunol., 2005, 17(1), 87-94.
[http://dx.doi.org/10.1016/j.smim.2004.09.007] [PMID: 15582491]
[44]
Trapani, J.A.; Smyth, M.J. Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol., 2002, 2(10), 735-747.
[http://dx.doi.org/10.1038/nri911] [PMID: 12360212]
[45]
Wu, J.; Li, S.; Yang, Y.; Zhu, S.; Zhang, M.; Qiao, Y.; Liu, Y.J.; Chen, J. TLR-activated plasmacytoid dendritic cells inhibit breast cancer cell growth in vitro and in vivo. Oncotarget, 2017, 8(7), 11708-11718.
[http://dx.doi.org/10.18632/oncotarget.14315] [PMID: 28052019]
[46]
Pellom, S.T., Jr; Dudimah, D.F.; Thounaojam, M.C.; Uzhachenko, R.V.; Singhal, A.; Richmond, A.; Shanker, A. Bortezomib augments lymphocyte stimulatory cytokine signaling in the tumor microenvironment to sustain CD8+T cell antitumor function. Oncotarget, 2017, 8(5), 8604-8621.
[http://dx.doi.org/10.18632/oncotarget.14365] [PMID: 28052005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy