Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Enhanced Intracellular Delivery of Curcumin by Chitosan-Lipoic Acid as Reduction-Responsive Nanoparticles

Author(s): Somayeh Rezaei, Soheila Kashanian*, Yadollah Bahrami, Hossein Zhaleh and Luis J. Cruz

Volume 22, Issue 5, 2021

Published on: 27 July, 2020

Page: [622 - 635] Pages: 14

DOI: 10.2174/1389201021999200727153513

Price: $65

Abstract

Aims: Enhancement of anti-tumor activity of the chemotherapeutic agent CUR by redoxsensitive nanoparticle to get a deeper insight into cancer therapy.

Background: Tumor targetability and stimulus are widely used to study the delivery of drugs for cancer diagnosis and treatment because poor cellular uptake and inadequate intracellular drug release lead to inefficient delivery of anticancer agents to tumor tissue.

Objective: Studies distinguishing between tumor and normal tissues or redox-sensitive systems using glutathione (GSH) as a significant signal.

Methods: In this study, we designed Chitosan-Lipoic acid Nanoparticles (CS-LANPs) to improve drug delivery for breast cancer treatment by efficient delivery of Curcumin (CUR). The properties of blank CS-LANPs were studied in detail. The size and the Polydispersity Index (PDI) of the CS-LANPs were optimized.

Results: The results indicate the mean size and PDI of the blank CS-LANPs were around 249 nm and 0.125, respectively. However, the Drug Loading (DL) and Encapsulation Efficiency (EE) of the CSLANPs were estimated to be about 18.22% and 99.80%, respectively. Compared to non-reductive conditions, the size of reduction-sensitive CS-LANPs increased significantly under reductive conditions. Therefore, the drug release of CS-LANPs in the presence of glutathione was much faster than that of non-GSH conditions .Moreover, the antitumor effect of CS-LANPs on MCF-7 cells was determined in vitro by MTT assay, cell cytotoxicity, Caspase-3 Assay, detection of mitochondrial membrane potential and quantification of apoptosis incidence.

Conclusion: CS-LANPs showed a remarkably increased accumulation in tumor cells and had a better tumor inhibitory activity in vitro. CS-LANPs could successfully deliver drugs to cancer cells and revealed better efficiency than free CUR.

Keywords: Curcumin, lipoic acid, reduction-responsive nanoparticles, glutathione, MCF-7 cells, chitosan, efficient delivery.

Graphical Abstract

[1]
Quinn, J.F.; Whittaker, M.R.; Davis, T.P. Glutathione responsive polymers and their application in drug delivery systems. Polym. Chem., 2017, 8(1), 97-126.
[http://dx.doi.org/10.1039/C6PY01365A]
[2]
Wu, J.; Zhang, H.; Hu, X.; Liu, R.; Jiang, W.; Li, Z.; Luan, Y. Reduction-sensitive mixed micelles assembled from amphiphilic prodrugs for self-codelivery of DOX and DTX with synergistic cancer therapy. Colloids Surf. B Biointerfaces, 2018, 161, 449-456.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.011] [PMID: 29127937]
[3]
Chan, N.; Ko, N.; An, S.; Khorsand, B.; Oh, J. Dual location reduction- responsive degradable nanocarriers: A new strategy for intracellular anticancer drug delivery with accelerated release In: In: ACS Symp. Ser; , 2015. Vol. 1188; pp. 273-291.
[http://dx.doi.org/10.1021/bk-2015-1188.ch017]
[4]
Maiti, C.; Parida, S.; Kayal, S.; Maiti, S.; Mandal, M.; Dhara, D. Redox-responsive core-cross-linked block copolymer micelles for overcoming multidrug resistance in cancer cells. ACS Appl. Mater. Interfaces, 2018, 10(6), 5318-5330.
[http://dx.doi.org/10.1021/acsami.7b18245] [PMID: 29355017]
[5]
Hu, Y.W.; Du, Y.Z.; Liu, N.; Liu, X.; Meng, T.T.; Cheng, B.L.; He, J.B.; You, J.; Yuan, H.; Hu, F.Q. Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier. J. Control. Release, 2015, 206, 91-100.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.018] [PMID: 25796347]
[6]
Cheng, R.; Meng, F.; Deng, C.; Zhong, Z. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today, 2015, 10(5), 656-670.
[http://dx.doi.org/10.1016/j.nantod.2015.09.005]
[7]
Wang, X-F.; Ren, J.; He, H-Q.; Liang, L.; Xie, X.; Li, Z-X.; Zhao, J-G.; Yu, J-M. Self-assembled nanoparticles of reduction-sensitive poly (lactic-co-glycolic acid)-conjugated chondroitin sulfate A for doxorubicin delivery: preparation, characterization and evaluation. Pharm. Dev. Technol., 2019, 24(6), 794-802.
[http://dx.doi.org/10.1080/10837450.2019.1599914] [PMID: 30907676]
[8]
Dong, S.; He, J.; Sun, Y.; Li, D.; Li, L.; Zhang, M.; Ni, P. Efficient click synthesis of a protonized and reduction-sensitive amphiphilic small-molecule prodrug containing camptothecin and gemcitabine for a drug self-delivery system. Mol. Pharm., 2019, 16(9), 3770-3779.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00349] [PMID: 31348660]
[9]
Jeong, G-W.; Jeong, Y-I.; Nah, J-W. Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy. Carbohydr. Polym., 2019, 209, 161-171.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.018] [PMID: 30732795]
[10]
Sun, H.; Zhang, Y.; Zhong, Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv. Drug Deliv. Rev., 2018, 132, 16-32.
[http://dx.doi.org/10.1016/j.addr.2018.05.007] [PMID: 29775625]
[11]
Joshi-Barr, S.; de Gracia Lux, C.; Mahmoud, E.; Almutairi, A. Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxid. Redox Signal., 2014, 21(5), 730-754.
[http://dx.doi.org/10.1089/ars.2013.5754] [PMID: 24328819]
[12]
Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release, 2011, 152(1), 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[13]
Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem., 2014, 5(5), 1519-1528.
[http://dx.doi.org/10.1039/C3PY01192E]
[14]
Wang, L.; Gulati, P.; Santra, D.; Rose, D.; Zhang, Y. Nanoparticles prepared by proso millet protein as novel curcumin delivery system. Food Chem., 2018, 240, 1039-1046.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.036] [PMID: 28946220]
[15]
Falah, R.R.; Talib, W.H.; Shbailat, S.J. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Ther. Adv. Med. Oncol., 2017, 9(4), 235-252.
[http://dx.doi.org/10.1177/1758834016687482] [PMID: 28491145]
[16]
Mock, C.D.; Jordan, B.C.; Selvam, C. Recent advances of curcumin and its analogues in breast cancer prevention and treatment. RSC Advances, 2015, 5(92), 75575-75588.
[http://dx.doi.org/10.1039/C5RA14925H] [PMID: 27103993]
[17]
Motiei, M.; Kashanian, S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur. J. Pharm. Sci., 2017, 99, 285-291.
[http://dx.doi.org/10.1016/j.ejps.2016.12.035] [PMID: 28057549]
[18]
Wu, L.; Zou, Y.; Deng, C.; Cheng, R.; Meng, F.; Zhong, Z. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials, 2013, 34(21), 5262-5272.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.035] [PMID: 23570719]
[19]
Liu, G.; Li, K.; Wang, H. Polymeric micelles based on PEGylated chitosan-g-lipoic acid as carrier for efficient intracellular drug delivery. J. Biomater. Appl., 2017, 31(7), 1039-1048.
[http://dx.doi.org/10.1177/0885328216685755] [PMID: 28178903]
[20]
Tsai, S.P.; Hsieh, C.Y.; Hsieh, C.Y.; Wang, D.M.; Huang, L.L.H.; Lai, J.Y.; Hsieh, H.J. Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges. J. Appl. Polym. Sci., 2007, 105(4), 1774-1785.
[http://dx.doi.org/10.1002/app.26157]
[21]
Rezaei, S.; Kashanian, S.; Bahrami, Y.; Cruz, L.J.; Motiei, M. Redox-Sensitive and Hyaluronic Acid-Functionalized Nanoparticles for Improving Breast Cancer Treatment by Cytoplasmic 17α-Methyltestosterone Delivery. Molecules, 2020, 25(5), 1181.
[http://dx.doi.org/10.3390/molecules25051181] [PMID: 32151062]
[22]
Li, F.; Chen, W.L.; You, B.G.; Liu, Y.; Yang, S.D.; Yuan, Z.Q.; Zhu, W.J.; Li, J.Z.; Qu, C.X.; Zhou, Y.J.; Zhou, X.F.; Liu, C.; Zhang, X.N. Enhanced cellular internalization and on-demand intracellular release of doxorubicin by stepwise pH-/reduction-responsive nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(47), 32146-32158.
[http://dx.doi.org/10.1021/acsami.6b09604] [PMID: 27933846]
[23]
Motiei, M.; Kashanian, S.; Taherpour, A.A. Hydrophobic amino acids grafted onto chitosan: a novel amphiphilic chitosan nanocarrier for hydrophobic drugs. Drug Dev. Ind. Pharm., 2017, 43(1), 1-11.
[http://dx.doi.org/10.1080/03639045.2016.1254240] [PMID: 27802776]
[24]
Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc., 2018. (6).
[http://dx.doi.org/10.1101/pdb.prot095505]
[25]
Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett., 2006, 160(2), 171-177.
[http://dx.doi.org/10.1016/j.toxlet.2005.07.001] [PMID: 16111842]
[26]
Jouan, E.; Le Vée, M.; Mayati, A.; Denizot, C.; Parmentier, Y.; Fardel, O. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics, 2016, 8(2), 12.
[http://dx.doi.org/10.3390/pharmaceutics8020012] [PMID: 27077878]
[27]
Ribeiro, S.; Sharma, R.; Gupta, S.; Cakar, Z.; De Geyter, C.; Agarwal, A. Inter- and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology, 2017, 5(3), 477-485.
[http://dx.doi.org/10.1111/andr.12334] [PMID: 28245344]
[28]
Mohan, P.K.; Sreelakshmi, G.; Muraleedharan, C.; Joseph, R. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc., 2012, 62, 77-84.
[http://dx.doi.org/10.1016/j.vibspec.2012.05.002]
[29]
Czechowska-Biskup, R.; Jarosińska, D.; Rokita, B.; Ulański, P.; Rosiak, J.M. Determination of degree of deacetylation of chitosan-comparision of methods. Prog Chem Appl Chitin Deriv., 2012, 17, 5-20.
[30]
Wang, W.; Zhu, R.; Xie, Q.; Li, A.; Xiao, Y.; Li, K.; Liu, H.; Cui, D.; Chen, Y.; Wang, S. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int. J. Nanomedicine, 2012, 7, 3667-3677.
[http://dx.doi.org/10.2147/IJN.S30428] [PMID: 22888226]
[31]
Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Mondal, S.; Nguyen, T.P.; Kim, H.; Phan, T.T.V.; Lee, K.D.; Oh, J. Biocompatible chitosan oligosaccharide modified gold nanorods as highly effective photothermal agents for ablation of breast cancer cells. Polymers (Basel), 2018, 10(3), 232.
[http://dx.doi.org/10.3390/polym10030232] [PMID: 30966267]
[32]
Sun, H.; Cheng, R.; Deng, C.; Meng, F.; Dias, A.A.; Hendriks, M.; Feijen, J.; Zhong, Z. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery. Biomacromolecules, 2015, 16(2), 597-605.
[http://dx.doi.org/10.1021/bm501652d] [PMID: 25555025]
[33]
Zhong, Y.; Zhang, J.; Cheng, R.; Deng, C.; Meng, F.; Xie, F.; Zhong, Z. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J. Control. Release, 2015, 205, 144-154.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.012] [PMID: 25596560]
[34]
Zhou, Y.; Yu, J.; Feng, X.; Li, W.; Wang, Y.; Jin, H.; Huang, H.; Liu, Y.; Fan, D. Reduction-responsive core-crosslinked micelles based on a glycol chitosan–lipoic acid conjugate for triggered release of doxorubicin. RSC Advances, 2016, 6(37), 31391-31400.
[http://dx.doi.org/10.1039/C6RA05501J]
[35]
Anitha, A.; Deepagan, V.; Rani, V.D.; Menon, D.; Nair, S.; Jayakumar, R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr. Polym., 2011, 84(3), 1158-1164.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.005]
[36]
Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.; Nair, S.; Tamura, H.; Jayakumar, R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr. Polym., 2011, 83(2), 452-461.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.008]
[37]
Subramanian, S.B.; Francis, A.P.; Devasena, T. Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr. Polym., 2014, 114, 170-178.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.053] [PMID: 25263878]
[38]
Esfandiarpour-Boroujeni, S.; Bagheri-Khoulenjani, S.; Mirzadeh, H.; Amanpour, S. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr. Polym., 2017, 168, 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.031] [PMID: 28457434]
[39]
Kamaraj, S.; Palanisamy, U.M.; Kadhar Mohamed, M.S.B.; Gangasalam, A.; Maria, G.A.; Kandasamy, R. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur. J. Pharm. Sci., 2018, 116, 48-60.
[http://dx.doi.org/10.1016/j.ejps.2018.01.023] [PMID: 29355595]
[40]
Jardim, K.V.; Siqueira, J.L.N.; Báo, S.N.; Sousa, M.H.; Parize, A.L. The role of the lecithin addition in the properties and cytotoxic activity of chitosan and chondroitin sulfate nanoparticles containing curcumin. Carbohydr. Polym., 2020, •••227115351
[http://dx.doi.org/10.1016/j.carbpol.2019.115351] [PMID: 31590861]
[41]
Guo, D-D.; Xu, C-X.; Quan, J-S.; Song, C-K.; Jin, H.; Kim, D-D.; Choi, Y-J.; Cho, M-H.; Cho, C-S. Synergistic anti-tumor activity of paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel in vitro and in vivo. Biomaterials, 2009, 30(27), 4777-4785.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.051] [PMID: 19524293]
[42]
Zhu, Y.Y.; Huang, H.Y.; Wu, Y.L. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells. Mol. Med. Rep., 2015, 12(4), 5012-5018.
[http://dx.doi.org/10.3892/mmr.2015.4033] [PMID: 26151733]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy