Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Cytotoxic Effects of Blue Scorpion Venom (Rhopalurus junceus) in a Glioblastoma Cell Line Model

Author(s): Laura A. Lozano-Trujillo, Diana K. Garzón-Perdomo, Andrea C.R. Vargas, Lina M. de los Reyes, Marco F. Avila-Rodriguez*, Olivia T.G. Gay and Liliana F. Turner*

Volume 22, Issue 5, 2021

Published on: 17 July, 2020

Page: [636 - 645] Pages: 10

DOI: 10.2174/1389201021666200717092207

Price: $65

Abstract

Background: Cancer is one of the leading cause of death worldwide. Besides current therapies and treatments to counter cancer, new alternatives are required to diminish the cell proliferation of oncogenic processes.

Methods: One of the most promissory therapy includes the use of blue scorpion venom as a specific cytotoxic agent to kill tumoral cells, including Glioblastoma multiforme.

Objectives: We show evidence of the cytotoxic effect of blue scorpion venom in a cellular model of Glioblastoma multiforme.

Results: Our results demonstrate that 50 μg/ml of scorpion venom is capable to diminish the viability of Glioblastoma populations.

Conclusion: It is possible that the action mechanism could be associated with a loss of membrane integrity. Additionally, some metalloproteinases as MMP2 and MMP9 may also participate in the potential action mechanism.

Keywords: Rhopalurus junceus, blue scorpion, venom, cytotoxic effects, glioblastoma, cancer.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Bray, F.; Jemal, A.; Torre, L.A.; Forman, D.; Vineis, P. Long-term Realism and Cost-effectiveness: Primary Prevention in Combatting Cancer and Associated Inequalities Worldwide. J. Natl. Cancer Inst., 2015, 107(12), djv273.
[http://dx.doi.org/10.1093/jnci/djv273] [PMID: 26424777]
[3]
Contreras, L.E. Epidemiología de Tumores Cerebrales. Rev. Clínica Las Condes, 2017, 28(3), 332-338.
[http://dx.doi.org/10.1016/j.rmclc.2017.05.001]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Wilson, B.E.; Jacob, S.; Yap, M.L.; Ferlay, J.; Bray, F.; Barton, M.B. Estimates of global chemotherapy demands and corresponding physician workforce requirements for 2018 and 2040: a population-based study. Lancet Oncol., 2019, 20(6), 769-780.
[http://dx.doi.org/10.1016/S1470-2045(19)30163-9] [PMID: 31078462]
[6]
Formolo, C.A.; Williams, R.; Gordish-Dressman, H.; MacDonald, T.J.; Lee, N.H.; Hathout, Y. Secretome signature of invasive glioblastoma multiforme. J. Proteome Res., 2011, 10(7), 3149-3159.
[http://dx.doi.org/10.1021/pr200210w] [PMID: 21574646]
[7]
Dunn, G.P.; Rinne, M.L.; Wykosky, J.; Genovese, G.; Quayle, S.N.; Dunn, I.F.; Agarwalla, P.K.; Chheda, M.G.; Campos, B.; Wang, A.; Brennan, C.; Ligon, K.L.; Furnari, F.; Cavenee, W.K.; Depinho, R.A.; Chin, L.; Hahn, W.C. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev., 2012, 26(8), 756-784.
[http://dx.doi.org/10.1101/gad.187922.112] [PMID: 22508724]
[8]
Lee, K.S.; Choe, G.; Nam, K.H.; Seo, A.N.; Yun, S.; Kim, K.J.; Cho, H.J.; Park, S.H. Immunohistochemical classification of primary and secondary glioblastomas. Korean J. Pathol., 2013, 47(6), 541-548.
[http://dx.doi.org/10.4132/KoreanJPathol.2013.47.6.541] [PMID: 24421847]
[9]
Zhang, R-Q.; Shi, Z.; Chen, H.; Chung, N.Y-F.; Yin, Z.; Li, K.K-W.; Chan, D.T-M.; Poon, W.S.; Wu, J.; Zhou, L.; Chan, A.K.; Mao, Y.; Ng, H.K. Biomarker-based prognostic stratification of young adult glioblastoma. Oncotarget, 2016, 7(4), 5030-5041.
[http://dx.doi.org/10.18632/oncotarget.5456] [PMID: 26452024]
[10]
Delgado-López, P.D.; Corrales-García, E.M. Survival in glioblastoma: a review on the impact of treatment modalities. Clin. Transl. Oncol., 2016, 18(11), 1062-1071.
[http://dx.doi.org/10.1007/s12094-016-1497-x] [PMID: 26960561]
[11]
Jackson, C.M.; Choi, J.; Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat. Immunol., 2019, 20(9), 1100-1109.
[http://dx.doi.org/10.1038/s41590-019-0433-y] [PMID: 31358997]
[12]
Philteos, J.; Karmur, B.S.; Mansouri, A. mgmt testing in Glioblastomas: Pitfalls and Opportunities. Am. J. Clin. Oncol., 2019, 42(2), 117-122.
[http://dx.doi.org/10.1097/COC.0000000000000490] [PMID: 30444735]
[13]
Jayaram, S.; Gupta, M.K.; Polisetty, R.V.; Cho, W.C.S.; Sirdeshmukh, R. Towards developing biomarkers for glioblastoma multiforme: a proteomics view. Expert Rev. Proteomics, 2014, 11(5), 621-639.
[http://dx.doi.org/10.1586/14789450.2014.939634] [PMID: 25115191]
[14]
Dardevet, L.; Rani, D.; El Aziz, T. A.; Bazin, I.; Sabatier, J. M.; Fadl, M.; Brambilla, E.; De Waard, M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins, 2015, 7(4), 1079-1101.
[http://dx.doi.org/10.3390/toxins7041079]
[15]
Petricevich, V.L. Scorpion venom and the inflammatory response. Mediators Inflamm., 2010, 2010903295.
[http://dx.doi.org/10.1155/2010/903295] [PMID: 20300540]
[16]
Díaz-García, A.; Morier-Díaz, L.; Frión-Herrera, Y.; Rodríguez-Sánchez, H.; Caballero-Lorenzo, Y.; Mendoza-Llanes, D.; Riquenes-Garlobo, Y.; Fraga-Castro, J.A. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines. J. Venom Res., 2013, 4, 5-12.
[PMID: 23946884]
[17]
Ebrahim, K.; Vatanpour, H.; Zare, A.; Shirazi, F.H.; Nakhjavani, M. Anticancer Activity a of Caspian Cobra (Naja naja oxiana) snake Venom in Human Cancer Cell Lines Via Induction of Apoptosis. Iran. J. Pharm. Res., 2016, 15(Suppl.), 101-112.
[PMID: 28228809]
[18]
Díaz-García, A.; Ruiz-Fuentes, J.L.; Yglesias-Rivera, A.; Rodríguez-Sánchez, H.; Riquenes Garlobo, Y.; Fleitas Martinez, O.; Fraga Castro, J.A. Enzymatic analysis of venom from Cuban scorpion Rhopalurus junceus. J. Venom Res., 2015, 6, 11-18.
[PMID: 26605039]
[19]
Díaz-García, A.; Ruiz-Fuentes, J.L.; Rodríguez-Sánchez, H.; Fraga Castro, J.A. Rhopalurus junceus scorpion venom induces apoptosis in the triple negative human breast cancer cell line MDA-MB-231. J. Venom Res., 2017, 8, 9-13.
[PMID: 29285349]
[20]
Betancourt, H.O.; Hernández, C.I.; Huerta, I.E.; Labrada, R.A.; del Risco R.J.; Pargas, R.A. Evaluation of the in vitro toxicity of the venom of the scorpion Rophalurus junceus through a cellular assay. Rev. Cuba. Investig. Bioméd., 2009, 28(1), 1-11.
[21]
Hernandez Betancourt, O.; Compte Alberto, O.; Quesada Leiva, L.; Rodríguez Pargas, A. Electrophoretic and chromatographic characterization of the venom of the scorpion Rhopalurus junceus. Rev. Arch. Méd. Camagüey., 2009, 13(6)
[22]
García-Gómez, B.I.; Coronas, F.I.V.; Restano-Cassulini, R.; Rodríguez, R.R.; Possani, L.D. Biochemical and molecular characterization of the venom from the Cuban scorpion Rhopalurus junceus. Toxicon, 2011, 58(1), 18-27.
[http://dx.doi.org/10.1016/j.toxicon.2011.04.011] [PMID: 21605585]
[23]
Yglesias-rivera, A.; Rodríguez-Sánchez, H.; Díaz-Garcia, A. Synergistic Effect of Rhopalurus Junceus Scorpion Venom Combined with Conventional Cytostatics in Cervical Cancer Cell Line HeLa. J. Pharm. Pharmacogn. Res., 2019, 7(1), 67-76.
[24]
Gómez Rave, J.L.; Bravo Muñoz, A.X.; Sierra Castrillo, J.; Román Marín, L.M.; Corredor Pereira, C. Scorpion Venom: New Promise in the Treatment of Cancer. Acta Biol. Colomb., 2019, 24(2), 213-223.
[http://dx.doi.org/10.15446/abc.v24n2.71512]
[25]
Díaz-García, A.; Ruiz-Fuentes, J.L.; Frión-Herrera, Y.; Yglesias-Rivera, A.; Garlobo, Y.R.; Sánchez, H.R.; Aurrecochea, J.C.R.; López Fuentes, L.X. Rhopalurus junceus scorpion venom induces antitumor effect in vitro and in vivo against a murine mammary adenocarcinoma model. Iran. J. Basic Med. Sci., 2019, 22(7), 759-765.
[http://dx.doi.org/10.22038/ijbms.2019.33308.7956] [PMID: 32373297]
[26]
Ghosh, A.; Roy, R.; Nandi, M.; Mukhopadhyay, A. Scorpion Venom-Toxins that Aid in Drug Development: A Review. Int. J. Pept. Res. Ther., 2019, 25(1), 27-37.
[http://dx.doi.org/10.1007/s10989-018-9721-x] [PMID: 32214927]
[27]
Roxo, A.; Andrade, I.; Cruz, R. Venom of cuban blue scorpion – a new reality for cancer therapy: A systematic review. Eur. J. Public Health, 2019, 29 (Supplement_1).
[http://dx.doi.org/10.1093/eurpub/ckz035.025]
[28]
Mullen, G.R.; Sissom, W.D. Scorpions (Scorpiones); Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-814043-7.00023-6]
[29]
Ward, M.J.; Ellsworth, S.A.; Nystrom, G.S. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon, 2018, 151, 137-155.
[http://dx.doi.org/10.1016/j.toxicon.2018.07.007] [PMID: 30009779]
[30]
Gao, B.; Tian, C.; Zhu, S. Inducible antibacterial response of scorpion venom gland. Peptides, 2007, 28(12), 2299-2305.
[http://dx.doi.org/10.1016/j.peptides.2007.10.004] [PMID: 18023929]
[31]
Evans, E.R.J.; Northfield, T.D.; Daly, N.L.; Wilson, D.T. Venom Costs and Optimization in Scorpions. Front. Ecol. Evol., 2019, 196.
[http://dx.doi.org/10.3389/fevo.2019.00196]
[32]
Shah, P.T.; Ali, F. Scorpion Venom: A Poison or a Medicine-Mini Review. Indian J. Geo-Mar. Sci., 2018, 47(4), 773-778.
[33]
Ortiz, E.; Gurrola, G.B.; Schwartz, E.F.; Possani, L.D. Scorpion venom components as potential candidates for drug development. Toxicon, 2015, 93, 125-135.
[http://dx.doi.org/10.1016/j.toxicon.2014.11.233] [PMID: 25432067]
[34]
Valdez-Velazquéz, L.L.; Romero-Gutierrez, M.T.; Delgado-Enciso, I.; Dobrovinskaya, O.; Melnikov, V.; Quintero-Hernández, V.; Ceballos-Magaña, S.G.; Gaitan-Hinojosa, M.A.; Coronas, F.I.; Puebla-Perez, A.M.; Zamudio, F.; De la Cruz-García, I.; Vázquez-Vuelvas, O.F.; Soriano-Hernandez, A.D.; Possani, L.D. Comprehensive analysis of venom from the scorpion Centruroides tecomanus reveals compounds with antimicrobial, cytotoxic, and insecticidal activities. Toxicon, 2016, 118, 95-103.
[http://dx.doi.org/10.1016/j.toxicon.2016.04.046] [PMID: 27130039]
[35]
Pedron, C.N.; de Oliveira, C.S.; da Silva, A.F.; Andrade, G.P.; da Silva Pinhal, M.A.; Cerchiaro, G. da Silva Junior, P.I.; da Silva, F.D.; Torres, M.T.; Oliveira, V.X. The effect of lysine substitutions in the biological activities of the scorpion venom peptide VmCT1. Eur. J. Pharm. Sci., 2019, 136104952.
[http://dx.doi.org/10.1016/j.ejps.2019.06.006] [PMID: 31181304]
[36]
Li, Z.; Hu, P.; Wu, W.; Wang, Y. Peptides with therapeutic potential in the venom of the scorpion Buthus martensii Karsch. Peptides, 2019, 115, 43-50.
[http://dx.doi.org/10.1016/j.peptides.2019.02.009] [PMID: 30858089]
[37]
Moradi, M.; Solgi, R.; Babak, V.; Tanzadehpanah, H.; Saidijam, M. Scorpion Venom and Its Components as New Pharmaceutical Approach to Cancer Treatment, a Systematic Review. Int. J. Pharm. Sci. Res., 2018, 9(7), 2604-2615.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.9(7).2604-15]
[38]
BenAissa, R.; Othman, H.; Villard, C.; Peigneur, S.; Mlayah-Bellalouna, S.; Abdelkafi-Koubaa, Z.; Marrakchi, N.; Essafi-Benkhadir, K.; Tytgat, J.; Luis, J. AaHIV a Sodium Channel Scorpion Toxin Inhibits the Proliferation of DU145 Prostate Cancer Cells. Biochem. Biophys. Res. Commun., 2019, 518, 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.115] [PMID: 31668811]
[39]
Sarfo-Poku, C.; Eshun, O.; Lee, K.H. Medical application of scorpion venom to breast cancer: A mini-review. Toxicon, 2016, 122, 109-112.
[http://dx.doi.org/10.1016/j.toxicon.2016.09.005] [PMID: 27644898]
[40]
D’Suze, G.; Rosales, A.; Salazar, V.; Sevcik, C. Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon, 2010, 56(8), 1497-1505.
[http://dx.doi.org/10.1016/j.toxicon.2010.09.008] [PMID: 20888852]
[41]
Srairi-Abid, N.; Othman, H.; Aissaoui, D.; BenAissa, R. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium, 2019, 80, 160-174.
[http://dx.doi.org/10.1016/j.ceca.2019.05.003] [PMID: 31108338]
[42]
Giovannini, C.; Baglioni, M.; Baron Toaldo, M.; Cescon, M.; Bolondi, L.; Gramantieri, L. Venom from Cuban Blue Scorpion Has Tumor Activating Effect in Hepatocellular Carcinoma. Sci. Rep., 2017, 7, 1-11.
[http://dx.doi.org/10.1038/srep44685] [PMID: 28322221]
[43]
Díaz-García, A.; Morier-Díaz, L.; Rodríguez-Sánchez, H.; Caballero-Lorenzo, Y. Cytotoxicity of the venom of the Cuban scorpion Rhopalurus junceus and its fractions on tumor cell lines. Labiofam, 2010. No. 1, 12-18.
[44]
Rodríguez-Ravelo, R.; Coronas, F.I.V.; Zamudio, F.Z.; González-Morales, L.; López, G.E.; Urquiola, A.R.; Possani, L.D. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas. J. Venom. Anim. Toxins Incl. Trop. Dis., 2013, 19(1), 13.
[http://dx.doi.org/10.1186/1678-9199-19-13] [PMID: 23849540]
[45]
Lefranc, F.; Le Rhun, E.; Kiss, R.; Weller, M. Glioblastoma quo vadis: Will migration and invasiveness reemerge as therapeutic targets? Cancer Treat. Rev., 2018, 68, 145-154.
[http://dx.doi.org/10.1016/j.ctrv.2018.06.017] [PMID: 30032756]
[46]
Plati, J.; Bucur, O.; Khosravi-Far, R. Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J. Cell. Biochem., 2008, 104(4), 1124-1149.
[http://dx.doi.org/10.1002/jcb.21707] [PMID: 18459149]
[47]
Harguindey, S. Apoptosis and anti-apoptosis in cancer, Alzheimer’s disease and neurodegenerative processes: A dialectic of opposites? new range of therapeutic possibilities and potential hazards, In Oncología (Barcelona); Ediciones Cutor; 2004, pp. 27-37.
[48]
Forsyth, P.A.; Wong, H.; Laing, T.D.; Rewcastle, N.B.; Morris, D.G.; Muzik, H.; Leco, K.J.; Johnston, R.N.; Brasher, P.M.A.; Sutherland, G.; Edwards, D.R. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer, 1999, 79(11-12), 1828-1835.
[http://dx.doi.org/10.1038/sj.bjc.6990291] [PMID: 10206300]
[49]
Rao, V.H.; Lees, G.E.; Kashtan, C.E.; Nemori, R.; Singh, R.K.; Meehan, D.T.; Rodgers, K.; Berridge, B.R.; Bhattacharya, G.; Cosgrove, D. Increased expression of MMP-2, MMP-9 (type IV collagenases/gelatinases), and MT1-MMP in canine X-linked Alport syndrome (XLAS). Kidney Int., 2003, 63(5), 1736-1748.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00939.x] [PMID: 12675849]
[50]
Deshane, J.; Garner, C.C.; Sontheimer, H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem., 2003, 278(6), 4135-4144.
[http://dx.doi.org/10.1074/jbc.M205662200] [PMID: 12454020]
[51]
Kaminari, A.; Tsilibary, E.C.; Tzinia, A. A New Perspective in Utilizing MMP-9 as a Therapeutic Target for Alzheimer’s Disease and Type 2 Diabetes Mellitus. J. Alzheimers Dis., 2018, 64(1), 1-16.
[http://dx.doi.org/10.3233/JAD-180035] [PMID: 29865065]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy