Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Voltammetric Analysis of Ephedrine in Pharmaceutical Dosage Forms and Urine Using poly(Nile Blue A) Modified Glassy Carbon Electrode

Author(s): Fatma Ağın, Gökçe Öztürk and Dilek Kul*

Volume 24, Issue 3, 2021

Published on: 27 July, 2020

Page: [366 - 375] Pages: 10

DOI: 10.2174/1386207323666200727100231

Price: $65

conference banner
Abstract

Objective: The electrochemical analysis of ephedrine which is a sympathometric drug has been studied using poly(Nile blue A) modified glassy carbon electrodes, cyclic voltammetry, differential pulse voltammetry and square wave voltammetry.

Methods: The modified electrodes were prepared by potential cycling electropolymerization of Nile blue A in 0.1 M phosphate buffer solution at pH 6.0. The redox behavior of ephedrine was investigated in different buffer solutions at pH values between 5.5 and 9.0.

Results: Scan rate studies showed that the electron transfer reaction of ephedrine was diffusion controlled. A linear response was obtained between the peak current and the ephedrine concentration in the range of 0.6 to 100 μM with a limit of detection of 2.91×10-3 μM for differential pulse voltammetry in Britton-Robinson buffer solution at pH 9.0. The linearity range of ephedrine in human urine was between 1.0 and 100 μM with a detection limit of 8.16 nM.

Conclusion: The recovery studies in both pharmaceutical dosage forms and urine showed that the proposed method ensured good selectivity, precision and accuracy without any interference from inactive excipients.

Keywords: Ephedrine, poly(Nile blue A), voltammetry, modified glassy carbon electrode, electropolymerization, pharmaceuticals.

[1]
Gurley, B.J.; Wang, P.; Gardner, S.F. Ephedrine-type alkaloid content of nutritional supplements containing Ephedra sinica (Ma-huang) as determined by high performance liquid chromatography. J. Pharm. Sci., 1998, 87(12), 1547-1553.
[http://dx.doi.org/10.1021/js9801844] [PMID: 10189265]
[2]
Abourashed, E.A.; El-Alfy, A.T.; Khan, I.A.; Walker, L. Ephedra in perspective--a current review. Phytother. Res., 2003, 17(7), 703-712.
[http://dx.doi.org/10.1002/ptr.1337] [PMID: 12916063]
[3]
Südfeld, S.; Brechnitz, S.; Wagner, J.Y.; Reese, P.C.; Pinnschmidt, H.O.; Reuter, D.A.; Saugel, B. Post-induction hypotension and early intraoperative hypotension associated with general anaesthesia. Br. J. Anaesth., 2017, 119(1), 57-64.
[http://dx.doi.org/10.1093/bja/aex127] [PMID: 28974066]
[4]
Clark, R.B.; Thompson, D.S.; Thompson, C.H. Prevention of spinal hypotension associated with Cesarean section. Anesthesiology, 1976, 45(6), 670-674.
[http://dx.doi.org/10.1097/00000542-197612000-00018] [PMID: 984486]
[5]
Zimmerman, J.Z.; Lee, J.P.; Cahalan, M. Vasopressors and Inotropes.Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application, 2nd ed Hemmings, H.C.; Egan, T.D., Eds; Elsevier: Philadelphia, 2019, pp. 520-534. http://dx.doi.org/10.1016/B978-0-323-48110-6.00025-9.
[6]
Silvestri, N.J.; Gibbons, H. Autonomic Dysfunction in Neuromuscular Disorders.Neuromuscular Disorders: Treatment and Management, 1st ed; Bertorini, T.E., Ed.; Saunders: Philadelphia, 2011, pp. 61-77.
[http://dx.doi.org/10.1016/B978-1-4377-0372-6.00005-0]
[7]
Shekelle, P.G.; Hardy, M.L.; Morton, S.C.; Maglione, M.; Mojica, W.A.; Suttorp, M.J.; Rhodes, S.L.; Jungvig, L.; Gagné, J. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA, 2003, 289(12), 1537-1545.
[PMID: 12672771]
[8]
Bagchi, D.; Preuss, H.G., Eds.; Obesity Epidemiology, Pathophysiology, and Prevention, 2nd ed; CRC Press: Florida, 2013, p. 692.
[9]
Patil, P.N.; Tye, A.; Lapidus, J.B. A pharmacological study of the ephedrine isomers. J. Pharmacol. Exp. Ther., 1965, 148, 158-168.
[PMID: 14301006]
[10]
Ma, G.; Bavadekar, S.A.; Davis, Y.M.; Lalchandani, S.G.; Nagmani, R.; Schaneberg, B.T.; Khan, I.A.; Feller, D.R. Pharmacological effects of ephedrine alkaloids on human α(1)- and α(2)-adrenergic receptor subtypes. J. Pharmacol. Exp. Ther., 2007, 322(1), 214-221.
[http://dx.doi.org/10.1124/jpet.107.120709] [PMID: 17405867]
[11]
Becker, D.E. Basic and clinical pharmacology of autonomic drugs. Anesth. Prog., 2012, 59(4), 159-168.
[http://dx.doi.org/10.2344/0003-3006-59.4.159] [PMID: 23241039]
[12]
Kobayashi, S.; Endou, M.; Sakuraya, F.; Matsuda, N.; Zhang, X.H.; Azuma, M.; Echigo, N.; Kemmotsu, O.; Hattori, Y.; Gando, S. The sympathomimetic actions of l-ephedrine and d-pseudoephedrine: direct receptor activation or norepinephrine release? Anesth. Analg., 2003, 97(5), 1239-1245.
[http://dx.doi.org/10.1213/01.ANE.0000092917.96558.3C] [PMID: 14570629]
[13]
Laccourreye, O.; Werner, A.; Giroud, J.P.; Couloigner, V.; Bonfils, P.; Bondon-Guitton, E. Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants. Eur. Ann. Otorhinolaryngol. Head Neck Dis., 2015, 132(1), 31-34.
[http://dx.doi.org/10.1016/j.anorl.2014.11.001] [PMID: 25532441]
[14]
Mon, W.; Stewart, A.; Fernando, R.; Ashpole, K.; El-Wahab, N.; MacDonald, S.; Tamilselvan, P.; Columb, M.; Liu, Y.M. Cardiac output changes with phenylephrine and ephedrine infusions during spinal anesthesia for cesarean section: A randomized, double-blind trial. J. Clin. Anesth., 2017, 37, 43-48.
[http://dx.doi.org/10.1016/j.jclinane.2016.11.001] [PMID: 28235526]
[15]
Anderson, S.D. Repurposing drugs as inhaled therapies in asthma. Adv. Drug Deliv. Rev., 2018, 133, 19-33.
[http://dx.doi.org/10.1016/j.addr.2018.06.006] [PMID: 29906501]
[16]
Palamar, J. How ephedrine escaped regulation in the United States: a historical review of misuse and associated policy. Health Policy, 2011, 99(1), 1-9.
[http://dx.doi.org/10.1016/j.healthpol.2010.07.007] [PMID: 20685002]
[17]
Casella, M.; Dello Russo, A.; Izzo, G.; Pieroni, M.; Andreini, D.; Russo, E.; Colombo, D.; Bologna, F.; Bolognese, L.; Zeppilli, P.; Tondo, C. Ventricular arrhythmias induced by long-term use of ephedrine in two competitive athletes. Heart Vessels, 2015, 30(2), 280-283.
[http://dx.doi.org/10.1007/s00380-013-0455-6] [PMID: 24390726]
[18]
Wooltorton, E.; Sibbald, B. Ephedra/ephedrine: cardiovascular and CNS effects. CMAJ, 2002, 166(5), 633.
[PMID: 11898947]
[19]
Skalli, S.; Zaid, A.; Soulaymani, R. Drug interactions with herbal medicines. Ther. Drug Monit., 2007, 29(6), 679-686.
[http://dx.doi.org/10.1097/FTD.0b013e31815c17f6] [PMID: 18043467]
[20]
Limberger, R.P.; Jacques, A.L.B.; Schmitt, G.C.; Arbo, M.D. Pharmacological Effects of Ephedrine.Natural Products; Ramawat, K; Mérillon, J.M., Ed.; Springer: Berlin, Heidelberg, 2013.
[http://dx.doi.org/10.1007/978-3-642-22144-6_41]
[21]
Greenway, F.L. The safety and efficacy of pharmaceutical and herbal caffeine and ephedrine use as a weight loss agent. Obes. Rev., 2001, 2(3), 199-211.
[http://dx.doi.org/10.1046/j.1467-789x.2001.00038.x] [PMID: 12120105]
[22]
Van Eenoo, P.; Delbeke, F.T.; Roels, K.; De Backer, P. Simultaneous quantitation of ephedrines in urine by gas chromatography-nitrogen-phosphorus detection for doping control purposes. J. Chromatogr. B Biomed. Sci. Appl., 2001, 760(2), 255-261.
[http://dx.doi.org/10.1016/S0378-4347(01)00275-4] [PMID: 11530984]
[23]
Schmitt, G.C.; Arbo, M.D.; Lorensi, A.L.; Maciel, E.S.; Krahn, C.L.; Mariotti, K.C.; Dallegrave, E.; Leal, M.B.; Limberger, R.P. Toxicological effects of a mixture used in weight loss products: p-synephrine associated with ephedrine, salicin, and caffeine. Int. J. Toxicol., 2012, 31(2), 184-191.
[http://dx.doi.org/10.1177/1091581811435708] [PMID: 22408069]
[24]
Hakimoğlu, S.; Tuzcu, K.; Davarcı, I.; Karcıoğlu, M.; Kurt, R.; Dikey, İ. Intraoperative ephedrine allergy in a patient who received chemotherapy and perioperative hypersensitivity reactions. Turk. J. Anaesthesiol. Reanim., 2015, 43(2), 130-133.
[http://dx.doi.org/10.5152/TJAR.2014.77044] [PMID: 27366482]
[25]
Castells, M.C. Hypersensitivity to antineoplastic agents. Curr. Pharm. Des., 2008, 14(27), 2892-2901.
[http://dx.doi.org/10.2174/138161208786369803] [PMID: 18991707]
[26]
Mendelovich, M.; Shoshan, M.; Fridlender, M.; Mazuz, M.; Namder, D.; Nallathambi, R.; Selvaraj, G.; Kumari, P.; Ion, A.; Wininger, S.; Nasser, A.; Samara, M.; Sharvit, Y.; Kapulnik, Y.; Dudai, N.; Koltai, H. Effect of Ephedra foeminea active compounds on cell viability and actin structures in cancer cell lines. J. Med. Plants Res., 2017, 11, 690-702.
[http://dx.doi.org/10.5897/JMPR2017.6471]
[27]
Chen, D.; Ma, F.; Liu, X.H.; Cao, R.; Wu, X.Z. Anti-tumor effects of ephedrine and anisodamine on SKBR3 human breast cancer cell line. Afr. J. Tradit. Complem., 2016, 13, 25-32.
[http://dx.doi.org/10.4314/ajtcam.v13i1.4]
[28]
Ben-Arye, E.; Mahajna, J.; Aly, R.; Ali-Shtayeh, M.S.; Bentur, Y.; Lev, E.; Deng, G.; Samuels, N. Exploring an herbal “wonder cure” for cancer: a multidisciplinary approach. J. Cancer Res. Clin. Oncol., 2016, 142(7), 1499-1508.
[http://dx.doi.org/10.1007/s00432-016-2175-7] [PMID: 27155666]
[29]
Sioud, F.; Amor, S. ben Toumia, I.; Lahmar, A.; Aires, V.; Chekir-Ghedira, L.; Delmas, D. A New highlight of Ephedra Alata decne properties as potential adjuvant in combination with cisplatin to induce cell death of 4T1 breast cancer cells in vitro and in vivo. Cells, 2020, 9, 362.
[http://dx.doi.org/10.3390/cells9020362]
[30]
Sagara, K.; Oshima, T.; Misaki, T. A simultaneous determination of norephedrine, pseudoephedrine, ephedrine and methylephedrine in Ephedrae Herba and oriental pharmaceutical preparations by ion-pair high-performance liquid chromatography. Chem. Pharm. Bull. (Tokyo), 1983, 31(7), 2359-2365.
[http://dx.doi.org/10.1248/cpb.31.2359] [PMID: 6640802]
[31]
Aymard, G.; Labarthe, B.; Warot, D.; Berlin, I.; Diquet, B. Sensitive determination of ephedrine and norephedrine in human plasma samples using derivatization with 9-fluorenylmethyl chloroformate and liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl., 2000, 744(1), 25-31.
[http://dx.doi.org/10.1016/S0378-4347(00)00217-6] [PMID: 10985563]
[32]
Pellati, F.; Benvenuti, S. Determination of ephedrine alkaloids in Ephedra natural products using HPLC on a pentafluorophenylpropyl stationary phase. J. Pharm. Biomed. Anal., 2008, 48(2), 254-263.
[http://dx.doi.org/10.1016/j.jpba.2007.10.034] [PMID: 18077120]
[33]
Hu, Z.; Zou, Q.; Tian, J.; Sun, L.; Zhang, Z. Simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma using high performance liquid chromatography coupled with tandem mass spectrometric detection: application to a bioequivalence study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(32), 3937-3942.
[http://dx.doi.org/10.1016/j.jchromb.2011.11.001] [PMID: 22119507]
[34]
Sørensen, L.K. Determination of cathinones and related ephedrines in forensic whole-blood samples by liquid-chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(11-12), 727-736.
[http://dx.doi.org/10.1016/j.jchromb.2011.02.010] [PMID: 21376674]
[35]
Baharfar, M.; Yamini, Y.; Seidi, S.; Karami, M. Quantitative analysis of clonidine and ephedrine by a microfluidic system: On-chip electromembrane extraction followed by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 313-321.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.062] [PMID: 29127057]
[36]
Marchei, E.; Pellegrini, M.; Pacifici, R.; Zuccaro, P.; Pichini, S. A rapid and simple procedure for the determination of ephedrine alkaloids in dietary supplements by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2006, 41(5), 1633-1641.
[http://dx.doi.org/10.1016/j.jpba.2006.02.043] [PMID: 16580167]
[37]
Zareh, M.M.; Issa, Y.M.; Shoukry, A.F.; Shohaib, R.E. Potentiometric determination of ephedrine hydrochloride using plastic membrane ion-selective electrode. J. Chem. Technol. Biotechnol., 1993, 58(4), 371-376.
[http://dx.doi.org/10.1002/jctb.280580410] [PMID: 7764360]
[38]
Hassan, S.S.M.; Kamel, A.H.; Abd El-Naby, H. New potentiometric sensors based on selective recognition sites for determination of ephedrine in some pharmaceuticals and biological fluids. Talanta, 2013, 103, 330-336.
[http://dx.doi.org/10.1016/j.talanta.2012.10.067] [PMID: 23200395]
[39]
Ouyang, J.; Gao, X.; Baeyens, W.R.; Delanghe, J.R. Determination of ephedrine and related compounds in pharmaceutical preparations by ion chromatography with direct conductivity detection. Biomed. Chromatogr., 2005, 19(4), 266-271.
[http://dx.doi.org/10.1002/bmc.448] [PMID: 15651083]
[40]
Chen, H.; Chen, X.; Pu, Q.; Hu, Z.; Zhao, Z.; Hooper, M. Separation and determination of ephedrine and pseudoephedrine by combination of flow injection with capillary electrophoresis. J. Chromatogr. Sci., 2003, 41(1), 1-5.
[http://dx.doi.org/10.1093/chromsci/41.1.1] [PMID: 12597588]
[41]
Avula, B.; Khan, I.A. Separation and determination of ephedrine enantiomers and synephrine by high performance capillary electrophoresis in dietary supplements. Chromatographia, 2004, 59, 71-77.
[42]
Phinney, K.W.; Ihara, T.; Sander, L.C. Determination of ephedrine alkaloid stereoisomers in dietary supplements by capillary electrophoresis. J. Chromatogr. A, 2005, 1077(1), 90-97.
[http://dx.doi.org/10.1016/j.chroma.2005.04.068] [PMID: 15988991]
[43]
Li, F.; Ding, Z.; Cao, Q.E. Separation and determination of ephedrine and pseudoephedrine in Ephedrae Herba by CZE modified with a Cu(II)-L-lysine complex. Electrophoresis, 2008, 29(3), 658-664.
[http://dx.doi.org/10.1002/elps.200700334] [PMID: 18228536]
[44]
Deng, D.; Deng, H.; Zhang, L.; Su, Y. Determination of ephedrine and pseudoephedrine by field-amplified sample injection capillary electrophoresis. J. Chromatogr. Sci., 2014, 52(4), 357-362.
[http://dx.doi.org/10.1093/chromsci/bmt039] [PMID: 23619557]
[45]
FIe.. K.; FA, M.; LO, K.; TO, K. UV spectrophotometric method for the quantitative determination of ephedrine hydrochloride. Farm. Zh., 1980, 2, 46-49.
[46]
Amer, M.M.; Taha, A.M.; El-Shabouri, S.R.; Khashaba, P.Y. Spectrophotometric determination of ephedrine hydrochloride and phenylephrine hydrochloride. J. Assoc. Off. Anal. Chem., 1982, 65(4), 894-898.
[http://dx.doi.org/10.1093/jaoac/65.4.894] [PMID: 7118795]
[47]
Davidson, A.G.; Elsheikh, H. Assay of ephedrine or pseudoephedrine in pharmaceutical preparations by second and fourth derivative ultraviolet spectrophotometry. Analyst (Lond.), 1982, 107(1277), 879-884.
[http://dx.doi.org/10.1039/an9820700879] [PMID: 7137571]
[48]
Falcó, P.C.; Cabeza, A.S.; Legua, C.M. Extractive-spectrophotometric determination of ephedrine with sodium 1,2-naphthoquinone-4-sulphonate in pharmaceutical formulations. Anal. Lett., 1994, 27, 531-547.
[http://dx.doi.org/10.1080/00032719408001093]
[49]
Chicharro, M.; Zapardiel, A.; Bermejo, E.; Pérez, J.A.; Hernández, L. Determination of ephedrine in human urine using a glassy carbon electrode. Anal. Chim. Acta, 1993, 273, 361-368.
[http://dx.doi.org/10.1016/0003-2670(93)80178-N]
[50]
Chicharro, M.; Zapardiel, A.; Bermejo, E.; Pérez, J.A.; Hernández, L. Ephedrine determination in human urine using a carbon paste electrode modified with C18 bonded silica gel. Anal. Lett., 1994, 27, 1809-1831.
[http://dx.doi.org/10.1080/00032719408002634]
[51]
Chicharro, M.; Zapardiel, A.; Bermejo, E.; Pérez, J.A.; Hernández, L. Determination of ephedrine in human urine by square wave voltammetry with a sepiolite-modified carbon paste electrode. Analusis, 1995, 23, 131-134.
[52]
Mazzotta, E.; Picca, R.A.; Malitesta, C.; Piletsky, S.A.; Piletska, E.V. Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine. Biosens. Bioelectron., 2008, 23(7), 1152-1156.
[http://dx.doi.org/10.1016/j.bios.2007.09.020] [PMID: 17997092]
[53]
Mersal, G.A.M. Electrochemical applications and computational studies on ephedrine drug, Voltammetric determination using a new pseudo-carbon paste electrode modified with poly(acrylic) acid. J. Solid State Electrochem., 2012, 16, 2031-2039.
[http://dx.doi.org/10.1007/s10008-011-1607-1]
[54]
Ahmar, H.; Fakhari, A.R. Electro-oxidation and adsorptive stripping voltammetric determination of ephedrine and pseudoephedrine at carboxylated multi-walled carbon nanotube-modified electrode. Anal. Methods, 2012, 4, 812-818.
[http://dx.doi.org/10.1039/c2ay05680a]
[55]
Bagheri, H.; Pajooheshpour, N.; Afkhami, A.; Khoshsafard, H. Fabrication of a novel electrochemical sensing platform based on core-shell nano-structured/molecularly imprinted polymer for sensitive and selective determination of ephedrine. RSC Advances, 2016, 6, 51135-51145.
[http://dx.doi.org/10.1039/C6RA09488K]
[56]
Gladysz, O.; Skibinski, P. Voltamperometric test of ephedrine on a gold disc microelectrode. Mater. Chem. Phys., 2020, 246122792
[http://dx.doi.org/10.1016/j.matchemphys.2020.122792]
[57]
Abo-el-Maali, N. Voltammetric analysis of drugs. Bioelectrochemistry, 2004, 64(1), 99-107.
[http://dx.doi.org/10.1016/j.bioelechem.2004.03.003] [PMID: 15219253]
[58]
Gupta, V.K.; Jain, R.; Radhapyari, K.; Jadon, N.; Agarwal, S. Voltammetric techniques for the assay of pharmaceuticals--a review. Anal. Biochem., 2011, 408(2), 179-196.
[http://dx.doi.org/10.1016/j.ab.2010.09.027] [PMID: 20869940]
[59]
Dogan-Topal, B.; Kul, D.; Ozkan, S.A.; Uslu, B. Anodic behaviour of fulvestrant and its voltammetric determination in pharmaceuticals and human serum on highly boron-doped diamond electrode using differential pulse adsorptive stripping voltammetry. J. Appl. Electrochem., 2011, 41, 1253-1260.
[http://dx.doi.org/10.1007/s10800-011-0355-3]
[60]
Kul, D. Sensitive and selective determination of tolterodine tartrate and its electrochemical investigation on solid carbon based electrodes. J. Anal. Chem., 2014, 69, 970-981.
[http://dx.doi.org/10.1134/S1061934814100049]
[61]
Kul, D.; Pauliukaite, R.; Brett, C.M.A. Electrosynthesis and characterisation of poly(Nile blue) films. J. Electroanal. Chem. (Lausanne Switz.), 2011, 662, 328-333.
[http://dx.doi.org/10.1016/j.jelechem.2011.09.007]
[62]
Ju, H.; Shen, C. Electrocatalytic reduction and determination of dissolved oxygen at a poly(Nile blue) modified electrode. Electroanalysis, 2001, 13, 789-793.
[http://dx.doi.org/10.1002/1521-4109(200105)13:8/9<789:AID-ELAN789>3.0.CO;2-G]
[63]
Du, P.; Liu, S.; Wu, P.; Cai, C. Single-walled carbon nanotubes functionalized with poly(Nile blue A) and their application to dehydrogenase-based biosensors. Electrochim. Acta, 2007, 53, 1811-1823.
[http://dx.doi.org/10.1016/j.electacta.2007.08.027]
[64]
Pauliukaite, R.; Ghica, M.E.; Barsan, M.M.; Brett, C.M.A. Phenazines and polyphenazines in electrochemical sensors and biosensors. Anal. Lett., 2010, 43, 1588-1608.
[http://dx.doi.org/10.1080/00032711003653791]
[65]
Mahanthesha, K.R.; Kumara Swamy, B.E. Selective electro determination of norepinephrine at poly(Nile blue) modified carbon paste electrode: a voltammetric study. J. Emerg. Technol. Innov. Res., 2018, 5, 16-24.
[66]
Chakkarapani, L.D.; Sangilimuthu, S.N.; Arumugam, S. New electrochemical sensor for the detection of biological analytes using poly(amido amine) dendrimer and poly(Nile blue)-modified electrode. J. Electroanal. Chem. (Lausanne Switz.), 2019, 855113486
[http://dx.doi.org/10.1016/j.jelechem.2019.113486]
[67]
Kul, D.; Öztürk, G. Poly(methyl red) modified glassy carbon electrodes: Electrosynthesis, characterization, and sensor behavior. Electroanalysis, 2017, 29, 1721-1730.
[http://dx.doi.org/10.1002/elan.201700043]
[68]
Kul, D.; Dogan-Topal, B.; Ozkan, S.A.; Uslu, B. Differential pulse voltammetric determination of fulvestrant in pharmaceutical dosage forms and serum samples. Int. J. Electrochem. Article ID, 2011, 941583, 1-7.
[69]
Ozkan, S.A.; Dogan, B.; Uslu, B. Voltammetric analysis of the novel atypical antipsychotic drug quetiapine in human serum and urine. Mikrochim. Acta, 2006, 153, 27-35.
[http://dx.doi.org/10.1007/s00604-005-0457-x]
[70]
Barsan, M.M.; Ghica, M.E.; Brett, C.M.A. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal. Chim. Acta, 2015, 881, 1-23.
[http://dx.doi.org/10.1016/j.aca.2015.02.059] [PMID: 26041516]
[71]
Cai, C.X.; Xue, K.H. Electrocatalysis of NADH oxidation with electropolymerized films of Nile blue A. Anal. Chim. Acta, 1997, 343, 69-77.
[http://dx.doi.org/10.1016/S0003-2670(96)00592-2]
[72]
Chen, X.; Wang, F.; Chen, Z. An electropolymerized Nile Blue sensing film-based nitrite sensor and application in food analysis. Anal. Chim. Acta, 2008, 623(2), 213-220.
[http://dx.doi.org/10.1016/j.aca.2008.06.021] [PMID: 18620926]
[73]
Ghica, M.E.; Brett, C.M.A. Poly(brilliant cresyl blue) modified glassy carbon electrodes: Electrosynthesis, characterisation and application in biosensors. J. Electroanal. Chem. (Lausanne Switz.), 2009, 629, 35-42.
[http://dx.doi.org/10.1016/j.jelechem.2009.01.019]
[74]
Kul, D.; Brett, C.M.A. Electrochemical investigation and determination of levodopa on poly(Nile blue-A)/multiwalled carbon nanotube modified glassy carbon electrodes. Electroanalysis, 2014, 26, 1320-1325.
[http://dx.doi.org/10.1002/elan.201400071]
[75]
Xu, X.; Liu, Z.; Zhang, X.; Duan, S.; Xu, S.; Zhou, C. β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: Simultaneous determination of nitrophenol isomers. Electrochim. Acta, 2011, 58, 142-149.
[http://dx.doi.org/10.1016/j.electacta.2011.09.015]
[76]
Zeng, Q.; Wei, T.; Wang, M.; Huang, X.; Fang, Y.; Wang, L. Polyfurfural film modified glassy carbon electrode for highly sensitive nifedipine determination. Electrochim. Acta, 2015, 186, 465-470.
[http://dx.doi.org/10.1016/j.electacta.2015.10.141]
[77]
Ağin, F.; Atal, S. Electroanalytical determination of the anti-inflammatory drug tenoxicam in pharmaceutical dosage forms. Turk J Pharm Sci, 2019, 16(2), 184-190.
[http://dx.doi.org/10.4274/tjps.galenos.2018.60783] [PMID: 32454712]
[78]
Riley, C.M.; Rosanske, T.M. Development and Validation of Analytical Methods, 1st ed; Elsevier: New York, 1996.
[79]
Swartz, M.E.; Krull, I.S. Analytical Method Development and Validation; Marcel Dekker: New York, 1997, pp. 17-34.
[80]
Ermer, J.; Miller, H.McB. Method Validation in Pharmaceutical; Wiley-VCH: Weinheim, 2005, pp. 21-120.
[http://dx.doi.org/10.1002/3527604685.ch2]
[81]
Gumustas, M.; Ozkan, S.A. The role of and the place of method validation in drug analysis using electroanalytical techniques. Open Anal. Chem. J., 2011, 5, 1-21.
[http://dx.doi.org/10.2174/1874065001005010001]
[82]
Amare, M.; Aklog, S. Electrochemical determination of caffeine content in ethiopian coffee samples using lignin modified glassy carbon electrode. J. Anal. Methods Chem. Article ID, 2017, 3979068, 1-8.
[83]
Brittain, H.G., Ed.; Profiles of Drug Substances, Excipients, and Related Methodology, 1st ed; Academic Press: London, 2020, Vol. 45, .
[84]
Al-rashdi, A.A. Farghaly, Naggar, A.H. Voltammetric determination of pharmaceutical compounds at bare and modified solid electrodes: A review. J. Chem. Pharm. Res., 2018, 10, 21-43.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy