Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Addressing Alzheimer’s Disease and Cognitive Loss through Autophagy

Author(s): Kenneth Maiese*

Volume 17, Issue 4, 2020

Page: [339 - 341] Pages: 3

DOI: 10.2174/1567202617666200721150331

conference banner
Next »
[1]
National Center for Health Statistics. National Vital Statisitcs System National Center for Health Statistics Fact Sheet 2019 February: 1-2;
[2]
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD(+) synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132110841
[3]
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 2020e15002
[4]
Kowalska M, Piekut T, Prendecki M, Sodel A, Kozubski W, Dorszewska J. Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA Cell Biol 2020; 39: 8.
[5]
Speer H, D’Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and human health-A focus on oxidative stress, inflammation and disease. Antioxidants (Basel, Switzerland) 2020; 9(5): 366.
[6]
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10: 54.
[7]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[8]
Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75(3): 207-46.
[9]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[10]
Borjini N, Sivilia S, Giuliani A, et al. Potential biomarkers for neuroinflammation and neurodegeneration at short and long term after neonatal hypoxic-ischemic insult in rat. J Neuroinflam 2019; 16(1): 194.
[11]
Handa JT, Bowes Rickman C, Dick AD, et al. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun 2019; 10(1): 3347.
[12]
Maiese K. Impacting dementia and cognitive loss with innovative strategies: Mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res 2019; 14(5): 773-4.
[13]
Csicsar A, Tarantini S, Yabluchanskiy A, et al. Role of endothelial NAD+ deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 316(6): H1253-66.
[14]
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[15]
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary restriction and oxidative stress: Friends or enemies? Antioxid Redox Signal 2020. [Epub ahead of print
[16]
World Health Organization. Global action plan on the public health response to dementia 2017-2025. 2017 2017; 1-44.
[17]
Maiese K. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann Med 2014; 46(8): 587-96.
[18]
Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: On target for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19(1): 51-60.
[19]
Maiese K. MicroRNAs for the treatment of dementia and Alzheimer’s disease. Curr Neurovasc Res 2019; 16(1): 1-2.
[20]
De Vecchis D, Brandner A, Baaden M, Cohen MM, Taly A. A molecular perspective on mitochondrial membrane fusion: From the key players to oligomerization and tethering of mitofusin. J Membr Biol 2019; 252(4-5): 293-306.
[21]
Kotrys AV, Szczesny RJ. Mitochondrial gene expression and beyond-novel aspects of cellular physiology. Cells 2019; 9(1): 17.
[22]
Maiese K. Sirtuins: Developing innovative treatments for aged-related memory loss and Alzheimer’s disease. Curr Neurovasc Res 2018; 15(4): 367-71.
[23]
Rezaee Z, Marandi SM, Alaei H, Esfarjani F, Feyzollahzadeh S. Effects of preventive treadmill exercise on the recovery of metabolic and mitochondrial factors in the 6-Hydroxydopamine rat model of Parkinson’s disease. Neurotox Res 2019; 35(4): 908-17.
[24]
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary polyphenols: A multifactorial strategy to target Alzheimer’s disease. Int J Mol Sci 2019; 20(20): 5090.
[25]
Jarosz-Griffiths HH, Corbett NJ, Rowland HA, et al. Proteolytic shedding of the prion protein via activation of metallopeptidase ADAM10 reduces cellular binding and toxicity of amyloid-beta oligomers. J Biol Chem 2019; 294(17): 7085-97.
[26]
Kell DB, Pretorius E. No effects without causes: The iron dysregulation and dormant microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93(3): 1518-57.
[27]
Maiese K. Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res 2014; 9(15): 1413-7.
[28]
Su M, Naderi K, Samson N, et al. Mechanisms associated with type 2 Diabetes as a risk factor for Alzheimer-related pathology. Mol Neurobiol 2019; 56: 5815-34.
[29]
Ruhal P, Dhingra D. Inosine improves cognitive function and decreases aging-induced oxidative stress and neuroinflammation in aged female rats. Inflammopharmacology 2018; 26(5): 1317-29.
[30]
Chen F, Liu Z, Peng W, et al. Activation of EphA4 induced by EphrinA1 exacerbates disruption of the blood-brain barrier following cerebral ischemia-reperfusion via the Rho/ROCK signaling pathway. Exper Therapeut Med 2018; 16(3): 2651-8.
[31]
Ong WY, Wu YJ, Farooqui T, Farooqui AA. Qi Fu Yin-a Ming dynasty prescription for the treatment of dementia. Mol Neurobiol 2018; 55(9): 7389-400.
[32]
Liu L, Hu J, Yang L, et al. Association of WISP1/CCN4 with risk of overweight and gestational Diabetes Mellitus in Chinese pregnant women. Dis Markers 2020; 20204934206
[33]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in Diabetes Mellitus. Curr Neurovasc Res 2020. [Epub ahead of print
[34]
Ali T, Rahman SU, Hao Q, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69(2)e12667
[35]
Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2016; 12(1): 1-222.
[36]
Li L, Xue J, Wan J, et al. LRP6 knockdown ameliorates insulin resistance via modulation of autophagy by regulating GSK3beta signaling in human LO2 hepatocytes. Front Endocrinol 2019; 10: 73.
[37]
Li W, Zhu L, Ruan ZB, Wang MX, Ren Y, Lu W. Nicotinamide protects chronic hypoxic myocardial cells through regulating mTOR pathway and inducing autophagy. Eur Rev Med Pharmacol Sci 2019; 23(12): 5503-11.
[38]
Li Y, Liu L, Tian Y, Zhang J. Rapamycin improves sevofluraneinduced cognitive dysfunction in aged rats by mediating autophagy through the TLR4/MyD88/NFkappaB signaling pathway. Mol Med Rep 2019; 20(4): 3085-94.
[39]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Front Biosci (Landmark edition) 2020; 25: 1925-73.
[40]
Maiese K. The mechanistic target of Rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr Neurovasc Res 2020. [Epub ahead of print
[41]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[42]
Meng J, Chen Y, Wang J, et al. EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway. Ann Transl Med 2020; 8(5): 200.
[43]
Preau S, Ambler M, Sigurta A, et al. Protein recycling and limb muscle recovery after critical illness in slow- and fast-twitch limb muscle. Am J Physiol Regul Integr Comp Physiol 2019; 316(5): R584-93.
[44]
Evans T, Kok WL, Cowan K, Hefford M, Anichtchik O. Accumulation of beta-synuclein in cortical neurons is associated with autophagy attenuation in the brains of dementia with Lewy body patients. Brain Res 2017; 1681: 1-13.
[45]
Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 2019; 9(1): 840.
[46]
Hu M, Liu Z, Lv P, et al. Nimodipine activates neuroprotective signaling events and inactivates autophages in the VCID rat hippocampus. Neurol Res 2017; 39(10): 904-9.
[47]
Hu YB, Zou Y, Huang Y, et al. ROCK1 is associated with Alzheimer’s disease-specific plaques, as well as enhances autophagosome formation but not autophagic abeta clearance. Front Cell Neurosci 2016; 10: 253.
[48]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11(3): 372-85.
[49]
Maiese K. Forkhead transcription factors: New considerations for Alzheimer’s disease and dementia. J Transl Sci 2016; 2(4): 241-7.
[50]
Maiese K. FoxO proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015569392
[51]
Caberlotto L, Nguyen TP, Lauria M, et al. Cross-disease analysis of Alzheimer’s disease and type-2 Diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Sci Rep 2019; 9(1): 3965.
[52]
Cheng J, North BJ, Zhang T, et al. The emerging roles of protein homeostasis-governing pathways in Alzheimer’s disease. Aging Cell 2018; 17(5)e12801
[53]
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99(2): 128-48.
[54]
Zhang ZH, Wu QY, Zheng R, et al. Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s disease mouse model. J Neurosci 2017; 37(9): 2449-62.
[55]
Zhou T, Zhuang J, Wang Z, et al. Glaucocalyxin A as a natural product increases amyloid beta clearance and decreases tau phosphorylation involving the mammalian target of rapamycin signaling pathway. Neuroreport 2019; 30(4): 310-6.
[56]
Jiang T, Yu JT, Zhu XC, et al. Temsirolimus promotes autophagic clearance of amyloid-beta and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol Res 2014; 81C: 54-63.
[57]
Zhang Y, Wu Q, Zhang L, et al. Caffeic acid reduces A53T alpha-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res 2019; 150104538
[58]
Zhou ZD, Selvaratnam T, Lee JCT, Chao YX, Tan EK. Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson’s disease. Transl Neurodegener 2019; 8: 6.
[59]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[60]
Yu S, Xin W, Jiang Q, Li A. Propofol exerts neuroprotective functions by down-regulating microRNA-19a in glutamic acid-induced PC12 cells. Biofactors (Oxford, England) 2019; 2019: 1-9.
[61]
Maiese K. Novel treatment strategies for the nervous system: Circadian clock genes, non-coding RNAs, and forkhead transcription factors. Curr Neurovasc Res 2018; 15(1): 81-91.

© 2024 Bentham Science Publishers | Privacy Policy