Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Cellular and Functional Effects of Insulin Based Therapies and Exercise on Endothelium

Author(s): Melissa A. Luse, Emily M. Heiston, Steven K. Malin and Brant E. Isakson*

Volume 26, Issue 30, 2020

Page: [3760 - 3767] Pages: 8

DOI: 10.2174/1381612826666200721002735

Price: $65

Abstract

Endothelial dysfunction is a hallmark of type 2 diabetes that can have severe consequences on vascular function, including hypertension and changes in blood flow, as well as exercise performance. Because endothelium is also the barrier for insulin movement into tissues, it acts as a gatekeeper for transport and glucose uptake. For this reason, endothelial dysfunction is a tempting area for pharmacological and/or exercise intervention with insulin-based therapies. In this review, we describe the current state of drugs that can be used to treat endothelial dysfunction in type 2 diabetes and diabetes-related diseases (e.g., obesity) at the molecular levels, and also discuss their role in exercise.

Keywords: Endothelial dysfunction, exercise, vascular function, insulin, hypertension, pharmacological.

[1]
Potenza MA, Gagliardi S, Nacci C, Carratu’ MR, Montagnani M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 2009; 16(1): 94-112.
[http://dx.doi.org/10.2174/092986709787002853] [PMID: 19149564]
[2]
Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003; 111(8): 1201-9.
[http://dx.doi.org/10.1172/JCI200314172] [PMID: 12697739]
[3]
Van Poppel PCM, Netea MG, Smits P, Tack CJ. Vildagliptin Improves Endothelium-Dependent Vasodilatation in Type 2 Diabetes 2011; 34(9): 2072-7.
[http://dx.doi.org/10.2337/dc10-2421]
[4]
Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care 2013; 36(1): 104-10.
[http://dx.doi.org/10.2337/dc11-2399] [PMID: 22961574]
[5]
Liu Z, Liu J, Jahn LA, Fowler DE, Barrett EJ. Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature. J Clin Endocrinol Metab 2009; 94(9): 3543-9.
[http://dx.doi.org/10.1210/jc.2009-0027] [PMID: 19567533]
[6]
Vincent MA, Clerk LH, Lindner JR, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab 2006; 290(6): E1191-7.
[http://dx.doi.org/10.1152/ajpendo.00497.2005] [PMID: 16682488]
[7]
Malin SK, Gilbertson NM, Eichner NZM, Heiston E, Miller S, Weltman A. Impact of short-term continuous and interval exercise training on endothelial function and glucose metabolism in prediabetes. J Diabetes Res 2019; 2019: 4912174
[http://dx.doi.org/10.1155/2019/4912174] [PMID: 31976336]
[8]
Gilbertson NM, Miller SL, Eichner NZM, Malin SK. Endothelial function following interval exercise plus low-calorie diet treatment in obese females. Physiol Rep 2019; 7(18): e14239
[http://dx.doi.org/10.14814/phy2.14239] [PMID: 31552710]
[9]
Rattigan S, Wheatley C, Richards SM, Barrett EJ, Clark MG. Exercise and insulin-mediated capillary recruitment in muscle. Exerc Sport Sci Rev 2005; 33(1): 43-8.
[PMID: 15640720]
[10]
Jahn LA, Hartline L, Rao N, et al. Insulin enhances endothelial function throughout the arterial tree in healthy but not metabolic syndrome subjects. J Clin Endocrinol Metab 2016; 101(3): 1198-206.
[http://dx.doi.org/10.1210/jc.2015-3293] [PMID: 26756115]
[11]
Baron AD, Brechtel-Hook G, Johnson A, Cronin J, Leaming R, Steinberg HO. Effect of perfusion rate on the time course of insulin-mediated skeletal muscle glucose uptake. Am J Physiol 1996; 271(6 Pt 1): E1067-72.
[PMID: 8997227]
[12]
Raitakari M, Knuuti MJ, Ruotsalainen U, et al. Insulin increases blood volume in human skeletal muscle: studies using [15O]CO and positron emission tomography. Am J Physiol 1995; 269(6 Pt 1): E1000-5.
[PMID: 8572189]
[13]
Vollenweider P, Tappy L, Randin D, et al. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest 1993; 92(1): 147-54.
[http://dx.doi.org/10.1172/JCI116542] [PMID: 8325979]
[14]
Taddei S, Virdis A, Mattei P, Natali A, Ferrannini E, Salvetti A. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation 1995; 92(10): 2911-8.
[http://dx.doi.org/10.1161/01.CIR.92.10.2911] [PMID: 7586259]
[15]
Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 1994; 94(3): 1172-9.
[http://dx.doi.org/10.1172/JCI117433] [PMID: 8083357]
[16]
Vincent MA, Clerk LH, Lindner JR, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes 2004; 53(6): 1418-23.
[http://dx.doi.org/10.2337/diabetes.53.6.1418] [PMID: 15161743]
[17]
Lira VA, Brown DL, Lira AK, et al. Nitric oxide and AMPK cooperatively regulate PGC-1 in skeletal muscle cells. J Physiol 2010; 588(Pt 18): 3551-66.
[http://dx.doi.org/10.1113/jphysiol.2010.194035] [PMID: 20643772]
[18]
Srinivasan S, Hatley ME, Bolick DT, et al. Hyperglycaemia induced superoxide production decreases eNOS expression via AP- 1 activation in aortic endothelial cells. Diabetologia 2004; 47(10): 1727-34.
[http://dx.doi.org/10.1007/s00125-004-1525-1] [PMID: 15490108]
[19]
Chen Z, Peng IC, Sun W, et al. AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res 2009; 104(4): 496-505.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.187567] [PMID: 19131647]
[20]
Lee-Young RS, Ayala JE, Hunley CF, et al. Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo. Am J Physiol Regul Integr Comp Physiol 2010; 298(5): R1399-408.
[http://dx.doi.org/10.1152/ajpregu.00004.2010] [PMID: 20200137]
[21]
Cook S, Hugli O, Egli M, et al. Partial gene deletion of endothelial nitric oxide synthase predisposes to exaggerated high-fat diet induced insulin resistance and arterial hypertension. Diabetes 2004; 53(8): 2067-72.
[http://dx.doi.org/10.2337/diabetes.53.8.2067] [PMID: 15277387]
[22]
Cosentino F, Hishikawa K, Katusic ZS, Lüscher TF. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 1997; 96(1): 25-8.
[http://dx.doi.org/10.1161/01.CIR.96.1.25] [PMID: 9236411]
[23]
Færch K, Vistisen D, Johansen NB, Jørgensen ME. Cardiovascular risk stratification and management in pre-diabetes. Curr Diab Rep 2014; 14(6): 493.
[http://dx.doi.org/10.1007/s11892-014-0493-1] [PMID: 24743942]
[24]
Rask-Madsen C, Li Q, Freund B, et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab 2010; 11(5): 379-89.
[http://dx.doi.org/10.1016/j.cmet.2010.03.013] [PMID: 20444418]
[25]
Jiang ZY, Lin YW, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 1999; 104(4): 447-57.
[http://dx.doi.org/10.1172/JCI5971] [PMID: 10449437]
[26]
Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000; 101(13): 1539-45.
[http://dx.doi.org/10.1161/01.CIR.101.13.1539] [PMID: 10747347]
[27]
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt dependent phosphorylation. Nature 1999; 399(6736): 601-5.
[http://dx.doi.org/10.1038/21224] [PMID: 10376603]
[28]
Cardillo C, Nambi SS, Kilcoyne CM, et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation 1999; 100(8): 820-5.
[http://dx.doi.org/10.1161/01.CIR.100.8.820] [PMID: 10458717]
[29]
King GL, Buzney SM, Kahn CR, et al. Differential responsiveness to insulin of endothelial and support cells from micro- and macrovessels. J Clin Invest 1983; 71(4): 974-9.
[http://dx.doi.org/10.1172/JCI110852] [PMID: 6339562]
[30]
Tesfamariam B. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. American J Physiol 1992; 08263: H321-6.
[31]
Rask-Madsen C, Ihlemann N, Krarup T, et al. Insulin therapy improves insulin-stimulated endothelial function in patients with type 2 diabetes and ischemic heart disease. Diabetes 2001; 50(11): 2611-8.
[http://dx.doi.org/10.2337/diabetes.50.11.2611] [PMID: 11679442]
[32]
Herman ME, O’Keefe JH, Bell DSH, Schwartz SS. Insulin therapy increases cardiovascular risk in type 2 diabetes. Prog Cardiovasc Dis 2017; 60(3): 422-34.
[http://dx.doi.org/10.1016/j.pcad.2017.09.001] [PMID: 28958751]
[33]
Balducci S, Zanuso S, Cardelli P, et al. Italian Diabetes Exercise Study (IDES) Investigators. Supervised exercise training counterbalances the adverse effects of insulin therapy in overweight/obese subjects with type 2 diabetes. Diabetes Care 2012; 35(1): 39-41.
[http://dx.doi.org/10.2337/dc11-1450] [PMID: 22011409]
[34]
De Feyter HM, Praet SF, van den Broek NM, et al. Exercise training improves glycemic control in long-standing insulin-treated type 2 diabetic patients. Diabetes Care 2007; 30(10): 2511-3.
[http://dx.doi.org/10.2337/dc07-0183] [PMID: 17626892]
[35]
Fuchsjäger-Mayrl G, Pleiner J, Wiesinger GF, et al. Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care 2002; 25(10): 1795-801.
[http://dx.doi.org/10.2337/diacare.25.10.1795] [PMID: 12351480]
[36]
Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev 2017; 97(2): 495-528.
[http://dx.doi.org/10.1152/physrev.00014.2016] [PMID: 28151424]
[37]
Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev 2002; 18(S2)(Suppl. 2): S10-5.
[http://dx.doi.org/10.1002/dmrr.249] [PMID: 11921433]
[38]
Bagi Z, Koller A, Kaley G. PPARgamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. Am J Physiol Heart Circ Physiol 2004; 286(2): H742-8.
[http://dx.doi.org/10.1152/ajpheart.00718.2003] [PMID: 14551045]
[39]
Regensteiner JG, Bauer TA, Reusch JE. Rosiglitazone improves exercise capacity in individuals with type 2 diabetes. Diabetes Care 2005; 28(12): 2877-83.
[http://dx.doi.org/10.2337/diacare.28.12.2877] [PMID: 16306548]
[40]
Wakino S, Law RE, Hsueh WA. Vascular protective effects by activation of nuclear receptor PPARgamma. J Diabetes Complications 2002; 16(1): 46-9.
[http://dx.doi.org/10.1016/S1056-8727(01)00197-0] [PMID: 11872366]
[41]
Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 1997; 100(5): 1230-9.
[http://dx.doi.org/10.1172/JCI119636] [PMID: 9276741]
[42]
Tummala PE, Chen X-L, Sundell CL, et al. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: A potential link between the renin-angiotensin system and atherosclerosis. Circulation 1999; 100(11): 1223-9.
[http://dx.doi.org/10.1161/01.CIR.100.11.1223] [PMID: 10484544]
[43]
Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes (New York, NY) 1991; 0440: 405-12.
[44]
Shadid S, Jensen MD. Effects of pioglitazone versus diet and exercise on metabolic health and fat distribution in upper body obesity. Diabetes Care 2003; 26(11): 3148-52.
[http://dx.doi.org/10.2337/diacare.26.11.3148] [PMID: 14578253]
[45]
Sixt S, Rastan A, Desch S, et al. Exercise training but not rosiglitazone improves endothelial function in prediabetic patients with coronary disease. Eur J Cardiovasc Prev Rehabil 2008; 15(4): 473-8.
[http://dx.doi.org/10.1097/HJR.0b013e3283002733] [PMID: 18677174]
[46]
Kadoglou NP, Iliadis F, Liapis CD, Perrea D, Angelopoulou N, Alevizos M. Beneficial effects of combined treatment with rosiglitazone and exercise on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 2007; 30(9): 2242-4.
[http://dx.doi.org/10.2337/dc07-0341] [PMID: 17586747]
[47]
Okada S, Hiuge A, Makino H, et al. Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J Atheroscler Thromb 2010; 17(8): 828-33.
[http://dx.doi.org/10.5551/jat.3798] [PMID: 20467191]
[48]
Cohen ND, Dunstan DW, Robinson C, Vulikh E, Zimmet PZ, Shaw JE. Improved endothelial function following a 14-month resistance exercise training program in adults with type 2 diabetes. Diabetes Res Clin Pract 2008; 79(3): 405-11.
[http://dx.doi.org/10.1016/j.diabres.2007.09.020] [PMID: 18006170]
[49]
Naka KK, Kalantaridou SN, Kravariti M, et al. Effect of the insulin sensitizers metformin and pioglitazone on endothelial function in young women with polycystic ovary syndrome: a prospective randomized study. Fertil Steril 2011; 95(1): 203-9.
[http://dx.doi.org/10.1016/j.fertnstert.2010.06.058] [PMID: 20684955]
[50]
Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017; 18(6): 1321.
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[51]
Kelly KR, Blaszczak A, Haus JM, et al. A 7-d exercise program increases high-molecular weight adiponectin in obese adults. Med Sci Sports Exerc 2012; 44(1): 69-74.
[http://dx.doi.org/10.1249/MSS.0b013e318228bf85] [PMID: 21685815]
[52]
Brunmair B, Staniek K, Gras F, et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 2004; 53(4): 1052-9.
[http://dx.doi.org/10.2337/diabetes.53.4.1052] [PMID: 15047621]
[53]
Artwohl M, Fürnsinn C, Waldhäusl W, et al. Thiazolidinediones inhibit proliferation of microvascular and macrovascular cells by a PPARgamma-independent mechanism. Diabetologia 2005; 48(3): 586-94.
[http://dx.doi.org/10.1007/s00125-005-1672-z] [PMID: 15729575]
[54]
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167-74.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[55]
Ghosh S, Lakshmanan AP, Hwang MJ, et al. Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions. Biochem Pharmacol 2015; 98(3): 412-21.
[http://dx.doi.org/10.1016/j.bcp.2015.10.008] [PMID: 26467186]
[56]
Chen H, Li J, Yang O, Kong J, Lin G. Effect of metformin on insulin-resistant endothelial cell function. Oncol Lett 2015; 9(3): 1149-53.
[http://dx.doi.org/10.3892/ol.2015.2883] [PMID: 25663871]
[57]
Knowler WC, Barrett-Connor E, Fowler SE, et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346(6): 393-403.
[http://dx.doi.org/10.1056/NEJMoa012512] [PMID: 11832527]
[58]
Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V. Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006; 49(2): 289-97.
[http://dx.doi.org/10.1007/s00125-005-0097-z] [PMID: 16391903]
[59]
Malin SK, Gerber R, Chipkin SR, Braun B. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care 2012; 35(1): 131-6.
[http://dx.doi.org/10.2337/dc11-0925] [PMID: 22040838]
[60]
Konopka AR, Laurin JL, Schoenberg HM, et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 2019; 18(1): e12880
[PMID: 30548390]
[61]
Walton RG, Dungan CM, Long DE, et al. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial. Aging Cell 2019; 18(6): e13039
[http://dx.doi.org/10.1111/acel.13039] [PMID: 31557380]
[62]
Boulé NG, Robert C, Bell GJ, et al. Metformin and exercise in type 2 diabetes: examining treatment modality interactions. Diabetes Care 2011; 34(7): 1469-74.
[http://dx.doi.org/10.2337/dc10-2207] [PMID: 21602430]
[63]
Malin SK, Braun B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc Sport Sci Rev 2016; 44(1): 4-11.
[http://dx.doi.org/10.1249/JES.0000000000000070] [PMID: 26583801]
[64]
Shenouda SM, Widlansky ME, Chen K, et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 2011; 124(4): 444-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.014506] [PMID: 21747057]
[65]
Wang Q, Zhang M, Torres G, et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. Diabetes 2017; 66(1): 193-205.
[http://dx.doi.org/10.2337/db16-0915] [PMID: 27737949]
[66]
Nyström T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 2004; 287(6): E1209-15.
[http://dx.doi.org/10.1152/ajpendo.00237.2004] [PMID: 15353407]
[67]
Deacon CF, Danielsen P, Klarskov L, Olesen M, Holst JJ. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 2001; 50(7): 1588-97.
[http://dx.doi.org/10.2337/diabetes.50.7.1588] [PMID: 11423480]
[68]
Ahrén B. Emerging dipeptidyl peptidase-4 inhibitors for the treatment of diabetes. Expert Opin Emerg Drugs 2008; 13(4): 593-607.
[http://dx.doi.org/10.1517/14728210802584126] [PMID: 19046129]
[69]
Ceriello A, Esposito K, Testa R, Bonfigli AR, Marra M, Giugliano D. The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care 2011; 34(3): 697-702.
[http://dx.doi.org/10.2337/dc10-1949] [PMID: 21273492]
[70]
Ding L, Zhang J. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol Sin 2012; 33(1): 75-81.
[http://dx.doi.org/10.1038/aps.2011.149] [PMID: 22120969]
[71]
Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50(3): 609-13.
[http://dx.doi.org/10.2337/diabetes.50.3.609] [PMID: 11246881]
[72]
Martins C, Kulseng B, King NA, Holst JJ, Blundell JE. The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat. J Clin Endocrinol Metab 2010; 95(4): 1609-16.
[http://dx.doi.org/10.1210/jc.2009-2082] [PMID: 20150577]
[73]
Malin SK, Francois ME, Eichner NZM, et al. Impact of short-term exercise training intensity on β-cell function in older obese adults with prediabetes. J Appl Physiol 2018; 125(6): 1979-86.
[http://dx.doi.org/10.1152/japplphysiol.00680.2018] [PMID: 30307821]
[74]
Malin SK, Huang H, Mulya A, Kashyap SR, Kirwan JP. Lower dipeptidyl peptidase-4 following exercise training plus weight loss is related to increased insulin sensitivity in adults with metabolic syndrome. Peptides 2013; 47: 142-7.
[http://dx.doi.org/10.1016/j.peptides.2013.07.008] [PMID: 23872069]
[75]
Seelig E, Trinh B, Hanssen H, et al. Exercise and the dipeptidyl‐peptidase IV inhibitor sitagliptin do not improve beta‐cell function and glucose homeostasis in long‐lasting type 1 diabetes -A randomised open‐label study. Endocrinol Diab Metabol 2019; 2(3): e00075
[76]
Tanimura Y, Aoi W, Mizushima K, Higashimura Y, Naito Y. Combined treatment of dipeptidyl peptidase-4 inhibitor and exercise training improves lipid profile in KK/Ta mice. Exp Physiol 2019; 104(7): 1051-60.
[http://dx.doi.org/10.1113/EP087449] [PMID: 31020720]
[77]
Takada S, Masaki Y, Kinugawa S, et al. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc Res 2016; 111(4): 338-47.
[http://dx.doi.org/10.1093/cvr/cvw182] [PMID: 27450980]
[78]
Sakamoto M, Nishimura R, Irako T, Tsujino D, Ando K, Utsunomiya K. Comparison of vildagliptin twice daily vs. sitagliptin once daily using continuous glucose monitoring (CGM): crossover pilot study (J-VICTORIA study). Cardiovasc Diabetol 2012; 11(1): 92.
[http://dx.doi.org/10.1186/1475-2840-11-92] [PMID: 22867630]
[79]
Shigematsu E, Yamakawa T, Oba MS, et al. A randomized controlled trial of vildagliptin versus alogliptin: effective switch from sitagliptin in patients with type 2 diabetes. J Clin Med Res 2017; 9(7): 567-72.
[http://dx.doi.org/10.14740/jocmr3012w] [PMID: 28611856]
[80]
Baranov O, Kahle M, Deacon CF, Holst JJ, Nauck MA. Feedback suppression of meal-induced glucagon-like peptide-1 (GLP-1) secretion mediated through elevations in intact GLP-1 caused by dipeptidyl peptidase-4 inhibition: a randomized, prospective comparison of sitagliptin and vildagliptin treatment. Diabetes Obes Metab 2016; 18(11): 1100-9.
[http://dx.doi.org/10.1111/dom.12706] [PMID: 27300579]
[81]
Liu H, Xiang H, Zhao S, et al. Vildagliptin improves high glucose-induced endothelial mitochondrial dysfunction via inhibiting mitochondrial fission. J Cell Mol Med 2019; 23(2): 798-810.
[http://dx.doi.org/10.1111/jcmm.13975] [PMID: 30444033]
[82]
Krüger N, Biwer LA, Good ME, et al. Loss of endothelial FTO antagonizes obesity-induced metabolic and vascular dysfunction. Circ Res 2020; 126(2): 232-42.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315531] [PMID: 31801409]
[83]
Ottolini M, Hong K, Cope EL, et al. Local peroxynitrite impairs endothelial TRPV4 channels and elevates blood pressure in obesity. Circulation 2020; 141(16): 1318-33.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.043385]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy