Review Article

基因治疗,一种用于神经疾病的新型治疗工具:当前进展,挑战和未来前景

卷 20, 期 3, 2020

页: [184 - 194] 页: 11

弟呕挨: 10.2174/1566523220999200716111502

价格: $65

摘要

神经系统疾病给医疗保健系统带来了重大威胁,因为它们给社会经济带来了沉重负担。所有老年人群都容易出现一种或其他神经系统疾病,并伴有神经发炎,神经退行性变和认知功能障碍的症状。目前,可用的药物疗法不足以治疗这些疾病,并且在大多数情况下,它们仅提供姑息作用。还发现神经系统疾病的分子病因与遗传组成的改变直接相关,遗传改变可以由伤害,环境毒素和某些现有疾病遗传或触发。因此,为了照顾这种情况,基因治疗已经成为一种先进的方法,声称可以通过缺失,沉默或编辑缺陷基因并通过插入更健康的基因来永久治愈疾病。在这种方式中,载体(病毒的和非病毒的)用于通过各种途径将靶向基因传递到大脑的特定区域。目前,基因治疗已在复杂的神经系统疾病,例如帕金森氏病,阿尔茨海默氏病,亨廷顿病,多发性硬化症,肌萎缩性侧索硬化症和溶酶体贮积病中显示出积极的成果。但是,存在一些局限性,例如免疫原性反应,病毒载体的非特异性以及缺乏有效的生物标记物来了解治疗效果。在改善载体设计,基因选择和靶向递送方面已经取得了相当大的进展。这篇综述文章探讨了神经疾病中基因治疗的现状及其临床相关性,挑战和未来前景。

关键词: CRISPR / Cas9,载体,siRNA,基因编辑,神经修复,临床试验。

图形摘要

[1]
Keynejad RC, Frodl T, Kanaan R, Pariante C, Reuber M, Nicholson TR. Stress and functional neurological disorders: mechanistic insights. J Neurol Neurosurg Psychiatry 2019; 90(7): 813-21.
[http://dx.doi.org/10.1136/jnnp-2018-318297] [PMID: 30409887]
[2]
Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: A summary report and call to action. Ann Neurol 2017; 81(4): 479-84.
[http://dx.doi.org/10.1002/ana.24897] [PMID: 28198092]
[3]
Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM. Monetary costs of dementia in the United States. N Engl J Med 2013; 368(14): 1326-34.
[http://dx.doi.org/10.1056/NEJMsa1204629] [PMID: 23550670]
[4]
Patel V, Chisholm D, Dua T, Laxminarayan R. Medina-M. Mental, neurological, and substance use disorders. In: disease control priorities, 3rd ed. Washington (DC): The World Bank; 2016; Vol 4.
[http://dx.doi.org/10.1596/978-1-4648-0426-7 ] [PMID: 27227198]
[5]
Ferreira CR, Gahl WA. Lysosomal storage diseases. Transl Sci Rare Dis 2017; 2(1-2): 1-71.
[http://dx.doi.org/10.3233/TRD-160005] [PMID: 29152458]
[6]
Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017; 120: 11-9.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.021] [PMID: 26979921]
[7]
Iqubal A, Sharma S, Sharma K, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci 2018; 211: 172-81.
[http://dx.doi.org/10.1016/j.lfs.2018.09.025] [PMID: 30227132]
[8]
Pena SA, Iyengar R, Eshraghi RS, et al. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target 2020; 28(2): 111-28.
[http://dx.doi.org/10.1080/1061186X.2019.1630415] [PMID: 31195838]
[9]
Tsagkaris C, Papakosta V, Miranda AV, et al. Gene therapy for Angelman syndrome: Contemporary approaches and future endeavors. Curr Gene Ther 2020; 19(6): 359-66.
[http://dx.doi.org/10.2174/1566523220666200107151025] [PMID: 31914913]
[10]
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020.
[http://dx.doi.org/10.1016/j.apsb.2020.01.015]
[11]
Tiklová K, Nolbrant S, Fiorenzano A, Bjorklund AK, Sharma Y, Heuer A, et al. Single cell gene expression analysis reveals human stem cell-derived graft composition in a cell therapy model of Parkinson’s disease. bioRxiv 2019.
[http://dx.doi.org/10.1101/720870 ]
[12]
Joshi CR, Labhasetwar V, Ghorpade A. Destination brain: the past, present, and future of therapeutic gene delivery. J Neuroimmune Pharmacol 2017; 12(1): 51-83.
[http://dx.doi.org/10.1007/s11481-016-9724-3] [PMID: 28160121]
[13]
Zhong L, Xu Y, Zhuo R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun 2019; 10(1): 1-6.
[PMID: 30602773]
[14]
Schmitt A, Simons M, Cantuti-Castelvetri L, Falkai P. A new role for oligodendrocytes and myelination in schizophrenia and affective disorders? Eur Arch Psychiatry Clin Neurosci 2019; 269(4): 371-2.
[http://dx.doi.org/10.1007/s00406-019-01019-8] [PMID: 31076838]
[15]
Ahmad MH, Fatima M, Mondal AC. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J Clin Neurosci 2019; 59: 6-11.
[http://dx.doi.org/10.1016/j.jocn.2018.10.034] [PMID: 30385170]
[16]
Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 2008; 13(4): 359-69.
[http://dx.doi.org/10.3233/JAD-2008-13402] [PMID: 18487845]
[17]
Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Brain Res Rev 2010; 64(2): 328-63.
[http://dx.doi.org/10.1016/j.brainresrev.2010.05.003] [PMID: 20685221]
[18]
Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev 2019; S0169- 409X(19): 30238-8..
[http://dx.doi.org/10.1016/j.addr.2019.11.009] [PMID: 31790711]
[19]
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[20]
Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 2014; 11(4): 817-39.
[http://dx.doi.org/10.1007/s13311-014-0299-5] [PMID: 25159276]
[21]
Puhl DL, D’Amato AR, Gilbert RJ. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res Bull 2019; 150: 216-30.
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.024] [PMID: 31173859]
[22]
Duque S, Joussemet B, Riviere C, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17(7): 1187-96.
[http://dx.doi.org/10.1038/mt.2009.71] [PMID: 19367261]
[23]
Gessler DJ, Tai PW, Li J, Gao G. Intravenous infusion of AAV for widespread gene delivery to the nervous system in adeno-associated virus vectors. New York, NY: Humana Press 2019; pp. 143-63.
[24]
Caffery B, Lee JS, Alexander-Bryant AA. Vectors for glioblastoma gene therapy: viral & non-viral delivery strategies. Nanomaterials (Basel) 2019; 9(1): 105.
[http://dx.doi.org/10.3390/nano9010105] [PMID: 30654536]
[25]
Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 2019; 101(5): 839-62.
[http://dx.doi.org/10.1016/j.neuron.2019.02.017] [PMID: 30844402]
[26]
Hudry E, Wu HY, Arbel-Ornath M, et al. Inhibition of the NFAT pathway alleviates amyloid β neurotoxicity in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(9): 3176-92.
[http://dx.doi.org/10.1523/JNEUROSCI.6439-11.2012] [PMID: 22378890]
[27]
Quintino L, Manfré G, Wettergren EE, Namislo A, Isaksson C, Lundberg C. Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson’s disease. Mol Ther 2013; 21(12): 2169-80.
[http://dx.doi.org/10.1038/mt.2013.169] [PMID: 23881415]
[28]
Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290(5492): 767-73.
[http://dx.doi.org/10.1126/science.290.5492.767] [PMID: 11052933]
[29]
Kiyota T, Yamamoto M, Schroder B, et al. AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, β-amyloidosis, and learning impairment of APP/PS1 mice. Mol Ther 2009; 17(5): 803-9.
[http://dx.doi.org/10.1038/mt.2009.44] [PMID: 19277012]
[30]
Spronck EA, Brouwers CC, Vallès A, et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional improvement in huntington disease mouse models. Mol Ther Methods Clin Dev 2019; 13: 334-43.
[http://dx.doi.org/10.1016/j.omtm.2019.03.002] [PMID: 30984798]
[31]
Valdmanis PN, Kay MA. Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Hum Gene Ther 2017; 28(4): 361-72.
[http://dx.doi.org/10.1089/hum.2016.171] [PMID: 28073291]
[32]
Desclaux M, Teigell M, Amar L, et al. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro. PLoS One 2009; 4(7) e6227
[http://dx.doi.org/10.1371/journal.pone.0006227] [PMID: 19597552]
[33]
Nicchia GP, Frigeri A, Liuzzi GM, Svelto M. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J 2003; 17(11): 1508-10.
[http://dx.doi.org/10.1096/fj.02-1183fje] [PMID: 12824287]
[34]
Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci 2019; 22(4): 524-8.
[http://dx.doi.org/10.1038/s41593-019-0352-0] [PMID: 30858603]
[35]
Aronin N, DiFiglia M. Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov Disord 2014; 29(11): 1455-61.
[http://dx.doi.org/10.1002/mds.26020] [PMID: 25164989]
[36]
Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 2014; 111(31): 11461-6.
[http://dx.doi.org/10.1073/pnas.1405186111] [PMID: 25049410]
[37]
Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in perinatology 2018; 42(8): 487-500.
[38]
Redd Bowman KE, Lu P, Vander Mause ER, Lim CS. Advances in delivery vectors for gene therapy in liver cancer. Ther Deliv 2020; 11(1): 833-50.
[http://dx.doi.org/10.4155/tde-2019-0076] [PMID: 31840560]
[39]
McMahon MA, Cleveland D. Gene therapy: gene-editing therapy for neurological disease. Nat Rev Neurol 2017; 13(1): 7.
[http://dx.doi.org/10.1038/nrneurol.2016.190]
[40]
Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21(4): 255-72.
[http://dx.doi.org/10.1038/s41576-019-0205-4] [PMID: 32042148]
[41]
Manfredsson FP, Benskey MJ, Eds. Viral vectors for gene therapy: methods and protocols. Humana Press 2019.
[http://dx.doi.org/10.1007/978-1-4939-9065-8]
[42]
Ghosh S, Brown AM, Jenkins C, Campbell K. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl Biosaf 2020; 25(1): 7-18.
[http://dx.doi.org/10.1177/1535676019899502]
[43]
Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007; 369(9579): 2097-105.
[http://dx.doi.org/10.1016/S0140-6736(07)60982-9] [PMID: 17586305]
[44]
Naso MF, Tomkowicz B, Perry WL III, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017; 31(4): 317-34.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[45]
Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 2017; 8: 87-104.
[http://dx.doi.org/10.1016/j.omtm.2017.11.007] [PMID: 29326962]
[46]
Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377(18): 1713-22.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[47]
Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther 2014; 25(5): 461-74.
[http://dx.doi.org/10.1089/hum.2013.200] [PMID: 24484067]
[48]
Boudreau RL, McBride JL, Martins I, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 2009; 17(6): 1053-63.
[http://dx.doi.org/10.1038/mt.2009.17] [PMID: 19240687]
[49]
Goins WF, Huang S, Hall B, Marzulli M, Cohen JB, Glorioso JC. Engineering HSV-1 vectors for gene therapy. In: Herpes Simplex Virus. New York, NY: Humana 2020; pp. 73-90.
[50]
Negre O, Eggimann AV, Beuzard Y, et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the βA (T87Q)-Globin gene. Hum Gene Ther 2016; 27(2): 148-65.
[http://dx.doi.org/10.1089/hum.2016.007] [PMID: 26886832]
[51]
Kalesnykas G, Kokki E, Alasaarela L, et al. Comparative study of adeno-associated virus, adenovirus, bacu lovirus and lentivirus vectors for gene therapy of the eyes. Curr Gene Ther 2017; 17(3): 235-47.
[http://dx.doi.org/10.2174/1566523217666171003170348] [PMID: 28982327]
[52]
Tan VTY, Mockett BG, Ohline SM, et al. Lentivirus-mediated expression of human secreted amyloid precursor protein-alpha prevents development of memory and plasticity deficits in a mouse model of Alzheimer’s disease. Mol Brain 2018; 11(1): 7.
[http://dx.doi.org/10.1186/s13041-018-0348-9] [PMID: 29426354]
[53]
Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013; 122(1): 23-36.
[http://dx.doi.org/10.1182/blood-2013-01-306647] [PMID: 23596044]
[54]
Choi J, Rui Y, Kim J, et al. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies. Nanomedicine (Lond) 2020; 23 102115
[http://dx.doi.org/10.1016/j.nano.2019.102115] [PMID: 31655205]
[55]
Eslaminejad T, Nematollahi-Mahani SN, Ansari M. Glioblastoma targeted gene therapy based on pEGFP/p53-loaded superparamagnetic iron oxide nanoparticles. Curr Gene Ther 2017; 17(1): 59-69.
[http://dx.doi.org/10.2174/1566523217666170605115829] [PMID: 28578643]
[56]
Osipova O, Sharoyko V, Zashikhina N, et al. Amphiphilic polypeptides for VEGF siRNA delivery into retinal epithelial cells. Pharmaceutics 2020; 12(1): 39.
[http://dx.doi.org/10.3390/pharmaceutics12010039] [PMID: 31906576]
[57]
Jayant RD, Sosa D, Kaushik A, et al. Current status of non-viral gene therapy for CNS disorders. Expert Opin Drug Deliv 2016; 13(10): 1433-45.
[http://dx.doi.org/10.1080/17425247.2016.1188802] [PMID: 27249310]
[58]
Zhang C, Zhang S, Zhi D, Zhao Y, Cui S, Cui J. Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloids Surf 2020; 58 5124054
[http://dx.doi.org/10.1016/j.colsurfa.2019.124054]
[59]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51..
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[60]
Federici T, Taub JS, Baum GR, et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther 2012; 19(8): 852-9.
[http://dx.doi.org/10.1038/gt.2011.130] [PMID: 21918551]
[61]
Dang CH, Aubert M, De Silva Feelixge HS, et al. In vivo dynamics of AAV-mediated gene delivery to sensory neurons of the trigeminal ganglia. Sci Rep 2017; 7(1): 927.
[http://dx.doi.org/10.1038/s41598-017-01004-y] [PMID: 28424485]
[62]
Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008; 70(21): 1980-3.
[http://dx.doi.org/10.1212/01.wnl.0000312381.29287.ff] [PMID: 18401019]
[63]
Kunwar S, Chang SM, Prados MD, et al. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg Focus 2006; 20(4) E15
[PMID: 16709020]
[64]
Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 2012; 23(4): 377-81.
[http://dx.doi.org/10.1089/hum.2011.220] [PMID: 22424171]
[65]
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59-65.
[http://dx.doi.org/10.1038/nbt.1515] [PMID: 19098898]
[66]
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59.
[http://dx.doi.org/10.1038/nrd.2018.110] [PMID: 30093643]
[67]
Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics 2019; 16(1): 166-75.
[http://dx.doi.org/10.1007/s13311-018-00694-0] [PMID: 30542906]
[68]
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21(2): 103-15.
[http://dx.doi.org/10.1038/s41583-019-0257-7] [PMID: 31907406]
[69]
Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med 1998; 339(16): 1130-43.
[http://dx.doi.org/10.1056/NEJM199810153391607] [PMID: 9770561]
[70]
Jarraya B, Boulet S, Ralph GS, et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 2009; 1(2): 2ra4.
[http://dx.doi.org/10.1126/scitranslmed.3000130] [PMID: 20368163]
[71]
Azzouz M, Ralph S, Wong L-F, et al. Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport 2004; 15(6): 985-90.
[http://dx.doi.org/10.1097/00001756-200404290-00011] [PMID: 15076720]
[72]
Azzouz M, Martin-Rendon E, Barber RD, et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 2002; 22(23): 10302-12.
[http://dx.doi.org/10.1523/JNEUROSCI.22-23-10302.2002] [PMID: 12451130]
[73]
Muramatsu S, Fujimoto K, Kato S, et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 2010; 18(9): 1731-5.
[http://dx.doi.org/10.1038/mt.2010.135] [PMID: 20606642]
[74]
Kanao-Kanda M, Kanda H, Liu S, Roy S, Toborek M, Hao S. Viral vector-mediated gene transfer of glutamic acid decarboxylase for chronic pain treatment: a literature review. Hum Gene Ther 2020; 31(7-8): 405-14.
[http://dx.doi.org/10.1089/hum.2019.359]
[75]
Muñoz MD, de la Fuente N, Sánchez-Capelo A. TGF-β/Smad3 signalling modulates GABA neurotransmission: Implications in Parkinson’s disease. Int J Mol Sci 2020; 21(2): 590.
[http://dx.doi.org/10.3390/ijms21020590] [PMID: 31963327]
[76]
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10(4): 309-19.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[77]
Marks WJ Jr, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 2010; 9(12): 1164-72.
[http://dx.doi.org/10.1016/S1474-4422(10)70254-4] [PMID: 20970382]
[78]
Shu C, Yan X, Zhang X, Wang Q, Cao S, Wang J. Tumor-induced mortality in adult primary supratentorial glioblastoma multiforme with different age subgroups. Future Oncol 2019; 15(10): 1105-14.
[http://dx.doi.org/10.2217/fon-2018-0719] [PMID: 30880453]
[79]
Izquierdo M, Martín V, de Felipe P, et al. Human malignant brain tumor response to herpes simplex thymidine kinase (HSVtk)/ganciclovir gene therapy. Gene Ther 1996; 3(6): 491-5.
[PMID: 8789798]
[80]
Immonen A, Vapalahti M, Tyynelä K, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10(5): 967-72.
[http://dx.doi.org/10.1016/j.ymthe.2004.08.002] [PMID: 15509514]
[81]
Lang FF, Bruner JM, Fuller GN, et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol 2003; 21(13): 2508-18.
[http://dx.doi.org/10.1200/JCO.2003.21.13.2508] [PMID: 12839017]
[82]
Yun J, Sonabend AM, Ulasov IV, et al. A novel adenoviral vector labeled with superparamagnetic iron oxide nanoparticles for real-time tracking of viral delivery. J Clin Neurosci 2012; 19(6): 875-80.
[http://dx.doi.org/10.1016/j.jocn.2011.12.016] [PMID: 22516547]
[83]
Li J, Sun M, Wang X. The adverse-effect profile of lacosamide. Expert Opin Drug Saf 2020; 19(2): 131-8.
[http://dx.doi.org/10.1080/14740338.2020.1713089]
[84]
Paradiso B, Marconi P, Zucchini S, et al. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc Natl Acad Sci USA 2009; 106(17): 7191-6.
[http://dx.doi.org/10.1073/pnas.0810710106] [PMID: 19366663]
[85]
Wykes RC, Heeroma JH, Mantoan L, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 2012; 4(161) 161ra152
[http://dx.doi.org/10.1126/scitranslmed.3004190] [PMID: 23147003]
[86]
Snowball A, Chabrol E, Wykes RC, et al. Epilepsy gene therapy using an engineered potassium channel. J Neurosci 2019; 39(16): 3159-69.
[http://dx.doi.org/10.1523/JNEUROSCI.1143-18.2019] [PMID: 30755487]
[87]
Noè F, Pool AH, Nissinen J, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 2008; 131(Pt 6): 1506-15.
[http://dx.doi.org/10.1093/brain/awn079] [PMID: 18477594]
[88]
Noe F, Vaghi V, Balducci C, et al. Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Ther 2010; 17(5): 643-52.
[http://dx.doi.org/10.1038/gt.2010.23] [PMID: 20220782]
[89]
Mesraoua B, Deleu D, Kullmann DM, et al. Novel therapies for epilepsy in the pipeline. Epilepsy Behav 2019; 97: 282-90.
[http://dx.doi.org/10.1016/j.yebeh.2019.04.042] [PMID: 31284159]
[90]
Weltha L, Reemmer J, Boison D. The role of adenosine in epilepsy. Brain Res Bull 2019; 151: 46-54.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.008] [PMID: 30468847]
[91]
Theofilas P, Brar S, Stewart KA, et al. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 2011; 52(3): 589-601.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02947.x] [PMID: 21275977]
[92]
Wang X, Li T. Role of adenosine kinase inhibitor in adenosine augmentation therapy for epilepsy: a potential novel drug for epilepsy. Curr Drug Targets 2020; 21(3): 252-7.
[http://dx.doi.org/10.2174/1389450119666191014104347] [PMID: 31633474]
[93]
Jack CR Jr. Alzheimer Disease, Biomarkers, and Clinical Symptoms-Quo Vadis?-Reply. JAMA Neurol 2020; 77(3): 394.
[http://dx.doi.org/10.1001/jamaneurol.2019.4962] [PMID: 32011648]
[94]
Agnihotri A, Aruoma OI. Alzheimer’s disease and Parkinson’s disease: A nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J Am Coll Nutr 2020; 39(1): 16-27.
[http://dx.doi.org/10.1080/07315724.2019.1683379] [PMID: 31829802]
[95]
Libon DJ, Lamar M, Swenson RA, Heilman KM, Eds. Vascular disease, Alzheimer's disease, and mild cognitive impairment: advancing an integrated approach. Oxford University Press 2020; 9(1): pp. 76-92..
[96]
Mufson EJ, Counts SE, Ginsberg SD, et al. Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front Neurosci 2019; 13: 533-44.
[http://dx.doi.org/10.3389/fnins.2019.00533] [PMID: 31312116]
[97]
Huang Z, Li J, Zhou J, Zhang J. Alzheimer’s disease and nerve growth factor gene therapy. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2019; 44(12): 1413-8.
[PMID: 31969507]
[98]
Hitti FL, Gonzalez-Alegre P, Lucas TH. Gene therapy for neurologic disease: a neurosurgical review. World Neurosurg 2019; 121: 261-73.
[http://dx.doi.org/10.1016/j.wneu.2018.09.097] [PMID: 30253990]
[99]
Qu Y, Liu Y, Noor AF, Tran J, Li R. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res 2019; 14(6): 931-8.
[http://dx.doi.org/10.4103/1673-5374.250570] [PMID: 30761996]
[100]
Li Y, Wang Y, Wang J, et al. Expression of neprilysin in skeletal muscle by ultrasound-mediated gene transfer (Sonoporation) reduces amyloid burden for AD. Mol Ther Methods Clin Dev 2020; 17: 300-8.
[http://dx.doi.org/10.1016/j.omtm.2019.12.012] [PMID: 32021878]
[101]
Hong CS, Goins WF, Goss JR, Burton EA, Glorioso JC. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer’s disease-related amyloid-β peptide in vivo. Gene Ther 2006; 13(14): 1068-79.
[http://dx.doi.org/10.1038/sj.gt.3302719] [PMID: 16541122]
[102]
Mandel RJ. CERE-110, An adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease. Curr Opin Mol Ther 2010; 12(2): 240-7.
[PMID: 20373268]
[103]
Piedrahita D, Hernández I, López-Tobón A, et al. Silencing of CDK5 reduces neurofibrillary tangles in transgenic alzheimer’s mice. J Neurosci 2010; 30(42): 13966-76.
[http://dx.doi.org/10.1523/JNEUROSCI.3637-10.2010] [PMID: 20962218]
[104]
Quan Q, Qian Y, Li X, Li M. CDK5 participates in amyloid-β production by regulating PPARγ phosphorylation in primary rat hippocampal neurons. J Alzheimers Dis 2019; 71(2): 443-60.
[http://dx.doi.org/10.3233/JAD-190026] [PMID: 31403945]
[105]
Jain KK. Neuroprotection in huntington disease the handbook of neuroprotection. New York, NY: Humana 2019; pp. 587-607.
[http://dx.doi.org/10.1007/978-1-4939-9465-6_9]
[106]
Zala D, Bensadoun JC, Pereira de Almeida L, et al. Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington’s disease transgenic mice. Exp Neurol 2004; 185(1): 26-35.
[http://dx.doi.org/10.1016/j.expneurol.2003.09.002] [PMID: 14697316]
[107]
Colpo GD, Furr Stimming E, Teixeira AL. Stem cells in animal models of Huntington disease: A systematic review. Mol Cell Neurosci 2019; 95: 43-50.
[http://dx.doi.org/10.1016/j.mcn.2019.01.006] [PMID: 30685323]
[108]
Shannon KM. Recent advances in the treatment of Huntington’s disease: Targeting DNA and RNA. CNS Drugs 2020; 34(3): 219-28.
[http://dx.doi.org/10.1007/s40263-019-00695-3] [PMID: 31933283]
[109]
Spronck EA, Valles-Sanchez A, Heikkinen T, et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional improvement in Huntington disease mouse models. Hum Gene Ther 2017; 28: A78.
[110]
Hwang JY, Won JS, Nam H, Lee HW, Joo KM. Current advances in combining stem cell and gene therapy for neurodegenerative diseases. Precis Future Med 2018; 2(2): 53-65.
[http://dx.doi.org/10.23838/pfm.2018.00037]
[111]
Aguiar S, van der Gaag B, Cortese FAB. RNAi mechanisms in Huntington’s disease therapy: siRNA versus shRNA. Transl Neurodegener 2017; 6(1): 30.
[http://dx.doi.org/10.1186/s40035-017-0101-9] [PMID: 29209494]
[112]
Shen F, Fan Y, Su H, et al. Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther 2008; 15(1): 30-9.
[http://dx.doi.org/10.1038/sj.gt.3303048] [PMID: 17960159]
[113]
Ross CA, Aylward EH, Wild EJ, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 2014; 10(4): 204-16.
[http://dx.doi.org/10.1038/nrneurol.2014.24] [PMID: 24614516]
[114]
Deviatkin AA, Vakulenko YA, Akhmadishina LV, et al. Emerging concepts and challenges in rheumatoid arthritis. Gen Ther 2020; 8(1): 9.
[115]
Thrasher AJ, Williams DA. Evolving gene therapy in primary immunodeficiency. Mol Ther 2017; 25(5): 1132-41.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.018] [PMID: 28366768]
[116]
Sinnett SE, Hector RD, Gadalla KKE, et al. Improved MECP2 gene therapy extends the survival of MeCP2-null mice without apparent toxicity after intracisternal delivery. Mol Ther Methods Clin Dev 2017; 5: 106-15.
[http://dx.doi.org/10.1016/j.omtm.2017.04.006] [PMID: 28497072]
[117]
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[118]
Nyamay’Antu A, Dumont M, Kedinger V, Erbacher P. Non-viral vector mediated gene delivery: the outsider to watch out for in gene therapy. Cell Gene Ther Insights 2019; 5: 51-7.
[http://dx.doi.org/10.18609/cgti.2019.007]
[119]
Humbert JM, Halary F. Viral and non-viral methods to genetically modify dendritic cells. Curr Gene Ther 2012; 12(2): 127-36.
[http://dx.doi.org/10.2174/156652312800099580] [PMID: 22424555]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy