Review Article

在重度浆液性卵巢癌中应用的药物

卷 27, 期 42, 2020

页: [7222 - 7233] 页: 12

弟呕挨: 10.2174/0929867327666200713190520

价格: $65

摘要

背景:卵巢癌(OC)是最致命的妇科肿瘤,原因是诊断较晚并且对铂类化学疗法产生了抗药性。因此,迫切需要新颖的治疗方法。在这方面,药物再利用的策略变得有吸引力。通过这种方法,可以在不同的病理学中测试最初为其他适应症开发的药物的有效性。优点是关于药代动力学特性和毒性的数据已经可用。因此,原则上可以降低研究成本并加快药物的使用/销售。结果:在这里,报告了一些用于OC的改用药物的值得注意的例子,例如胺碘酮,鲁索替尼,他汀类药物,双硫仑,奥美昔芬和奎纳克林。抗心律失常药胺碘酮已显示出有希望的抗OC活性,尽管不应忽略其全身毒性。 JAK抑制剂Ruxolitinib可以用于与标准OC治疗同时使用,因为它与铂类药物协同作用。特别令人感兴趣的是他汀类药物的使用,他汀类药物是老年人群中最常用的药物之一,用于治疗高胆固醇血症。用于治疗慢性酒精中毒的双硫仑具有抗OC特性。通常用于避孕的奥美昔芬似乎很有希望,特别是由于副作用可忽略不计。最后,奎纳克林用作抗微生物和消炎药,能够下调OC细胞的生长并促进细胞死亡。结论:尽管有必要在患者中进行进一步测试以更好地阐明重用药物对OC的治疗潜力,但相信与OC靶向递送系统结合使用时,更好地使用它们可以显着促进新型有效抗OC的开发治疗。

关键词: 再利用药物,卵巢癌,胺碘酮,鲁索替尼,他汀类药物,双硫仑,奥美昔芬。

[1]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[2]
Chien, J.; Poole, E.M. Ovarian cancer prevention, screening and early detection: report from the 11th biennial ovarian cancer research symposium. Int. J. Gynecol. Cancer, 2017, 27(9)(Suppl. 5), S20-S22.
[http://dx.doi.org/10.1097/IGC.0000000000001118] [PMID: 29278600]
[3]
Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer. Nat. Rev. Dis. Primers, 2016, 2, 16061.
[http://dx.doi.org/10.1038/nrdp.2016.61] [PMID: 27558151]
[4]
Shih, IeM.; Kurman, R.J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am. J. Pathol., 2004, 164(5), 1511-1518.
[http://dx.doi.org/10.1016/S0002-9440(10)63708-X] [PMID: 15111296]
[5]
Verhaak, R.G.; Tamayo, P.; Yang, J.Y.; Hubbard, D.; Zhang, H.; Creighton, C.J.; Fereday, S.; Lawrence, M.; Carter, S.L.; Mermel, C.H.; Kostic, A.D.; Etemadmoghadam, D.; Saksena, G.; Cibulskis, K.; Duraisamy, S.; Levanon, K.; Sougnez, C.; Tsherniak, A.; Gomez, S.; Onofrio, R.; Gabriel, S.; Chin, L.; Zhang, N.; Spellman, P.T.; Zhang, Y.; Akbani, R.; Hoadley, K.A.; Kahn, A.; Köbel, M.; Huntsman, D.; Soslow, R.A.; Defazio, A.; Birrer, M.J.; Gray, J.W.; Weinstein, J.N.; Bowtell, D.D.; Drapkin, R.; Mesirov, J.P.; Getz, G.; Levine, D.A.; Meyerson, M. Cancer Genome Atlas Research network. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest., 2013, 123(1), 517-525.
[http://dx.doi.org/10.1172/JCI65833] [PMID: 23257362]
[6]
Konecny, G.E.; Wang, C.; Hamidi, H.; Winterhoff, B.; Kalli, K.R.; Dering, J.; Ginther, C.; Chen, H.W.; Dowdy, S.; Cliby, W.; Gostout, B.; Podratz, K.C.; Keeney, G.; Wang, H.J.; Hartmann, L.C.; Slamon, D.J.; Goode, E.L. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J. Natl. Cancer Inst., 2014, 106(10), 106.
[http://dx.doi.org/10.1093/jnci/dju249] [PMID: 25269487]
[7]
Wang, C.; Armasu, S.M.; Kalli, K.R.; Maurer, M.J.; Heinzen, E.P.; Keeney, G.L.; Cliby, W.A.; Oberg, A.L.; Kaufmann, S.H.; Goode, E.L. Pooled clustering of high-grade serous ovarian cancer gene expression leads to novel consensus subtypes associated with survival and surgical outcomes. Clin. Cancer Res., 2017, 23(15), 4077-4085.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0246] [PMID: 28280090]
[8]
Cancer genome atlas research network. Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474(7353), 609-615.
[http://dx.doi.org/10.1038/nature10166] [PMID: 21720365]
[9]
Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol., 2016, 13(4), 255-261.
[http://dx.doi.org/10.1038/nrclinonc.2015.224] [PMID: 26787282]
[10]
Menon, U.; Ryan, A.; Kalsi, J.; Gentry-Maharaj, A.; Dawnay, A.; Habib, M.; Apostolidou, S.; Singh, N.; Benjamin, E.; Burnell, M.; Davies, S.; Sharma, A.; Gunu, R.; Godfrey, K.; Lopes, A.; Oram, D.; Herod, J.; Williamson, K.; Seif, M.W.; Jenkins, H.; Mould, T.; Woolas, R.; Murdoch, J.B.; Dobbs, S.; Amso, N.N.; Leeson, S.; Cruickshank, D.; Scott, I.; Fallowfield, L.; Widschwendter, M.; Reynolds, K.; McGuire, A.; Campbell, S.; Parmar, M.; Skates, S.J.; Jacobs, I. Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the united kingdom collaborative trial of ovarian cancer screening. J. Clin. Oncol., 2015, 33(18), 2062-2071.
[http://dx.doi.org/10.1200/JCO.2014.59.4945] [PMID: 25964255]
[11]
Lisio, M.A.; Fu, L.; Goyeneche, A.; Gao, Z.H.; Telleria, C. High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int. J. Mol. Sci., 2019, 20(4), 20.
[http://dx.doi.org/10.3390/ijms20040952] [PMID: 30813239]
[12]
Markman, M. Optimizing primary chemotherapy in ovarian cancer. Hematol. Oncol. Clin. North Am., 2003, 17(4), 957-968.
[http://dx.doi.org/10.1016/S0889-8588(03)00058-3]
[13]
Alberts, D.S.; Green, S.; Hannigan, E.V.; O’Toole, R.; Stock-Novack, D.; Anderson, P.; Surwit, E.A.; Malvlya, V.K.; Nahhas, W.A.; Jolles, C.J. Improved therapeutic index of carboplatin plus cyclophosphamide versus cisplatin plus cyclophosphamide: final report by the Southwest Oncology Group of a phase III randomized trial in stages III and IV ovarian cancer. J. Clin. Oncol., 1992, 10(5), 706-717.
[http://dx.doi.org/10.1200/JCO.1992.10.5.706] [PMID: 1569443]
[14]
International Collaborative Ovarian Neoplasm Group. Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: the ICON3 randomised trial. Lancet, 2002, 360(9332), 505-515.
[http://dx.doi.org/10.1016/S0140-6736(02)09738-6] [PMID: 12241653]
[15]
Monk, B. J.; Chan, J. K. Is intraperitoneal chemotherapy still an acceptable option in primary adjuvant chemotherapy for advanced ovarian cancer? Ann. Oncol., 2017, 28(Suppl.8), viii40-viii45.
[http://dx.doi.org/10.1093/annonc/mdx451] [PMID: 29232474]
[16]
Bast, R.C. Jr.; Hennessy, B.; Mills, G.B. The biology of ovarian cancer: new opportunities for translation. Nat. Rev. Cancer, 2009, 9(6), 415-428.
[http://dx.doi.org/10.1038/nrc2644] [PMID: 19461667]
[17]
Yang, W-L.; Lu, Z.; Bast, R.C. Jr. The role of biomarkers in the management of epithelial ovarian cancer. Expert Rev. Mol. Diagn., 2017, 17(6), 577-591.
[http://dx.doi.org/10.1080/14737159.2017.1326820] [PMID: 28468520]
[18]
Balduit, A.; Agostinis, C.; Mangogna, A.; Maggi, V.; Zito, G.; Romano, F.; Romano, A.; Ceccherini, R.; Grassi, G.; Bonin, S.; Bonazza, D.; Zanconati, F.; Ricci, G.; Bulla, R. The extracellular matrix influences ovarian carcinoma cells’ sensitivity to cisplatinum: a first step towards personalized medicine. Cancers (Basel), 2020, 12(5), 12.
[http://dx.doi.org/10.3390/cancers12051175] [PMID: 32392708]
[19]
Papa, A.; Caruso, D.; Strudel, M.; Tomao, S.; Tomao, F. Update on Poly-ADP-ribose polymerase inhibition for ovarian cancer treat-ment. J. Transl. Med., 2016, 14, 267.
[http://dx.doi.org/10.1186/s12967-016-1027-1] [PMID: 27634150]
[20]
Zheng, H.; Tie, Y.; Fang, Z.; Wu, X.; Yi, T.; Huang, S.; Liang, X.; Qian, Y.; Wang, X.; Pi, R.; Chen, S.; Peng, Y.; Yang, S.; Zhao, X.; Wei, X. Jumonji domain-containing 6 (JMJD6) identified as a potential therapeutic target in ovarian cancer. Signal Transduct. Target. Ther., 2019, 4, 24.
[http://dx.doi.org/10.1038/s41392-019-0055-8]
[21]
Lin, X.; Shen, J.; Dan, Peng He, X.; Xu, C.; Chen, X.; Tanyi, J.L.; Montone, K.; Fan, Y.; Huang, Q.; Zhang, L.; Zhong, X. RNA-binding protein LIN28B inhibits apoptosis through regulation of the AKT2/FOXO3A/BIM axis in ovarian cancer cells. Signal Transduct. Target. Ther., 2018, 3, 23.
[http://dx.doi.org/10.1038/s41392-018-0026-5] [PMID: 30174831]
[22]
Belur Nagaraj, A.; Joseph, P.; Kovalenko, O.; Wang, Q.; Xu, R.; DiFeo, A. Evaluating class III antiarrhythmic agents as novel MYC targeting drugs in ovarian cancer. Gynecol. Oncol., 2018, 151(3), 525-532.
[http://dx.doi.org/10.1016/j.ygyno.2018.09.019] [PMID: 30301560]
[23]
Nagaraj, A.B.; Wang, Q.Q.; Joseph, P.; Zheng, C.; Chen, Y.; Kovalenko, O.; Singh, S.; Armstrong, A.; Resnick, K.; Zanotti, K.; Wag-goner, S.; Xu, R.; DiFeo, A. Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene, 2018, 37(3), 403-414.
[http://dx.doi.org/10.1038/onc.2017.328] [PMID: 28967908]
[24]
Reyes-González, J.M.; Armaiz-Peña, G.N.; Mangala, L.S.; Valiyeva, F.; Ivan, C.; Pradeep, S.; Echevarría-Vargas, I.M.; Rivera-Reyes, A.; Sood, A.K.; Vivas-Mejía, P.E. Targeting c-MYC in platinum-resistant ovarian cancer. Mol. Cancer Ther., 2015, 14(10), 2260-2269.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0801] [PMID: 26227489]
[25]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[26]
Domcke, S.; Sinha, R.; Levine, D.A.; Sander, C.; Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun., 2013, 4, 2126.
[http://dx.doi.org/10.1038/ncomms3126] [PMID: 23839242]
[27]
Vorperian, V.R.; Havighurst, T.C.; Miller, S.; January, C.T. Adverse effects of low dose amiodarone: a meta-analysis. J. Am. Coll. Cardiol., 1997, 30(3), 791-798.
[http://dx.doi.org/10.1016/S0735-1097(97)00220-9] [PMID: 9283542]
[28]
Tavallai, M.; Booth, L.; Roberts, J.L.; Poklepovic, A.; Dent, P. Rationally repurposing ruxolitinib (Jakafi®) as a solid tumor therapeutic. Front. Oncol., 2016, 6, 142.
[http://dx.doi.org/10.3389/fonc.2016.00142] [PMID: 27379204]
[29]
Landen, C.N. Jr.; Lin, Y.G.; Armaiz Pena, G.N.; Das, P.D.; Arevalo, J.M.; Kamat, A.A.; Han, L.Y.; Jennings, N.B.; Spannuth, W.A.; Thaker, P.H.; Lutgendorf, S.K.; Savary, C.A.; Sanguino, A.M.; Lopez-Berestein, G.; Cole, S.W.; Sood, A.K. Neuroendocrine modula-tion of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res., 2007, 67(21), 10389-10396.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0858] [PMID: 17974982]
[30]
Abrami, M.; Ascenzioni, F.; Di Domenico, E.G.; Maschio, M.; Ventura, A.; Confalonieri, M.; Di Gioia, S.; Conese, M.; Dapas, B.; Grassi, G.; Grassi, M. A novel approach based on low-field NMR for the detection of the pathological components of sputum in cystic fibrosis patients. Magn. Reson. Med., 2018, 79(4), 2323-2331.
[http://dx.doi.org/10.1002/mrm.26876] [PMID: 28833401]
[31]
Han, E.S.; Wen, W.; Dellinger, T.H.; Wu, J.; Lu, S.A.; Jove, R.; Yim, J.H. Ruxolitinib synergistically enhances the anti-tumor activity of paclitaxel in human ovarian cancer. Oncotarget, 2018, 9(36), 24304-24319.
[http://dx.doi.org/10.18632/oncotarget.24368] [PMID: 29849942]
[32]
Ostojic, A.; Vrhovac, R.; Verstovsek, S. Ruxolitinib for the treatment of myelofibrosis: its clinical potential. Ther. Clin. Risk Manag., 2012, 8, 95-103.
[http://dx.doi.org/10.2147/TCRM.S23277] [PMID: 22399854]
[33]
Toth, P.P.; Banach, M. Statins: then and now. Methodist DeBakey Cardiovasc. J., 2019, 15(1), 23-31.
[http://dx.doi.org/10.14797/mdcj-15-1-23 ] [PMID: 31049146]
[34]
Goldstein, J.L.; Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol., 2009, 29(4), 431-438.
[http://dx.doi.org/10.1161/ATVBAHA.108.179564] [PMID: 19299327]
[35]
Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature, 1990, 343(6257), 425-430.
[http://dx.doi.org/10.1038/343425a0] [PMID: 1967820]
[36]
Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerød, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A.; Bissell, M.J.; Osborne, T.F.; Tian, B.; Lowe, S.W.; Silva, J.M.; Børresen-Dale, A.L.; Levine, A.J.; Bargonetti, J.; Prives, C. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 2012, 148(1-2), 244-258.
[http://dx.doi.org/10.1016/j.cell.2011.12.017] [PMID: 22265415]
[37]
Kobayashi, Y.; Kashima, H.; Wu, R.C.; Jung, J.G.; Kuan, J.C.; Gu, J.; Xuan, J.; Sokoll, L.; Visvanathan, K.; Shih, IeM.; Wang, T.L. Mevalonate pathway antagonist suppresses formation of serous tubal intraepithelial carcinoma and ovarian carcinoma in mouse models. Clin. Cancer Res., 2015, 21(20), 4652-4662.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3368] [PMID: 26109099]
[38]
Konstantinopoulos, P.A.; Karamouzis, M.V.; Papavassiliou, A.G. Post-translational modifications and regulation of the RAS super-family of GTPases as anticancer targets. Nat. Rev. Drug Discov., 2007, 6(7), 541-555.
[http://dx.doi.org/10.1038/nrd2221] [PMID: 17585331]
[39]
Park, J.B.; Lee, C.S.; Jang, J.H.; Ghim, J.; Kim, Y.J.; You, S.; Hwang, D.; Suh, P.G.; Ryu, S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer, 2012, 12(11), 782-792.
[http://dx.doi.org/10.1038/nrc3379] [PMID: 23076158]
[40]
Stine, J.E.; Guo, H.; Sheng, X.; Han, X.; Schointuch, M.N.; Gilliam, T.P.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget, 2016, 7(1), 946-960.
[http://dx.doi.org/10.18632/oncotarget.5834] [PMID: 26503475]
[41]
Testa, U.; Petrucci, E.; Pasquini, L.; Castelli, G.; Pelosi, E.; Cancers, O. Ovarian Cancers: genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicines (Basel), 2018, 5(1), 16.
[http://dx.doi.org/10.3390/medicines5010016] [PMID: 29389895]
[42]
Greenaway, J.B.; Virtanen, C.; Osz, K.; Revay, T.; Hardy, D.; Shepherd, T.; DiMattia, G.; Petrik, J. Ovarian tumour growth is charac-terized by mevalonate pathway gene signature in an orthotopic, syngeneic model of epithelial ovarian cancer. Oncotarget, 2016, 7(30), 47343-47365.
[http://dx.doi.org/10.18632/oncotarget.10121] [PMID: 27329838]
[43]
Kashani, A.; Phillips, C.O.; Foody, J.M.; Wang, Y.; Mangalmurti, S.; Ko, D.T.; Krumholz, H.M. Risks associated with statin therapy: a systematic overview of randomized clinical trials. Circulation, 2006, 114(25), 2788-2797.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.624890] [PMID: 17159064]
[44]
Abd, T.T.; Jacobson, T.A. Statin-induced myopathy: a review and update. Expert Opin. Drug Saf., 2011, 10(3), 373-387.
[http://dx.doi.org/10.1517/14740338.2011.540568] [PMID: 21342078]
[45]
Suh, J.J.; Pettinati, H.M.; Kampman, K.M.; O’Brien, C.P. The status of disulfiram: a half of a century later. J. Clin. Psychopharmacol., 2006, 26(3), 290-302.
[http://dx.doi.org/10.1097/01.jcp.0000222512.25649.08] [PMID: 16702894]
[46]
Askgaard, G.; Friis, S.; Hallas, J.; Thygesen, L.C.; Pottegård, A. Use of disulfiram and risk of cancer: a population-based case-control study. Eur. J. Cancer Prev., 2014, 23(3), 225-232.
[http://dx.doi.org/10.1097/CEJ.0b013e3283647466] [PMID: 23863824]
[47]
Kast, R.E.; Boockvar, J.A.; Brüning, A.; Cappello, F.; Chang, W.W.; Cvek, B.; Dou, Q.P.; Duenas-Gonzalez, A.; Efferth, T.; Focosi, D.; Ghaffari, S.H.; Karpel-Massler, G.; Ketola, K.; Khoshnevisan, A.; Keizman, D.; Magné, N.; Marosi, C.; McDonald, K.; Muñoz, M.; Paranjpe, A.; Pourgholami, M.H.; Sardi, I.; Sella, A.; Srivenugopal, K.S.; Tuccori, M.; Wang, W.; Wirtz, C.R.; Halatsch, M.E. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International initiative for accelerated improvement of Glioblastoma care. Oncotarget, 2013, 4(4), 502-530.
[http://dx.doi.org/10.18632/oncotarget.969] [PMID: 23594434]
[48]
Papaioannou, M.; Mylonas, I.; Kast, R.E.; Brüning, A. Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition. Oncoscience, 2013, 1(1), 21-29.
[http://dx.doi.org/10.18632/oncoscience.5] [PMID: 25593981]
[49]
Aghdassi, A.; Phillips, P.; Dudeja, V.; Dhaulakhandi, D.; Sharif, R.; Dawra, R.; Lerch, M.M.; Saluja, A. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res., 2007, 67(2), 616-625.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1567] [PMID: 17234771]
[50]
Liu, X.X.; Ye, H.; Wang, P.; Li, L.X.; Zhang, Y.; Zhang, J.Y. Proteomic-based identification of HSP70 as a tumor-associated antigen in ovarian cancer. Oncol. Rep., 2017, 37(5), 2771-2778.
[http://dx.doi.org/10.3892/or.2017.5525] [PMID: 28339059]
[51]
Kamboj, V.P.; Setty, B.S.; Chandra, H.; Roy, S.K.; Kar, A.B. Biological profile of Centchroman--a new post-coital contraceptive. Indian J. Exp. Biol., 1977, 15(12), 1144-1150.
[PMID: 96021]
[52]
Nigam, M.; Ranjan, V.; Srivastava, S.; Sharma, R.; Balapure, A.K. Centchroman induces G0/G1 arrest and caspase-dependent apoptosis involving mitochondrial membrane depolarization in MCF-7 and MDA MB-231 human breast cancer cells. Life Sci., 2008, 82(11-12), 577-590.
[http://dx.doi.org/10.1016/j.lfs.2007.11.028] [PMID: 18279897]
[53]
Srivastava, V.K.; Gara, R.K.; Bhatt, M.L.; Sahu, D.P.; Mishra, D.P. Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR pathway. Biochem. Biophys. Res. Commun., 2011, 404(1), 40-45.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.049] [PMID: 21094138]
[54]
Pal, P.; Kanaujiya, J.K.; Lochab, S.; Tripathi, S.B.; Bhatt, M.L.; Singh, P.K.; Sanyal, S.; Trivedi, A.K. 2-D gel electrophoresis-based proteomic analysis reveals that ormeloxifen induces G0-G1 growth arrest and ERK-mediated apoptosis in chronic myeloid leukemia cells K562. Proteomics, 2011, 11(8), 1517-1529.
[http://dx.doi.org/10.1002/pmic.201000720] [PMID: 21360677]
[55]
Singh, M.M. Centchroman, a selective estrogen receptor modulator, as a contraceptive and for the management of hormone-related clinical disorders. Med. Res. Rev., 2001, 21(4), 302-347.
[http://dx.doi.org/10.1002/med.1011] [PMID: 11410933]
[56]
Maher, D.M.; Khan, S.; Nordquist, J.L.; Ebeling, M.C.; Bauer, N.A.; Kopel, L.; Singh, M.M.; Halaweish, F.; Bell, M.C.; Jaggi, M.; Chauhan, S.C. Ormeloxifene efficiently inhibits ovarian cancer growth. Cancer Lett., 2015, 356(2 Pt B), 606-612.
[http://dx.doi.org/10.1016/j.canlet.2014.10.009] [PMID: 25306892]
[57]
Bhattacharjee, A.; Hasanain, M.; Kathuria, M.; Singh, A.; Datta, D.; Sarkar, J.; Mitra, K. Ormeloxifene-induced unfolded protein re-sponse contributes to autophagy-associated apoptosis via disruption of Akt/mTOR and activation of JNK. Sci. Rep., 2018, 8(1), 2303.
[http://dx.doi.org/10.1038/s41598-018-20541-8] [PMID: 29396506]
[58]
Pillai, L.S.; Regidi, S.; Varghese, S.D.; Ravindran, S.; Maya, V.; Varghese, J.; Ramaswami, K.; Gopimohan, R.; Gopi, M. Nonhormonal selective estrogen receptor modulator 1-(2-[4-(3R,4S)-7-Methoxy-2, 2-dimethyl-3-phenyl-chroman-4ylphenoxy]ethyl)pyrrolidine hydrochloride (ormeloxifene hydrochloride) for the treatment of breast cancer. Drug Dev. Res., 2018, 79(6), 275-286.
[http://dx.doi.org/10.1002/ddr.21440] [PMID: 30284735]
[59]
Oien, D.B.; Pathoulas, C.L.; Ray, U.; Thirusangu, P.; Kalogera, E.; Shridhar, V. Repurposing quinacrine for treatment-refractory cancer. Semin. Cancer Biol., 2019, S1044-579X(19), 30226-3.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.021] [PMID: 31562955]
[60]
Gurova, K.V.; Hill, J.E.; Guo, C.; Prokvolit, A.; Burdelya, L.G.; Samoylova, E.; Khodyakova, A.V.; Ganapathi, R.; Ganapathi, M.; Tararova, N.D.; Bosykh, D.; Lvovskiy, D.; Webb, T.R.; Stark, G.R.; Gudkov, A.V. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17448-17453.
[http://dx.doi.org/10.1073/pnas.0508888102] [PMID: 16287968]
[61]
Jung, D.; Khurana, A.; Roy, D.; Kalogera, E.; Bakkum-Gamez, J.; Chien, J.; Shridhar, V. Quinacrine upregulates p21/p27 independent of p53 through autophagy-mediated downregulation of p62-Skp2 axis in ovarian cancer. Sci. Rep., 2018, 8(1), 2487.
[http://dx.doi.org/10.1038/s41598-018-20531-w] [PMID: 29410485]
[62]
Grassi, G.; Pozzato, G.; Moretti, M.; Giacca, M. Quantitative analysis of hepatitis C virus RNA in liver biopsies by competitive reverse transcription and polymerase chain reaction. J. Hepatol., 1995, 23(4), 403-411.
[http://dx.doi.org/10.1016/0168-8278(95)80198-7] [PMID: 8655957]
[63]
Scaggiante, B.; Dapas, B.; Bonin, S.; Grassi, M.; Zennaro, C.; Farra, R.; Cristiano, L.; Siracusano, S.; Zanconati, F.; Giansante, C.; Grassi, G. Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression. Br. J. Cancer, 2012, 106(1), 166-173.
[http://dx.doi.org/10.1038/bjc.2011.500] [PMID: 22095224]
[64]
Farra, R.; Maruna, M.; Perrone, F.; Grassi, M.; Benedetti, F.; Maddaloni, M.; El Boustani, M.; Parisi, S.; Rizzolio, F.; Forte, G.; Zan-conati, F.; Cemazar, M.; Kamensek, U.; Dapas, B.; Grassi, G. Strategies for delivery of siRNAs to ovarian cancer cells. Pharmaceutics, 2019, 11(10), 1-31.
[http://dx.doi.org/10.3390/pharmaceutics11100547] [PMID: 31652539]
[65]
Bochicchio, S.; Barba, A.A.; Grassi, G.; Lamberti, G. Vitamin delivery: carriers based on nanoliposomes produced via ultrasonic irra-diation. 2016, 9-16.
[http://dx.doi.org/10.1016/j.lwt.2016.01.025]
[66]
Bochicchio, S.; Dalmoro, A.; Barba, A.A.; Grassi, G.; Lamberti, G. Liposomes as siRNA delivery vectors. Curr. Drug Metab., 2014, 15(9), 882-892.
[http://dx.doi.org/10.2174/1389200216666150206124913] [PMID: 25658127]
[67]
Farra, R.; Musiani, F.; Perrone, F.; Čemažar, M.; Kamenšek, U.; Tonon, F.; Abrami, M.; Ručigaj, A.; Grassi, M.; Pozzato, G.; Bonazza, D.; Zanconati, F.; Forte, G.; El Boustani, M.; Scarabel, L.; Garziera, M.; Russo Spena, C.; De Stefano, L.; Salis, B.; Toffoli, G.; Rizzolio, F.; Grassi, G.; Dapas, B. Polymer-mediated delivery of siRNAs to hepatocellular carcinoma: variables affecting specificity and effectiveness. Molecules, 2018, 23(4), 23.
[http://dx.doi.org/10.3390/molecules23040777] [PMID: 29597300]
[68]
Scarabel, L.; Perrone, F.; Garziera, M.; Farra, R.; Grassi, M.; Musiani, F.; Russo Spena, C.; Salis, B.; De Stefano, L.; Toffoli, G.; Riz-zolio, F.; Tonon, F.; Abrami, M.; Chiarappa, G.; Pozzato, G.; Forte, G.; Grassi, G.; Dapas, B. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin. Drug Deliv., 2017, 14(6), 797-810.
[http://dx.doi.org/10.1080/17425247.2017.1292247] [PMID: 28266887]
[69]
Cavallaro, G.; Farra, R.; Craparo, E.F.; Sardo, C.; Porsio, B.; Giammona, G.; Perrone, F.; Grassi, M.; Pozzato, G.; Grassi, G.; Dapas, B. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int. J. Pharm., 2017, 525(2), 397-406.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.034] [PMID: 28119125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy