Mini-Review Article

胰腺癌中的纳米药物:治疗的新希望

卷 21, 期 15, 2020

页: [1580 - 1592] 页: 13

弟呕挨: 10.2174/1389450121666200703195229

价格: $65

摘要

在大多数癌症中,胰腺导管腺癌(PDA)的预后最差,死亡率更高。由于缺乏特定的生物标志物,PDA的诊断通常会延迟,并且当前化疗药物的疗效有限。此外,化学疗法通常用于已经发生转移性扩散的晚期阶段。基于纳米技术的系统可以促进PDA的诊断和治疗。新的纳米制剂已显示出可改善常规化学治疗剂(如吉西他滨)和新的抗肿瘤药的活性,保护它们免于降解,提高其选择性,溶解性和生物利用度,并减少其副作用。而且,纳米载体的设计代表了克服耐药性的新方法,这需要对PDA的肿瘤微环境有全面的了解。本文回顾了基于纳米医学的当前观点,以解决胰腺癌治疗的局限性,以及在控制该疾病方面取得进展的未来研究方向。

关键词: 胰腺导管腺癌,化疗药物,纳米颗粒,耐药性,临床试验,吉西他滨。

图形摘要

[1]
Zhang C, Yan Y, Zou Q, Chen J, Li C. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia Pac J Clin Oncol 2016; 12(1): 13-21.
[http://dx.doi.org/10.1111/ajco.12437] [PMID: 26663873]
[2]
Global Cancer Observatory (GLOBOCAN), International Agency for Research on Cancer, World Health Organization. https://gco.iarc.fr/
[3]
The Cancer Survival in High-Income Countries (SURVMARK-2) project, International Cancer Benchmarking Partnership (ICBP). http://gco.iarc.fr/survival/survmark/visualizations/
[4]
Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol 2016; 22(44): 9694-705.
[http://dx.doi.org/10.3748/wjg.v22.i44.9694] [PMID: 27956793]
[5]
Kimple RJ, Russo S, Monjazeb A, Blackstock AW. The role of chemoradiation for patients with resectable or potentially resectable pancreatic cancer. Expert Rev Anticancer Ther 2012; 12(4): 469-80.
[http://dx.doi.org/10.1586/era.12.18] [PMID: 22500684]
[6]
Hirshberg Foundation for pancreatic cancer research, http://pancreatic.org/pancreatic-cancer/pancreatic-cancer-facts/
[7]
Kurtanich T, Roos N, Wang G, Yang J, Wang A, Chung EJ. Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. SLAS Technol 2019; 24(2): 151-60.
[http://dx.doi.org/10.1177/2472630318811108] [PMID: 30395768]
[8]
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60(5): 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[9]
PDQ Adult Treatment Editorial Board. Pancreatic Cancer Treatment (PDQ®): Health Professional Version. PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda, MD, In: 2002. Internet
[10]
Sociedad Española de Oncología Médica. Cáncer de páncreas https://seom.org/info-sobre-el-cancer/pancreas?showall=1
[11]
Conroy T, Hammel P, Hebbar M, et al. Canadian Cancer Trials Group and the Unicancer-GI–PRODIGE Group FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 2018; 379(25): 2395-406.
[http://dx.doi.org/10.1056/NEJMoa1809775] [PMID: 30575490]
[12]
Zhao X, Li F, Li Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 2015; 46: 13-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.028] [PMID: 25678112]
[13]
Thota R, Pauff JM, Berlin JD. Treatment of metastatic pancreatic adenocarcinoma: a review. Oncology (Williston Park) 2014; 28(1): 70-4.
[PMID: 24683721]
[14]
Khan MA, Azim S, Zubair H, et al. Molecular drivers of pancreatic cancer pathogenesis: Looking inward to move forward. Int J Mol Sci 2017; 18(4)E779
[http://dx.doi.org/10.3390/ijms18040779] [PMID: 28383487]
[15]
Arlt A, Müerköster SS, Schäfer H. Targeting apoptosis pathways in pancreatic cancer. Cancer Lett 2013; 332(2): 346-58.
[http://dx.doi.org/10.1016/j.canlet.2010.10.015] [PMID: 21078544]
[16]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[17]
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6): 1420-8.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[18]
Sun Q, Wang X, Cui C, Li J, Wang Y. Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo. Int J Nanomedicine 2018; 13: 3713-28.
[http://dx.doi.org/10.2147/IJN.S162939] [PMID: 29983564]
[19]
Lam JK, Chow MY, Zhang Y, Leung SW. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids, 2015; 4e252
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[20]
Arora S, Swaminathan SK, Kirtane A, et al. Synthesis, characterization, and evaluation of poly (D,L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy. Int J Nanomedicine 2014; 9: 2933-42.
[PMID: 24971005]
[21]
GeneCards®. The Human Gene Database. MUC4, http://www.genecards.org/cgi-bin/carddisp.pl?gene=MUC4
[22]
Shibata W, Kinoshita H, Hikiba Y, et al. Overexpression of HER2 in the pancreas promotes development of intraductal papillary mucinous neoplasms in mice. Sci Rep 2018; 8(1): 6150.
[http://dx.doi.org/10.1038/s41598-018-24375-2] [PMID: 29670173]
[23]
Khan S, Ebeling MC, Zaman MS, et al. MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 2014; 5(17): 7599-609.
[http://dx.doi.org/10.18632/oncotarget.2281] [PMID: 25277192]
[24]
Hu QL, Jiang QY, Jin X, et al. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 2013; 34(9): 2265-76.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.016] [PMID: 23298779]
[25]
Weissmueller S, Manchado E, Saborowski M, et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 2014; 157(2): 382-94.
[http://dx.doi.org/10.1016/j.cell.2014.01.066] [PMID: 24725405]
[26]
Hesler RA, Huang JJ, Starr MD, et al. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis 2016; 37(11): 1041-51.
[http://dx.doi.org/10.1093/carcin/bgw093] [PMID: 27604902]
[27]
Zhang YK, Wang YJ, Gupta P, Chen ZS. Multidrug Resistance Proteins (MRPs) and Cancer Therapy. AAPS J 2015; 17(4): 802-12.
[http://dx.doi.org/10.1208/s12248-015-9757-1] [PMID: 25840885]
[28]
Adamska A, Elaskalani O, Emmanouilidi A, et al. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul 2018; 68: 77-87.
[http://dx.doi.org/10.1016/j.jbior.2017.11.007] [PMID: 29221990]
[29]
Shukla SK, Purohit V, Mehla K, et al. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 2017; 32(1): 71-87.
[http://dx.doi.org/10.1016/j.ccell.2017.06.004] [PMID: 28697344]
[30]
Calabretta S, Bielli P, Passacantilli I, et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene 2016; 35(16): 2031-9.
[http://dx.doi.org/10.1038/onc.2015.270] [PMID: 26234680]
[31]
Aye Y, Li M, Long MJC, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 2015; 34(16): 2011-21.
[http://dx.doi.org/10.1038/onc.2014.155] [PMID: 24909171]
[32]
Zheng X, Carstens JL, Kim J. EMT Program is Dispensable for Metastasis but Induces Chemoresistance in Pancreatic Cancer. Nature 2016; 527: 525-30.
[http://dx.doi.org/10.1038/nature16064] [PMID: 26560028]
[33]
Meidhof S, Brabletz S, Lehmann W, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med 2015; 7(6): 831-47.
[http://dx.doi.org/10.15252/emmm.201404396] [PMID: 25872941]
[34]
Ma J, Fang B, Zeng F, et al. Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 2015; 6(3): 1740-9.
[http://dx.doi.org/10.18632/oncotarget.2714] [PMID: 25638153]
[35]
Wei X, Wang W, Wang L, et al. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med 2016; 5(4): 693-702.
[http://dx.doi.org/10.1002/cam4.626] [PMID: 26864640]
[36]
Binenbaum Y, Na’ara S, Gil Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 2015; 23: 55-68.
[http://dx.doi.org/10.1016/j.drup.2015.10.002] [PMID: 26690340]
[37]
Li J, Wu H, Li W, et al. Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene 2016; 35(42): 5501-14.
[http://dx.doi.org/10.1038/onc.2016.90] [PMID: 27065335]
[38]
Chen M, Wang M, Xu S, Guo X, Jiang J. Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget 2015; 6(42): 44466-79.
[http://dx.doi.org/10.18632/oncotarget.6298] [PMID: 26561204]
[39]
Cioffi M, Trabulo SM, Sanchez-Ripoll Y, et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut 2015; 64(12): 1936-48.
[http://dx.doi.org/10.1136/gutjnl-2014-308470] [PMID: 25887381]
[40]
Li Z, Zhao X, Zhou Y, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J Transl Med 2015; 13: 84.
[http://dx.doi.org/10.1186/s12967-015-0442-z] [PMID: 25889214]
[41]
El-Zahaby SA, Elnaggar YSR, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019; 293: 21-35.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.013] [PMID: 30445002]
[42]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[43]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine (Lond) 2010; 6(1): 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[44]
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53(46): 12320-64.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[45]
Chinnaiyan SK, Soloman AM, Perumal RK, Gopinath A, Balaraman M. 5 Fluorouracil-loaded biosynthesised gold nanoparticles for the in vitro treatment of human pancreatic cancer cell. IET Nanobiotechnol 2019; 13(8): 824-8.
[http://dx.doi.org/10.1049/iet-nbt.2019.0007] [PMID: 31625522]
[46]
Trabulo S, Aires A, Aicher A, Heeschen C, Cortajarena AL. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. Biochim Biophys Acta, Gen Subj 2017; 1861(6): 1597-605.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.035] [PMID: 28161480]
[47]
Zhu S, Wonganan P, Lansakara-P DS, O’Mary HL, Li Y, Cui Z. The effect of the acid-sensitivity of 4-(N)-stearoyl gemcitabine-loaded micelles on drug resistance caused by RRM1 overexpression. Biomaterials 2013; 34(9): 2327-39.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.053] [PMID: 23261218]
[48]
Oluwasanmi A, Al-Shakarchi W, Manzur A, et al. Diels Alder-mediated release of gemcitabine from hybrid nanoparticles for enhanced pancreatic cancer therapy. J Control Release 2017; 266: 355-64.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.027] [PMID: 28943195]
[49]
Fan L, Yang Q, Tan J, et al. Dual loading miR-218 mimics and Temozolomide using AuCOOH@FA-CS drug delivery system: promising targeted anti-tumor drug delivery system with sequential release functions. J Exp Clin Cancer Res 2015; 34: 106.
[http://dx.doi.org/10.1186/s13046-015-0216-8] [PMID: 26407971]
[50]
Ahmadi Nasab N, Hassani Kumleh H, Beygzadeh M, Teimourian S, Kazemzad M. Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artif Cells Nanomed Biotechnol 2018; 46(1): 75-81.
[http://dx.doi.org/10.1080/21691401.2017.1290648] [PMID: 28278578]
[51]
Goel S, Chen F, Hong H, et al. VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces 2014; 6(23): 21677-85.
[http://dx.doi.org/10.1021/am506849p] [PMID: 25353068]
[52]
Kafa H, Wang JT, Rubio N, et al. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 2015; 53: 437-52.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.083] [PMID: 25890741]
[53]
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[54]
Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev 2017; 113: 24-48.
[http://dx.doi.org/10.1016/j.addr.2016.07.012] [PMID: 27497513]
[55]
Kumar VKA, Abbas N, Aster JC. Lesión y muerte celulares, y adaptaciones. Robbins y Cotran – Patología Humana, 9th ed. Ed. Barcelona: Elsevier España SL; 2013.
[56]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[57]
Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis 2015; 2(1): 26-34.
[http://dx.doi.org/10.1016/j.gendis.2014.12.002] [PMID: 26097889]
[58]
Hosoya H, Kadowaki K, Matsusaki M, et al. Engineering fibrotic tissue in pancreatic cancer: a novel three-dimensional model to investigate nanoparticle delivery. Biochem Biophys Res Commun 2012; 419(1): 32-7.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.117] [PMID: 22321398]
[59]
Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 2013; 144(6): 1210-9.
[http://dx.doi.org/10.1053/j.gastro.2012.11.037] [PMID: 23622130]
[60]
Tanaka HY, Kano MR. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci 2018; 109(7): 2085-92.
[http://dx.doi.org/10.1111/cas.13630] [PMID: 29737600]
[61]
Matsumura Y. Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 2012; 64(8): 710-9.
[http://dx.doi.org/10.1016/j.addr.2011.12.010] [PMID: 22212902]
[62]
Yang C, Hu R, Anderson T, et al. Biodegradable nanoparticle-mediated K-ras down regulation for pancreatic cancer gene therapy. J Mater Chem B Mater Biol Med 2015; 3(10): 2163-72.
[http://dx.doi.org/10.1039/C4TB01623H] [PMID: 32262384]
[63]
Yang C, Chan KK, Lin W. Biodegradable Nanocarriers for Small Interfering Ribonucleic Acid (siRNA) Co-Delivery Strategy Increase the Chemosensitivity of Pancreatic Cancer Cells to Gemcitabine. Nano Res 2017; 10: 3049-67.
[http://dx.doi.org/10.1007/s12274-017-1521-7]
[64]
Setua S, Khan S, Yallapu MM, et al. Restitution of Tumor Suppressor MicroRNA-145 Using Magnetic Nanoformulation for Pancreatic Cancer Therapy. J Gastrointest Surg 2017; 21(1): 94-105.
[http://dx.doi.org/10.1007/s11605-016-3222-z] [PMID: 27507554]
[65]
Li Y, Chen Y, Li J, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci 2017; 108(7): 1493-503.
[http://dx.doi.org/10.1111/cas.13267] [PMID: 28444967]
[66]
Ortiz R, Cabeza L, Leiva MC, Jimenez-Lopez J, Melguizo C, Prados JC. Nanomedical Platform for Drug Delivery in Cancer. Curr Org Chem 2017; 21: 2376-99.
[http://dx.doi.org/10.2174/2213337203666161018121920]
[67]
Mai WX, Meng H. Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Integr Biol 2013; 5(1): 19-28.
[http://dx.doi.org/10.1039/c2ib20137b] [PMID: 23042147]
[68]
Meng H, Wang M, Liu H, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 2015; 9(4): 3540-57.
[http://dx.doi.org/10.1021/acsnano.5b00510] [PMID: 25776964]
[69]
Frese KK, Neesse A, Cook N, et al. nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2012; 2(3): 260-9.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0242] [PMID: 22585996]
[70]
Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull 2015; 5(2): 151-9.
[http://dx.doi.org/10.15171/apb.2015.022] [PMID: 26236652]
[71]
Chen MC, Mi FL, Liao ZX, et al. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 2013; 65(6): 865-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.010] [PMID: 23159541]
[72]
Thakkar A, Chenreddy S, Wang J, Prabhu S. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles. Cell Biosci 2015; 5: 46.
[http://dx.doi.org/10.1186/s13578-015-0041-y] [PMID: 26301084]
[73]
Yang J, Lee E, Ku M, Huh Y-M, Cheong J-H. Functional nanoplatforms for enhancement of chemotherapeutic index. Anticancer Agents Med Chem 2013; 13(2): 212-21.
[http://dx.doi.org/10.2174/1871520611313020005] [PMID: 22934694]
[74]
Wu ST, Williams CD, Grover PA, Moore LJ, Mukherjee P. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13(2)e0193260
[http://dx.doi.org/10.1371/journal.pone.0193260] [PMID: 29462213]
[75]
Wu ST, Fowler AJ, Garmon CB, et al. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles. BMC Cancer 2018; 18(1): 457.
[http://dx.doi.org/10.1186/s12885-018-4393-7] [PMID: 29685122]
[76]
Miyata K, Nishiyama N, Kataoka K. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 2012; 41(7): 2562-74.
[http://dx.doi.org/10.1039/C1CS15258K] [PMID: 22105545]
[77]
Nishiyama N, Matsumura Y, Kataoka K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci 2016; 107(7): 867-74.
[http://dx.doi.org/10.1111/cas.12960] [PMID: 27116635]
[78]
Valetti S, Maione F, Mura S, et al. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. J Control Release 2014; 192: 29-39.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.039] [PMID: 24984010]
[79]
Zhu X, Lu N, Zhou Y, et al. Targeting pancreatic cancer cells with peptide-functionalized polymeric magnetic nanoparticles. Int J Mol Sci 2019; 20(12): 2988.
[http://dx.doi.org/10.3390/ijms20122988] [PMID: 31248076]
[80]
Aibani N, Nesbitt H, Marino N, et al. Electroneutral polymersomes for combined cancer chemotherapy. Acta Biomater 2018; 80: 327-40.
[http://dx.doi.org/10.1016/j.actbio.2018.09.005] [PMID: 30201433]
[81]
Karandish F, Mamnoon B, Feng L, et al. Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells. Biomacromolecules 2018; 19(10): 4122-32.
[http://dx.doi.org/10.1021/acs.biomac.8b01133] [PMID: 30169024]
[82]
Anajafi T, Yu J, Sedigh A, et al. Nuclear localizing peptide-conjugated, redox-sensitive polymersomes for delivering curcumin and doxorubicin to pancreatic cancer microtumors. Mol Pharm 2017; 14(6): 1916-28.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00014] [PMID: 28493710]
[83]
Kulkarni P, Haldar MK, You S, Choi Y, Mallik S. Hypoxia-responsive polymersomes for drug delivery to hypoxic pancreatic cancer cells. Biomacromolecules 2016; 17(8): 2507-13.
[http://dx.doi.org/10.1021/acs.biomac.6b00350] [PMID: 27303825]
[84]
Iatrou H, Dimas K, Gkikas M, Tsimblouli C, Sofianopoulou S. Polymersomes from polypeptide containing triblock Co- and terpolymers for drug delivery against pancreatic cancer: asymmetry of the external hydrophilic blocks. Macromol Biosci 2014; 14(9): 1222-38.
[http://dx.doi.org/10.1002/mabi.201400137] [PMID: 24838730]
[85]
Dubey SK, Salunkhe S, Agrawal M. Kali, M.; Singhvi, G.; Tiwari, S.; Saraf, S.; Alexander, A. Understanding the Pharmaceutical Aspects of Dendrimers for the Delivery of Anticancer Drugs. Curr Drug Targets 2019; 21: 528-40.
[PMID: 31670619]
[86]
Öztürk K, Esendağlı G, Gürbüz MU, Tülü M, Çalış S. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 2017; 517(1-2): 157-67.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.009] [PMID: 27965135]
[87]
Li Y, Wang H, Wang K, et al. Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. Small 2017; 13(2): 13.
[http://dx.doi.org/10.1002/smll.201602697] [PMID: 27762495]
[88]
Kesharwani P, Xie L, Banerjee S, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces 2015; 136: 413-23.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[89]
Yalçin S, Erkan M, Ünsoy G, Parsian M, Kleeff J, Gündüz U. Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines. Biomed Pharmacother 2014; 68(6): 737-43.
[http://dx.doi.org/10.1016/j.biopha.2014.07.003] [PMID: 25108345]
[90]
Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm J 2016; 24(2): 133-9.
[http://dx.doi.org/10.1016/j.jsps.2014.04.001] [PMID: 27013905]
[91]
Wei X, Senanayake TH, Bohling A, Vinogradov SV. Targeted nanogel conjugate for improved stability and cellular permeability of curcumin: synthesis, pharmacokinetics, and tumor growth inhibition. Mol Pharm 2014; 11(9): 3112-22.
[http://dx.doi.org/10.1021/mp500290f] [PMID: 25072100]
[92]
Soni KS, Thomas D, Caffrey T, et al. A polymeric nanogel-based treatment regimen for enhanced efficacy and sequential administration of synergistic drug combination in pancreatic cancer. J Pharmacol Exp Ther 2019; 370(3): 894-901.
[http://dx.doi.org/10.1124/jpet.118.255372] [PMID: 30683666]
[93]
Fernández-Bertólez N, Costa C, Brandão F, et al. Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 2018; 118: 13-23.
[http://dx.doi.org/10.1016/j.fct.2018.04.058] [PMID: 29709612]
[94]
Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond) 2015; 11(2): 313-27.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[95]
Meng H, Xue M, Xia T, et al. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc 2010; 132(36): 12690-7.
[http://dx.doi.org/10.1021/ja104501a] [PMID: 20718462]
[96]
Saini K, Prabhuraj RS, Bandyopadhyaya R. Development of mesoporous silica nanoparticles of tunable pore diameter for superior gemcitabine drug delivery in pancreatic cancer cells. J Nanosci Nanotechnol 2020; 20(5): 3084-96.
[http://dx.doi.org/10.1166/jnn.2020.17381] [PMID: 31635652]
[97]
Liu X, Situ A, Kang Y, et al. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano 2016; 10(2): 2702-15.
[http://dx.doi.org/10.1021/acsnano.5b07781] [PMID: 26835979]
[98]
Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine (Lond) 2012; 8(2): 212-20.
[http://dx.doi.org/10.1016/j.nano.2011.06.002] [PMID: 21703996]
[99]
Gurka MK, Pender D, Chuong P, et al. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J Control Release 2016; 231: 60-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.055] [PMID: 26763377]
[100]
Martincic M, Tobias G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv 2015; 12(4): 563-81.
[http://dx.doi.org/10.1517/17425247.2015.971751] [PMID: 25430876]
[101]
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon nanotubes in biomedicine. Top Curr Chem (Cham) 2020; 378(1): 15.
[http://dx.doi.org/10.1007/s41061-019-0278-8] [PMID: 31938922]
[102]
Soares JC, Iwaki LEO, Soares AC, et al. Immunosensor for pancreatic cancer based on electrospun nanofibers coated with carbon nanotubes or gold nanoparticles. ACS Omega 2017; 2(10): 6975-83.
[http://dx.doi.org/10.1021/acsomega.7b01029] [PMID: 30023536]
[103]
Lu GH, Shang WT, Deng H, et al. Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging. Biomaterials 2019; 195: 13-22.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.025] [PMID: 30599289]
[104]
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 2013; 42(2): 530-47.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[105]
Yin F, Hu K, Chen Y, et al. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics 2017; 7(5): 1133-48.
[http://dx.doi.org/10.7150/thno.17841] [PMID: 28435453]
[106]
Wu J, Li Z, Li Y, Pettitt A, Zhou F. Photothermal effects of reduced graphene oxide on pancreatic cancer. Technol Cancer Res Treat 2018; 171533034618768637
[http://dx.doi.org/10.1177/1533034618768637] [PMID: 29665743]
[107]
Shao J, Griffin RJ, Galanzha EI, et al. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci Rep 2013; 3: 1293.
[http://dx.doi.org/10.1038/srep01293] [PMID: 23443065]
[108]
Cheheltani R, Ezzibdeh RM, Chhour P, et al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 2016; 102: 87-97.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.015] [PMID: 27322961]
[109]
Tong L, Wei Q, Wei A, Cheng JX. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 2009; 85(1): 21-32.
[http://dx.doi.org/10.1111/j.1751-1097.2008.00507.x] [PMID: 19161395]
[110]
Yin F, Yang C, Wang Q, et al. A light-driven therapy of pancreatic adenocarcinoma using gold nanorods-based nanocarriers for co-delivery of doxorubicin and siRNA. Theranostics 2015; 5(8): 818-33.
[http://dx.doi.org/10.7150/thno.11335] [PMID: 26000055]
[111]
Zeiderman MR, Morgan DE, Christein JD, Grizzle WE, McMasters KM, McNally LR. Acidic pH-targeted chitosan capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater Sci Eng 2016; 2(7): 1108-20.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00111] [PMID: 28626793]
[112]
Wang S, Shan Z, Huang H. The mechanical properties of nanowires. Adv Sci (Weinh) 2017; 4(4)1600332
[http://dx.doi.org/10.1002/advs.201600332] [PMID: 28435775]
[113]
Shen Q, Yang H, Peng C, et al. Capture and biological release of circulating tumor cells in pancreatic cancer based on peptide-functionalized silicon nanowire substrate. Int J Nanomedicine 2018; 14: 205-14.
[http://dx.doi.org/10.2147/IJN.S187892] [PMID: 30636873]
[114]
Hopkins X, Gill WA, Kringel R, et al. Radio frequency-mediated local thermotherapy for destruction of pancreatic tumors using Ni-Au core-shell nanowires. Nanotechnology 2017; 28(3)03LT01
[http://dx.doi.org/10.1088/1361-6528/28/3/03LT01] [PMID: 27966462]
[115]
Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC. Quantum dots in bio-imaging: Revolution by the small. Biochem Biophys Res Commun 2005; 329(4): 1173-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.043] [PMID: 15766550]
[116]
Nigam Joshi P, Agawane S, Athalye MC, Jadhav V, Sarkar D, Prakash R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater Sci Eng C 2017; 78: 1203-11.
[http://dx.doi.org/10.1016/j.msec.2017.03.176] [PMID: 28575959]
[117]
Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B Mater Biol Med 2014; 2(21): 3190-5.
[http://dx.doi.org/10.1039/C4TB00015C] [PMID: 32261580]
[118]
Tudisco C, Cambria MT, Giuffrida AE, et al. Comparison between folic acid and gH625 peptide-based functionalization of Fe3O4 magnetic nanoparticles for enhanced cell internalization. Nanoscale Res Lett 2018; 13(1): 45.
[http://dx.doi.org/10.1186/s11671-018-2459-8] [PMID: 29417388]
[119]
Manna PK, Nickel R, Wroczynskyj Y, et al. Simple, hackable, size-selective, amine-functionalized fe-oxide nanoparticles for biomedical applications. Langmuir 2018; 34(8): 2748-57.
[http://dx.doi.org/10.1021/acs.langmuir.7b02822] [PMID: 29376382]
[120]
Ko J, Bhagwat N, Black T, et al. MiRNA profiling of magnetic nanopore-isolated extracellular vesicles for the diagnosis of pancreatic cancer. Cancer Res 2018; 78(13): 3688-97.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3703] [PMID: 29735554]
[121]
Chang D, Lim M, Goos JACM, et al. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front Pharmacol 2018; 9: 831.
[http://dx.doi.org/10.3389/fphar.2018.00831] [PMID: 30116191]
[122]
Hussein EA, Zagho MM, Nasrallah GK, Elzatahry AA. Recent advances in functional nanostructures as cancer photothermal therapy. Int J Nanomedicine 2018; 13: 2897-906.
[http://dx.doi.org/10.2147/IJN.S161031] [PMID: 29844672]
[123]
Engelmann UM, Roeth AA, Eberbeck D, et al. Combining bulk temperature and nanoheating enables advanced magnetic fluid hyperthermia efficacy on pancreatic tumor cells. Sci Rep 2018; 8(1): 13210.
[http://dx.doi.org/10.1038/s41598-018-31553-9] [PMID: 30181576]
[124]
Yamakawa K, Nakano-Narusawa Y, Hashimoto N, Yokohira M, Matsuda Y. Development and clinical trials of nucleic acid medicines for pancreatic cancer treatment. Int J Mol Sci 2019; 20(17): 20.
[http://dx.doi.org/10.3390/ijms20174224] [PMID: 31470511]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy