Mini-Review Article

Nanomedicine in Pancreatic Cancer: A New Hope for Treatment

Author(s): Pablo Redruello, Gloria Perazzoli, Ana Cepero, Francisco Quiñonero, Cristina Mesas, Kevin Doello, Antonio Láinez-Ramos-Bossini, Mario Rivera-Izquierdo, Consolación Melguizo* and Jose Prados

Volume 21, Issue 15, 2020

Page: [1580 - 1592] Pages: 13

DOI: 10.2174/1389450121666200703195229

Price: $65

Abstract

Pancreatic ductal adenocarcinoma (PDA) has one of the worst prognosis and higher mortality among most cancers. The diagnosis of PDA is frequently delayed due to a lack of specific biomarkers, and the efficacy of current chemotherapeutic drugs is limited. Moreover, chemotherapy is generally applied in advanced stages, where metastatic spread has already occurred. Nanotechnologybased systems are allowing to advance in the diagnosis and treatment of PDA. New nanoformulations have shown to improve the activity of conventional chemotherapeutic agents, such as gemcitabine, and new antitumor drugs, protecting them from degradation, improving their selectivity, solubility and bioavailability, and reducing their side effects. Moreover, the design of nanocarriers represents a new way to overcome drug resistance, which requires a comprehensive understanding of the tumor microenvironment of PDA. This article reviews the current perspectives, based on nanomedicine, to address the limitations of pancreatic cancer treatment, and the futures lines of research to progress in the control of this disease.

Keywords: Pancreatic ductal adenocarcinoma, chemotherapeutic drugs, nanoparticles, drug resistance, clinical trials, gemcitabine.

Graphical Abstract

[1]
Zhang C, Yan Y, Zou Q, Chen J, Li C. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia Pac J Clin Oncol 2016; 12(1): 13-21.
[http://dx.doi.org/10.1111/ajco.12437] [PMID: 26663873]
[2]
Global Cancer Observatory (GLOBOCAN), International Agency for Research on Cancer, World Health Organization. https://gco.iarc.fr/
[3]
The Cancer Survival in High-Income Countries (SURVMARK-2) project, International Cancer Benchmarking Partnership (ICBP). http://gco.iarc.fr/survival/survmark/visualizations/
[4]
Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol 2016; 22(44): 9694-705.
[http://dx.doi.org/10.3748/wjg.v22.i44.9694] [PMID: 27956793]
[5]
Kimple RJ, Russo S, Monjazeb A, Blackstock AW. The role of chemoradiation for patients with resectable or potentially resectable pancreatic cancer. Expert Rev Anticancer Ther 2012; 12(4): 469-80.
[http://dx.doi.org/10.1586/era.12.18] [PMID: 22500684]
[6]
Hirshberg Foundation for pancreatic cancer research, http://pancreatic.org/pancreatic-cancer/pancreatic-cancer-facts/
[7]
Kurtanich T, Roos N, Wang G, Yang J, Wang A, Chung EJ. Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. SLAS Technol 2019; 24(2): 151-60.
[http://dx.doi.org/10.1177/2472630318811108] [PMID: 30395768]
[8]
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60(5): 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[9]
PDQ Adult Treatment Editorial Board. Pancreatic Cancer Treatment (PDQ®): Health Professional Version. PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda, MD, In: 2002. Internet
[10]
Sociedad Española de Oncología Médica. Cáncer de páncreas https://seom.org/info-sobre-el-cancer/pancreas?showall=1
[11]
Conroy T, Hammel P, Hebbar M, et al. Canadian Cancer Trials Group and the Unicancer-GI–PRODIGE Group FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 2018; 379(25): 2395-406.
[http://dx.doi.org/10.1056/NEJMoa1809775] [PMID: 30575490]
[12]
Zhao X, Li F, Li Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 2015; 46: 13-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.028] [PMID: 25678112]
[13]
Thota R, Pauff JM, Berlin JD. Treatment of metastatic pancreatic adenocarcinoma: a review. Oncology (Williston Park) 2014; 28(1): 70-4.
[PMID: 24683721]
[14]
Khan MA, Azim S, Zubair H, et al. Molecular drivers of pancreatic cancer pathogenesis: Looking inward to move forward. Int J Mol Sci 2017; 18(4)E779
[http://dx.doi.org/10.3390/ijms18040779] [PMID: 28383487]
[15]
Arlt A, Müerköster SS, Schäfer H. Targeting apoptosis pathways in pancreatic cancer. Cancer Lett 2013; 332(2): 346-58.
[http://dx.doi.org/10.1016/j.canlet.2010.10.015] [PMID: 21078544]
[16]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[17]
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6): 1420-8.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[18]
Sun Q, Wang X, Cui C, Li J, Wang Y. Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo. Int J Nanomedicine 2018; 13: 3713-28.
[http://dx.doi.org/10.2147/IJN.S162939] [PMID: 29983564]
[19]
Lam JK, Chow MY, Zhang Y, Leung SW. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids, 2015; 4e252
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[20]
Arora S, Swaminathan SK, Kirtane A, et al. Synthesis, characterization, and evaluation of poly (D,L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy. Int J Nanomedicine 2014; 9: 2933-42.
[PMID: 24971005]
[21]
GeneCards®. The Human Gene Database. MUC4, http://www.genecards.org/cgi-bin/carddisp.pl?gene=MUC4
[22]
Shibata W, Kinoshita H, Hikiba Y, et al. Overexpression of HER2 in the pancreas promotes development of intraductal papillary mucinous neoplasms in mice. Sci Rep 2018; 8(1): 6150.
[http://dx.doi.org/10.1038/s41598-018-24375-2] [PMID: 29670173]
[23]
Khan S, Ebeling MC, Zaman MS, et al. MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget 2014; 5(17): 7599-609.
[http://dx.doi.org/10.18632/oncotarget.2281] [PMID: 25277192]
[24]
Hu QL, Jiang QY, Jin X, et al. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 2013; 34(9): 2265-76.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.016] [PMID: 23298779]
[25]
Weissmueller S, Manchado E, Saborowski M, et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 2014; 157(2): 382-94.
[http://dx.doi.org/10.1016/j.cell.2014.01.066] [PMID: 24725405]
[26]
Hesler RA, Huang JJ, Starr MD, et al. TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis 2016; 37(11): 1041-51.
[http://dx.doi.org/10.1093/carcin/bgw093] [PMID: 27604902]
[27]
Zhang YK, Wang YJ, Gupta P, Chen ZS. Multidrug Resistance Proteins (MRPs) and Cancer Therapy. AAPS J 2015; 17(4): 802-12.
[http://dx.doi.org/10.1208/s12248-015-9757-1] [PMID: 25840885]
[28]
Adamska A, Elaskalani O, Emmanouilidi A, et al. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul 2018; 68: 77-87.
[http://dx.doi.org/10.1016/j.jbior.2017.11.007] [PMID: 29221990]
[29]
Shukla SK, Purohit V, Mehla K, et al. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 2017; 32(1): 71-87.
[http://dx.doi.org/10.1016/j.ccell.2017.06.004] [PMID: 28697344]
[30]
Calabretta S, Bielli P, Passacantilli I, et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene 2016; 35(16): 2031-9.
[http://dx.doi.org/10.1038/onc.2015.270] [PMID: 26234680]
[31]
Aye Y, Li M, Long MJC, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 2015; 34(16): 2011-21.
[http://dx.doi.org/10.1038/onc.2014.155] [PMID: 24909171]
[32]
Zheng X, Carstens JL, Kim J. EMT Program is Dispensable for Metastasis but Induces Chemoresistance in Pancreatic Cancer. Nature 2016; 527: 525-30.
[http://dx.doi.org/10.1038/nature16064] [PMID: 26560028]
[33]
Meidhof S, Brabletz S, Lehmann W, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med 2015; 7(6): 831-47.
[http://dx.doi.org/10.15252/emmm.201404396] [PMID: 25872941]
[34]
Ma J, Fang B, Zeng F, et al. Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 2015; 6(3): 1740-9.
[http://dx.doi.org/10.18632/oncotarget.2714] [PMID: 25638153]
[35]
Wei X, Wang W, Wang L, et al. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med 2016; 5(4): 693-702.
[http://dx.doi.org/10.1002/cam4.626] [PMID: 26864640]
[36]
Binenbaum Y, Na’ara S, Gil Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 2015; 23: 55-68.
[http://dx.doi.org/10.1016/j.drup.2015.10.002] [PMID: 26690340]
[37]
Li J, Wu H, Li W, et al. Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene 2016; 35(42): 5501-14.
[http://dx.doi.org/10.1038/onc.2016.90] [PMID: 27065335]
[38]
Chen M, Wang M, Xu S, Guo X, Jiang J. Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget 2015; 6(42): 44466-79.
[http://dx.doi.org/10.18632/oncotarget.6298] [PMID: 26561204]
[39]
Cioffi M, Trabulo SM, Sanchez-Ripoll Y, et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut 2015; 64(12): 1936-48.
[http://dx.doi.org/10.1136/gutjnl-2014-308470] [PMID: 25887381]
[40]
Li Z, Zhao X, Zhou Y, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J Transl Med 2015; 13: 84.
[http://dx.doi.org/10.1186/s12967-015-0442-z] [PMID: 25889214]
[41]
El-Zahaby SA, Elnaggar YSR, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019; 293: 21-35.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.013] [PMID: 30445002]
[42]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[43]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine (Lond) 2010; 6(1): 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[44]
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53(46): 12320-64.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[45]
Chinnaiyan SK, Soloman AM, Perumal RK, Gopinath A, Balaraman M. 5 Fluorouracil-loaded biosynthesised gold nanoparticles for the in vitro treatment of human pancreatic cancer cell. IET Nanobiotechnol 2019; 13(8): 824-8.
[http://dx.doi.org/10.1049/iet-nbt.2019.0007] [PMID: 31625522]
[46]
Trabulo S, Aires A, Aicher A, Heeschen C, Cortajarena AL. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. Biochim Biophys Acta, Gen Subj 2017; 1861(6): 1597-605.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.035] [PMID: 28161480]
[47]
Zhu S, Wonganan P, Lansakara-P DS, O’Mary HL, Li Y, Cui Z. The effect of the acid-sensitivity of 4-(N)-stearoyl gemcitabine-loaded micelles on drug resistance caused by RRM1 overexpression. Biomaterials 2013; 34(9): 2327-39.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.053] [PMID: 23261218]
[48]
Oluwasanmi A, Al-Shakarchi W, Manzur A, et al. Diels Alder-mediated release of gemcitabine from hybrid nanoparticles for enhanced pancreatic cancer therapy. J Control Release 2017; 266: 355-64.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.027] [PMID: 28943195]
[49]
Fan L, Yang Q, Tan J, et al. Dual loading miR-218 mimics and Temozolomide using AuCOOH@FA-CS drug delivery system: promising targeted anti-tumor drug delivery system with sequential release functions. J Exp Clin Cancer Res 2015; 34: 106.
[http://dx.doi.org/10.1186/s13046-015-0216-8] [PMID: 26407971]
[50]
Ahmadi Nasab N, Hassani Kumleh H, Beygzadeh M, Teimourian S, Kazemzad M. Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artif Cells Nanomed Biotechnol 2018; 46(1): 75-81.
[http://dx.doi.org/10.1080/21691401.2017.1290648] [PMID: 28278578]
[51]
Goel S, Chen F, Hong H, et al. VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces 2014; 6(23): 21677-85.
[http://dx.doi.org/10.1021/am506849p] [PMID: 25353068]
[52]
Kafa H, Wang JT, Rubio N, et al. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 2015; 53: 437-52.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.083] [PMID: 25890741]
[53]
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[54]
Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev 2017; 113: 24-48.
[http://dx.doi.org/10.1016/j.addr.2016.07.012] [PMID: 27497513]
[55]
Kumar VKA, Abbas N, Aster JC. Lesión y muerte celulares, y adaptaciones. Robbins y Cotran – Patología Humana, 9th ed. Ed. Barcelona: Elsevier España SL; 2013.
[56]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[57]
Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis 2015; 2(1): 26-34.
[http://dx.doi.org/10.1016/j.gendis.2014.12.002] [PMID: 26097889]
[58]
Hosoya H, Kadowaki K, Matsusaki M, et al. Engineering fibrotic tissue in pancreatic cancer: a novel three-dimensional model to investigate nanoparticle delivery. Biochem Biophys Res Commun 2012; 419(1): 32-7.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.117] [PMID: 22321398]
[59]
Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 2013; 144(6): 1210-9.
[http://dx.doi.org/10.1053/j.gastro.2012.11.037] [PMID: 23622130]
[60]
Tanaka HY, Kano MR. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci 2018; 109(7): 2085-92.
[http://dx.doi.org/10.1111/cas.13630] [PMID: 29737600]
[61]
Matsumura Y. Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 2012; 64(8): 710-9.
[http://dx.doi.org/10.1016/j.addr.2011.12.010] [PMID: 22212902]
[62]
Yang C, Hu R, Anderson T, et al. Biodegradable nanoparticle-mediated K-ras down regulation for pancreatic cancer gene therapy. J Mater Chem B Mater Biol Med 2015; 3(10): 2163-72.
[http://dx.doi.org/10.1039/C4TB01623H] [PMID: 32262384]
[63]
Yang C, Chan KK, Lin W. Biodegradable Nanocarriers for Small Interfering Ribonucleic Acid (siRNA) Co-Delivery Strategy Increase the Chemosensitivity of Pancreatic Cancer Cells to Gemcitabine. Nano Res 2017; 10: 3049-67.
[http://dx.doi.org/10.1007/s12274-017-1521-7]
[64]
Setua S, Khan S, Yallapu MM, et al. Restitution of Tumor Suppressor MicroRNA-145 Using Magnetic Nanoformulation for Pancreatic Cancer Therapy. J Gastrointest Surg 2017; 21(1): 94-105.
[http://dx.doi.org/10.1007/s11605-016-3222-z] [PMID: 27507554]
[65]
Li Y, Chen Y, Li J, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci 2017; 108(7): 1493-503.
[http://dx.doi.org/10.1111/cas.13267] [PMID: 28444967]
[66]
Ortiz R, Cabeza L, Leiva MC, Jimenez-Lopez J, Melguizo C, Prados JC. Nanomedical Platform for Drug Delivery in Cancer. Curr Org Chem 2017; 21: 2376-99.
[http://dx.doi.org/10.2174/2213337203666161018121920]
[67]
Mai WX, Meng H. Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Integr Biol 2013; 5(1): 19-28.
[http://dx.doi.org/10.1039/c2ib20137b] [PMID: 23042147]
[68]
Meng H, Wang M, Liu H, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 2015; 9(4): 3540-57.
[http://dx.doi.org/10.1021/acsnano.5b00510] [PMID: 25776964]
[69]
Frese KK, Neesse A, Cook N, et al. nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2012; 2(3): 260-9.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0242] [PMID: 22585996]
[70]
Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull 2015; 5(2): 151-9.
[http://dx.doi.org/10.15171/apb.2015.022] [PMID: 26236652]
[71]
Chen MC, Mi FL, Liao ZX, et al. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 2013; 65(6): 865-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.010] [PMID: 23159541]
[72]
Thakkar A, Chenreddy S, Wang J, Prabhu S. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles. Cell Biosci 2015; 5: 46.
[http://dx.doi.org/10.1186/s13578-015-0041-y] [PMID: 26301084]
[73]
Yang J, Lee E, Ku M, Huh Y-M, Cheong J-H. Functional nanoplatforms for enhancement of chemotherapeutic index. Anticancer Agents Med Chem 2013; 13(2): 212-21.
[http://dx.doi.org/10.2174/1871520611313020005] [PMID: 22934694]
[74]
Wu ST, Williams CD, Grover PA, Moore LJ, Mukherjee P. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13(2)e0193260
[http://dx.doi.org/10.1371/journal.pone.0193260] [PMID: 29462213]
[75]
Wu ST, Fowler AJ, Garmon CB, et al. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles. BMC Cancer 2018; 18(1): 457.
[http://dx.doi.org/10.1186/s12885-018-4393-7] [PMID: 29685122]
[76]
Miyata K, Nishiyama N, Kataoka K. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 2012; 41(7): 2562-74.
[http://dx.doi.org/10.1039/C1CS15258K] [PMID: 22105545]
[77]
Nishiyama N, Matsumura Y, Kataoka K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci 2016; 107(7): 867-74.
[http://dx.doi.org/10.1111/cas.12960] [PMID: 27116635]
[78]
Valetti S, Maione F, Mura S, et al. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. J Control Release 2014; 192: 29-39.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.039] [PMID: 24984010]
[79]
Zhu X, Lu N, Zhou Y, et al. Targeting pancreatic cancer cells with peptide-functionalized polymeric magnetic nanoparticles. Int J Mol Sci 2019; 20(12): 2988.
[http://dx.doi.org/10.3390/ijms20122988] [PMID: 31248076]
[80]
Aibani N, Nesbitt H, Marino N, et al. Electroneutral polymersomes for combined cancer chemotherapy. Acta Biomater 2018; 80: 327-40.
[http://dx.doi.org/10.1016/j.actbio.2018.09.005] [PMID: 30201433]
[81]
Karandish F, Mamnoon B, Feng L, et al. Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells. Biomacromolecules 2018; 19(10): 4122-32.
[http://dx.doi.org/10.1021/acs.biomac.8b01133] [PMID: 30169024]
[82]
Anajafi T, Yu J, Sedigh A, et al. Nuclear localizing peptide-conjugated, redox-sensitive polymersomes for delivering curcumin and doxorubicin to pancreatic cancer microtumors. Mol Pharm 2017; 14(6): 1916-28.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00014] [PMID: 28493710]
[83]
Kulkarni P, Haldar MK, You S, Choi Y, Mallik S. Hypoxia-responsive polymersomes for drug delivery to hypoxic pancreatic cancer cells. Biomacromolecules 2016; 17(8): 2507-13.
[http://dx.doi.org/10.1021/acs.biomac.6b00350] [PMID: 27303825]
[84]
Iatrou H, Dimas K, Gkikas M, Tsimblouli C, Sofianopoulou S. Polymersomes from polypeptide containing triblock Co- and terpolymers for drug delivery against pancreatic cancer: asymmetry of the external hydrophilic blocks. Macromol Biosci 2014; 14(9): 1222-38.
[http://dx.doi.org/10.1002/mabi.201400137] [PMID: 24838730]
[85]
Dubey SK, Salunkhe S, Agrawal M. Kali, M.; Singhvi, G.; Tiwari, S.; Saraf, S.; Alexander, A. Understanding the Pharmaceutical Aspects of Dendrimers for the Delivery of Anticancer Drugs. Curr Drug Targets 2019; 21: 528-40.
[PMID: 31670619]
[86]
Öztürk K, Esendağlı G, Gürbüz MU, Tülü M, Çalış S. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 2017; 517(1-2): 157-67.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.009] [PMID: 27965135]
[87]
Li Y, Wang H, Wang K, et al. Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. Small 2017; 13(2): 13.
[http://dx.doi.org/10.1002/smll.201602697] [PMID: 27762495]
[88]
Kesharwani P, Xie L, Banerjee S, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces 2015; 136: 413-23.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[89]
Yalçin S, Erkan M, Ünsoy G, Parsian M, Kleeff J, Gündüz U. Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines. Biomed Pharmacother 2014; 68(6): 737-43.
[http://dx.doi.org/10.1016/j.biopha.2014.07.003] [PMID: 25108345]
[90]
Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm J 2016; 24(2): 133-9.
[http://dx.doi.org/10.1016/j.jsps.2014.04.001] [PMID: 27013905]
[91]
Wei X, Senanayake TH, Bohling A, Vinogradov SV. Targeted nanogel conjugate for improved stability and cellular permeability of curcumin: synthesis, pharmacokinetics, and tumor growth inhibition. Mol Pharm 2014; 11(9): 3112-22.
[http://dx.doi.org/10.1021/mp500290f] [PMID: 25072100]
[92]
Soni KS, Thomas D, Caffrey T, et al. A polymeric nanogel-based treatment regimen for enhanced efficacy and sequential administration of synergistic drug combination in pancreatic cancer. J Pharmacol Exp Ther 2019; 370(3): 894-901.
[http://dx.doi.org/10.1124/jpet.118.255372] [PMID: 30683666]
[93]
Fernández-Bertólez N, Costa C, Brandão F, et al. Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 2018; 118: 13-23.
[http://dx.doi.org/10.1016/j.fct.2018.04.058] [PMID: 29709612]
[94]
Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond) 2015; 11(2): 313-27.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[95]
Meng H, Xue M, Xia T, et al. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc 2010; 132(36): 12690-7.
[http://dx.doi.org/10.1021/ja104501a] [PMID: 20718462]
[96]
Saini K, Prabhuraj RS, Bandyopadhyaya R. Development of mesoporous silica nanoparticles of tunable pore diameter for superior gemcitabine drug delivery in pancreatic cancer cells. J Nanosci Nanotechnol 2020; 20(5): 3084-96.
[http://dx.doi.org/10.1166/jnn.2020.17381] [PMID: 31635652]
[97]
Liu X, Situ A, Kang Y, et al. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano 2016; 10(2): 2702-15.
[http://dx.doi.org/10.1021/acsnano.5b07781] [PMID: 26835979]
[98]
Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine (Lond) 2012; 8(2): 212-20.
[http://dx.doi.org/10.1016/j.nano.2011.06.002] [PMID: 21703996]
[99]
Gurka MK, Pender D, Chuong P, et al. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J Control Release 2016; 231: 60-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.055] [PMID: 26763377]
[100]
Martincic M, Tobias G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv 2015; 12(4): 563-81.
[http://dx.doi.org/10.1517/17425247.2015.971751] [PMID: 25430876]
[101]
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon nanotubes in biomedicine. Top Curr Chem (Cham) 2020; 378(1): 15.
[http://dx.doi.org/10.1007/s41061-019-0278-8] [PMID: 31938922]
[102]
Soares JC, Iwaki LEO, Soares AC, et al. Immunosensor for pancreatic cancer based on electrospun nanofibers coated with carbon nanotubes or gold nanoparticles. ACS Omega 2017; 2(10): 6975-83.
[http://dx.doi.org/10.1021/acsomega.7b01029] [PMID: 30023536]
[103]
Lu GH, Shang WT, Deng H, et al. Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging. Biomaterials 2019; 195: 13-22.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.025] [PMID: 30599289]
[104]
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 2013; 42(2): 530-47.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[105]
Yin F, Hu K, Chen Y, et al. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics 2017; 7(5): 1133-48.
[http://dx.doi.org/10.7150/thno.17841] [PMID: 28435453]
[106]
Wu J, Li Z, Li Y, Pettitt A, Zhou F. Photothermal effects of reduced graphene oxide on pancreatic cancer. Technol Cancer Res Treat 2018; 171533034618768637
[http://dx.doi.org/10.1177/1533034618768637] [PMID: 29665743]
[107]
Shao J, Griffin RJ, Galanzha EI, et al. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci Rep 2013; 3: 1293.
[http://dx.doi.org/10.1038/srep01293] [PMID: 23443065]
[108]
Cheheltani R, Ezzibdeh RM, Chhour P, et al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 2016; 102: 87-97.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.015] [PMID: 27322961]
[109]
Tong L, Wei Q, Wei A, Cheng JX. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 2009; 85(1): 21-32.
[http://dx.doi.org/10.1111/j.1751-1097.2008.00507.x] [PMID: 19161395]
[110]
Yin F, Yang C, Wang Q, et al. A light-driven therapy of pancreatic adenocarcinoma using gold nanorods-based nanocarriers for co-delivery of doxorubicin and siRNA. Theranostics 2015; 5(8): 818-33.
[http://dx.doi.org/10.7150/thno.11335] [PMID: 26000055]
[111]
Zeiderman MR, Morgan DE, Christein JD, Grizzle WE, McMasters KM, McNally LR. Acidic pH-targeted chitosan capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater Sci Eng 2016; 2(7): 1108-20.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00111] [PMID: 28626793]
[112]
Wang S, Shan Z, Huang H. The mechanical properties of nanowires. Adv Sci (Weinh) 2017; 4(4)1600332
[http://dx.doi.org/10.1002/advs.201600332] [PMID: 28435775]
[113]
Shen Q, Yang H, Peng C, et al. Capture and biological release of circulating tumor cells in pancreatic cancer based on peptide-functionalized silicon nanowire substrate. Int J Nanomedicine 2018; 14: 205-14.
[http://dx.doi.org/10.2147/IJN.S187892] [PMID: 30636873]
[114]
Hopkins X, Gill WA, Kringel R, et al. Radio frequency-mediated local thermotherapy for destruction of pancreatic tumors using Ni-Au core-shell nanowires. Nanotechnology 2017; 28(3)03LT01
[http://dx.doi.org/10.1088/1361-6528/28/3/03LT01] [PMID: 27966462]
[115]
Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC. Quantum dots in bio-imaging: Revolution by the small. Biochem Biophys Res Commun 2005; 329(4): 1173-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.043] [PMID: 15766550]
[116]
Nigam Joshi P, Agawane S, Athalye MC, Jadhav V, Sarkar D, Prakash R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater Sci Eng C 2017; 78: 1203-11.
[http://dx.doi.org/10.1016/j.msec.2017.03.176] [PMID: 28575959]
[117]
Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B Mater Biol Med 2014; 2(21): 3190-5.
[http://dx.doi.org/10.1039/C4TB00015C] [PMID: 32261580]
[118]
Tudisco C, Cambria MT, Giuffrida AE, et al. Comparison between folic acid and gH625 peptide-based functionalization of Fe3O4 magnetic nanoparticles for enhanced cell internalization. Nanoscale Res Lett 2018; 13(1): 45.
[http://dx.doi.org/10.1186/s11671-018-2459-8] [PMID: 29417388]
[119]
Manna PK, Nickel R, Wroczynskyj Y, et al. Simple, hackable, size-selective, amine-functionalized fe-oxide nanoparticles for biomedical applications. Langmuir 2018; 34(8): 2748-57.
[http://dx.doi.org/10.1021/acs.langmuir.7b02822] [PMID: 29376382]
[120]
Ko J, Bhagwat N, Black T, et al. MiRNA profiling of magnetic nanopore-isolated extracellular vesicles for the diagnosis of pancreatic cancer. Cancer Res 2018; 78(13): 3688-97.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3703] [PMID: 29735554]
[121]
Chang D, Lim M, Goos JACM, et al. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front Pharmacol 2018; 9: 831.
[http://dx.doi.org/10.3389/fphar.2018.00831] [PMID: 30116191]
[122]
Hussein EA, Zagho MM, Nasrallah GK, Elzatahry AA. Recent advances in functional nanostructures as cancer photothermal therapy. Int J Nanomedicine 2018; 13: 2897-906.
[http://dx.doi.org/10.2147/IJN.S161031] [PMID: 29844672]
[123]
Engelmann UM, Roeth AA, Eberbeck D, et al. Combining bulk temperature and nanoheating enables advanced magnetic fluid hyperthermia efficacy on pancreatic tumor cells. Sci Rep 2018; 8(1): 13210.
[http://dx.doi.org/10.1038/s41598-018-31553-9] [PMID: 30181576]
[124]
Yamakawa K, Nakano-Narusawa Y, Hashimoto N, Yokohira M, Matsuda Y. Development and clinical trials of nucleic acid medicines for pancreatic cancer treatment. Int J Mol Sci 2019; 20(17): 20.
[http://dx.doi.org/10.3390/ijms20174224] [PMID: 31470511]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy