Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Mini-Review Article

Annonaceae Family Alkaloids as Agents Against Leishmaniasis: A Review and Molecular Docking Evaluation

Author(s): Vitor Prates Lorenzo, Luciana Scotti, Jackson Roberto Guedes da Silva Almeida and Marcus Tullius Scotti*

Volume 21, Issue 7, 2020

Page: [482 - 492] Pages: 11

DOI: 10.2174/1389200221666200702124046

Price: $65

Abstract

Leishmaniasis is a neglected disease that affects 15 million people worldwide. Existing treatments are associated with limitations, including high costs and toxicity. Several classes of natural substances have been reported to display leishmanicidal activity in the literature. Isoquinoline alkaloids, which are commonly found in the Annonaceae family, represent an important skeleton for the development of anti-leishmaniasis products. This study presents an overview of the potential use of Annonaceae alkaloids to treat leishmaniasis and describes a molecular docking study examining 215 isoquinoline alkaloids. All selected compounds contain a bisbenzyltetrahydroisoquinoline, suggesting the affinity of this skeleton for the target.

Keywords: Annonaceae, alkaloids, isoquinoline, leishmaniasis, Leishmania donovani, neglected diseases, docking, N-myristoyltransferase.

Graphical Abstract

[1]
Loría-Cervera, E.N.; Andrade-Narváez, F.J. Animal models for the study of leishmaniasis immunology. Rev. Inst. Med. Trop. São Paulo, 2014, 56(1), 1-11.
[http://dx.doi.org/10.1590/S0036-46652014000100001 ] [PMID: 24553602]
[2]
Callejon, D.R.; Riul, T.B.; Feitosa, L.G.; Guaratini, T.; Silva, D.B.; Adhikari, A.; Shrestha, R.L.; Marques, L.M.; Baruffi, M.D.; Lopes, J.L.; Lopes, N.P. Leishmanicidal evaluation of tetrahydroprotoberberine and spirocyclic erythrina-alkaloids. Molecules, 2014, 19(5), 5692-5703.
[http://dx.doi.org/10.3390/molecules19055692 ] [PMID: 24802983]
[3]
Singh, A.K.; Pandey, R.K.; Shaha, C.; Madhubala, R. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy. Autophagy, 2016, 12(10), 1817-1831.
[http://dx.doi.org/10.1080/15548627.2016.1203500 ] [PMID: 27459332]
[4]
Bernal, F.A.; Coy-Barrera, E. In silico analyses of sesquiterpene-related compounds on selected Leishmania enzyme-based targets. Molecules, 2014, 19(5), 5550-5569.
[http://dx.doi.org/10.3390/molecules19055550 ] [PMID: 24786692]
[5]
David, W.T. Crompton; Patricia, P. World Health Organization. First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases; WHO Press: Geneva, Switzerland, 2010.
[6]
TIWARI, N.; KUMAR, A.; SINGH, A. Leishmaniasis control: limitations of current drugs end prospects of natural products.In: Brahmachari, G., Discovery and Development of Therapeutics from Natural Products Against Neglected Tropical Diseases. ,Amsterdam, Elsevier; , 2019, pp. 293-350.
[7]
Pawar, R.; Puri, M.; Wienberger, R.F. The arginine sensing and transport binding sites are distinct in the human pathogen Leishmania. PLoS Negl. Trop. Dis., 2019, 13(4), e0007304.
[8]
Loiseau, P.M.; Gupta, S.; Verma, A.; Srivastava, S.; Puri, S.K.; Sliman, F.; Normand-Bayle, M.; Desmaele, D. In vitro activities of new 2-substituted quinolines against Leishmania donovani. Antimicrob. Agents Chemother., 2011, 55(4), 1777-1780.
[http://dx.doi.org/10.1128/AAC.01299-10 ] [PMID: 21220526]
[9]
Sachs-Barrable, K.; Conway, J.; Gershkovich, P.; Ibrahim, F.; Wasan, K.M. The use of the United States FDA programs as a strategy to advance the development of drug products for neglected tropical diseases. Drug Dev. Ind. Pharm., 2014, 40(11), 1429-1434.
[http://dx.doi.org/10.3109/03639045.2014.884132 ] [PMID: 24512098]
[10]
Kaur, J.; Sundar, S.; Singh, N. Molecular docking, structure-activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. J. Antimicrob. Chemother., 2010, 65(8), 1742-1748.
[http://dx.doi.org/10.1093/jac/dkq189 ] [PMID: 20519355]
[11]
Arboleda, M.; Jaramillo, L.; Ortiz, D.; Díaz, A. Leishmaniasis cutánea y herpes zoster multidermatómico. Rev. Chilena Infectol., 2013, 30(6), 680-682.
[http://dx.doi.org/10.4067/S0716-10182013000600020 ] [PMID: 24522317]
[12]
Chauhan, N.; Vidyarthi, A.S.; Poddar, R. Comparative analysis of different DNA-binding drugs for leishmaniasis cure: a pharmacoinformatics approach. Chem. Biol. Drug Des., 2012, 80(1), 54-63.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01329.x ] [PMID: 22296858]
[13]
Sundar, S.; Thakur, B.B.; Tandon, A.K.; Agrawal, N.R.; Mishra, C.P.; Mahapatra, T.M.; Singh, V.P. Clinicoepidemiological study of drug resistance in Indian kala-azar. BMJ, 1994, 308(6924), 307.
[http://dx.doi.org/10.1136/bmj.308.6924.307 ] [PMID: 8124119]
[14]
Sundar, S. Drug resistance in Indian visceral leishmaniasis. Trop. Med. Int. Health, 2001, 6(11), 849-854.
[http://dx.doi.org/10.1046/j.1365-3156.2001.00778.x ] [PMID: 11703838]
[15]
Pérez-Victoria, J.M.; Di Pietro, A.; Barron, D.; Ravelo, A.G.; Castanys, S.; Gamarro, F. Multidrug resistance phenotype mediated by the P-glycoprotein-like transporter in Leishmania: a search for reversal agents. Curr. Drug Targets, 2002, 3(4), 311-333.
[http://dx.doi.org/10.2174/1389450023347588 ] [PMID: 12102602]
[16]
Wright, C.W.; Phillipson, J.D. Natural products and the development of selective antiprotozoal drugs. Phytother. Res., 2006, 4, 127-139.
[http://dx.doi.org/10.1002/ptr.2650040402]
[17]
Quinn, R.J.; Carroll, A.R.; Pham, N.B.; Baron, P.; Palframan, M.E.; Suraweera, L.; Pierens, G.K.; Muresan, S. Developing a drug-like natural product library. J. Nat. Prod., 2008, 71(3), 464-468.
[http://dx.doi.org/10.1021/np070526y ] [PMID: 18257534]
[18]
Ertl, P.; Roggo, S.; Schuffenhauer, A. Natural product-likeness score and its application for prioritization of compound libraries. J. Chem. Inf. Model., 2008, 48(1), 68-74.
[http://dx.doi.org/10.1021/ci700286x ] [PMID: 18034468]
[19]
Teles, C.B.G.; Moreira-Dill, L.S. Silva, Ade.A.; Facundo, V.A.; de Azevedo, W.F., Jr; da Silva, L.H.; Motta, M.C.M.; Stábeli, R.G.; Silva-Jardim, I. A lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement. Altern. Med., 2015, 15, 165-175.
[http://dx.doi.org/10.1186/s12906-015-0681-9 ] [PMID: 26048712]
[20]
Hoet, S.; Opperdoes, F.; Brun, R.; Quetin-Leclercq, J. Natural products active against African trypanosomes: a step towards new drugs. Nat. Prod. Rep., 2004, 21(3), 353-364.
[http://dx.doi.org/10.1039/b311021b ] [PMID: 15162223]
[21]
Zhai, L.; Chen, M.; Blom, J.; Theander, T.G.; Christensen, S.B.; Kharazmi, A. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J. Antimicrob. Chemother., 1999, 43(6), 793-803.
[http://dx.doi.org/10.1093/jac/43.6.793 ] [PMID: 10404318]
[22]
Raynaud-Le Grandic, S.; Fourneau, C.; Laurens, A.; Bories, C.; Hocquemiller, R.; Loiseau, P.M. In vitro antileishmanial activity of acetogenins from Annonaceae. Biomed. Pharmacother., 2004, 58(6-7), 388-392.
[http://dx.doi.org/10.1016/j.biopha.2004.02.007 ] [PMID: 15271421]
[23]
Silva, F.M.A.; Koolen, H.H.F.; Lima, J.P.S.; Santos, D.M.F.; Silva-Jardim, I.; Souza, A.D.L. Leishmanicidal activity of fractions rich in aporphine alkaloids from Amazonian Unonopsis species. Rev. Bras. Farmacogn., 2012, 22, 1368-1371.
[http://dx.doi.org/10.1590/S0102-695X2012005000103]
[24]
Santos, A.O.; Izumi, E.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Veiga-Júnior, V.F.; Nakamura, C.V. Antileishmanial activity of diterpene acids in copaiba oil. Mem. Inst. Oswaldo Cruz, 2013, 108(1), 59-64.
[http://dx.doi.org/10.1590/S0074-02762013000100010 ] [PMID: 23440116]
[25]
Chan-Bacab, M.J.; Peña-Rodríguez, L.M. Plant natural products with leishmanicidal activity. Nat. Prod. Rep., 2001, 18(6), 674-688.
[http://dx.doi.org/10.1039/b100455g ] [PMID: 11820764]
[26]
Shah, S.M.; Ullah, F.; Ayaz, F. β-sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against leishmanial tropica: docking and molecular insights. Steriods, 2019, 148, 56-62.
[http://dx.doi.org/10.1016/j.steroids.2019.05.001]
[27]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part I. Curr. Med. Chem., 2012, 19(14), 2128-2175.
[http://dx.doi.org/10.2174/092986712800229023 ] [PMID: 22414103]
[28]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr. Med. Chem., 2012, 19(14), 2176-2228.
[http://dx.doi.org/10.2174/092986712800229087 ] [PMID: 22414104]
[29]
Bhuwan, B. Mishra, Rakesh K. Singh, A. Srivastava, V.J. Tripathi1 and Vinod K. Tiwari. Fighting against leishmaniasis: search of alkaloids as future true potential anti-leishmanial agents. Mini Rev. Med. Chem., 2009, 9(1), 107-123.
[30]
Hutchinson, J. The Genera of Flowering Plants., Vol. 1; University Press: Oxford, 1964.
[31]
Shultz, A.R. Botânica Sistemática, 2nd ed. Globo, Plantarum: Rio de Janeiro,, 1963.
[32]
Lúcio, A.S.S.C.; Almeida, J.R.G.S.; Da-Cunha, E.V.; Tavares, J.F.; Barbosa Filho, J.M. Alkaloids of the Annonaceae: occurrence and a compilation of their biological activities. Alkaloids Chem. Biol., 2015, 74, 233-409.
[http://dx.doi.org/10.1016/bs.alkal.2014.09.002 ] [PMID: 25845063]
[33]
Lorenzo, V.P.; Lúcio, A.S.; Scotti, L.; Tavares, J.F.; Filho, J.M.; Lima, T.K.; Rocha, J.D.; Scotti, M.T. Structure- and ligand-based approaches to evaluate aporphynic alkaloids from annonaceae as multi-target agent against Leishmania donovani. Curr. Pharm. Des., 2016, 22(34), 5196-5203.
[http://dx.doi.org/10.2174/1381612822666160513144853 ] [PMID: 27174814]
[34]
Costa, E.V.; Pinheiro, M.L.B.; Xavier, C.M.; Silva, J.R.A.; Amaral, A.C.F.; Souza, A.D.L.; Barison, A.; Campos, F.R.; Ferreira, A.G.; Machado, G.M.C.; Leon, L.L.P. A pyrimidine-β-carboline and other alkaloids from Annona foetida with antileishmanial activity. J. Nat. Prod., 2006, 69(2), 292-294.
[http://dx.doi.org/10.1021/np050422s ] [PMID: 16499336]
[35]
Queiroz, E.F.; Roblot, F.; Cavé, A.; Paulo, M.Q.; Fournet, A. Pessoine and spinosine, two catecholic berbines from Annona spinescens. J. Nat. Prod., 1996, 59(4), 438-440.
[http://dx.doi.org/10.1021/np960223w ] [PMID: 8699188]
[36]
Mahiou, V.; Roblot, F.; Fournet, A.; Hocquemiller, R. Bisbenzylisoquinoline alkaloids from Guatteria boliviana (Annonaceae). Phytochemistry, 2000, 54(7), 709-716.
[http://dx.doi.org/10.1016/S0031-9422(00)00178-3 ] [PMID: 10975506]
[37]
Montenegro, H.; Gutiérrez, M.; Romero, L.I.; Ortega-Barría, E.; Capson, T.L.; Rios, L.C. Aporphine alkaloids from Guatteria spp. with leishmanicidal activity. Planta Med., 2003, 69(7), 677-679.
[http://dx.doi.org/10.1055/s-2003-41126 ] [PMID: 12898429]
[38]
Mishra, B.B.; Kishore, N.; Singh, R.K.; Tiwari, V.K. Scope of alkaloids in antileishmanial drug discovery and development.Natural Products; Ramawat, K.; Mérillon, J.M., Eds.; Springer: Berlin, Heidelberg, 2013, pp. 1263-1299.
[http://dx.doi.org/10.1007/978-3-642-22144-6_91]
[39]
Scotti, M.T.; Herrera-Acevedo, C.; Oliveira, T.B.; Costa, R.P.O.; Santos, S.Y.K.O.; Rodrigues, R.P.; Scotti, L.; Da-Costa, F.B.; Sistemat, X. SistematX, an online web-based cheminformatics tool for data management of secondary metabolites. Molecules, 2018, 23(1), 10.
[http://dx.doi.org/10.3390/molecules23010103 ] [PMID: 29301376]
[40]
Imre, G.; Veressc, G.; Volfordd, A.; Farkas, Ö. Molecules from the Minkowski space: an approach to building 3D molecular structure. J. Mol. Struct. THEOCHEM, 2003, 666, 51-59.
[http://dx.doi.org/10.1016/j.theochem.2003.08.013]
[41]
Brannigan, J.A.; Smith, B.A.; Yu, Z.; Brzozowski, A.M.; Hodgkinson, M.R.; Maroof, A.; Price, H.P.; Meier, F.; Leatherbarrow, R.J.; Tate, E.W.; Smith, D.F.; Wilkinson, A.J. N-myristoyltransferase from Leishmania donovani: structural and functional characterisation of a potential drug target for visceral leishmaniasis. J. Mol. Biol., 2010, 396(4), 985-999.
[http://dx.doi.org/10.1016/j.jmb.2009.12.032 ] [PMID: 20036251]
[42]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e ] [PMID: 16722650]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy