Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Secondary Metabolites in the Treatment of Diabetes Mellitus: A Paradigm Shift

Author(s): Deependra Singh Chauhan, Paras Gupta, Faheem Hyder Pottoo* and Mohd Amir

Volume 21, Issue 7, 2020

Page: [493 - 511] Pages: 19

DOI: 10.2174/1389200221666200514081947

Price: $65

Abstract

Diabetes mellitus (DM) is a chronic, polygenic and non-infectious group of diseases that occurs due to insulin resistance or its low production by the pancreas and is also associated with lifelong damage, dysfunction and collapse of various organs. Management of diabetes is quite complex having many bodily and emotional complications and warrants efficient measures for prevention and control of the same. As per the estimates of the current and future diabetes prevalence, around 425 million people were diabetic in 2017 which is anticipated to rise up to 629 million by 2045. Various studies have vaguely proven the fact that several vitamins, minerals, botanicals and secondary metabolites demonstrate hypoglycemic activity in vivo as well as in vitro. Flavonoids, anthocyanin, catechin, lipoic acid, coumarin metabolites, etc. derived from herbs were found to elicit a significant influence on diabetes. However, the prescription of herbal compounds depend on various factors, including the degree of diabetes progression, comorbidities, feasibility, economics as well as their ADR profile. For instance, cinnamon could be a more favorable choice for diabetic hypertensive patients. Diabecon®, Glyoherb® and Diabeta Plus® are some of the herbal products that had been launched in the market for the favorable or adjuvant therapy of diabetes. Moreover, Aloe vera leaf gel extract demonstrates significant activity in diabetes. The goal of this review was to inscribe various classes of secondary metabolites, in particular those obtained from plants, and their role in the treatment of DM. Recent advancements in recognizing the markers which can be employed for identifying altered metabolic pathways, biomarker discovery, limitations, metabolic markers of drug potency and off-label effects are also reviewed.

Keywords: Diabetes, secondary metabolites, efficacy, metabolomics, alternate pathway, extracts.

Graphical Abstract

[1]
Fox, C.S.; Coady, S.; Sorlie, P.D.; Levy, D.; Meigs, J.B.; Agostino, R.B.D.; Wilson, P.W.F.; Savage, P. Trends in cardiovascular complications of diabetes. JAMA, 2016, 292(20), 2495-2499.
[2]
Raffel, L.J.; Goodarzi, M.O. Diabetes Mellitus, 6th ed; Elsevier: Amsterdam, 2013.
[http://dx.doi.org/10.1016/B978-0-12-383834-6.00090-2]
[3]
Lerario, A.C. Diabetes Mellitus, 4th ed; Elsevier: Amsterdam, 2005.
[4]
de Oliveira, J.A.P.; Milech, A. Diabetes Mellitus Clínica; Diagnóstico Tratamento Multidisciplinar, 1995.
[5]
Pecioska, S.; Zillikens, M.C.; Henneman, P.; Snijders, P.J.; Oostra, B.A.; van Duijn, C.M.; Aulchenko, Y.S. Association between type 2 diabetes loci and measures of fatness. PLoS One, 2010, 5(1), e8541.
[http://dx.doi.org/10.1371/journal.pone.0008541 ] [PMID: 20049090]
[6]
Long, A.N.; Dagogo-Jack, S. Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J. Clin. Hypertens. (Greenwich), 2011, 13(4), 244-251.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00434.x ] [PMID: 21466619]
[7]
Kauffman, T.L.; Scott, R.; Barr, O.J.; Moran, M.L. Comprehensive Guide to Geriatric Rehabilitation, 3rd ed; Elsevier: Amsterdam, 2014.
[9]
Alicic, R.Z.; Tuttle, K.R. Diabetes Mellitus.Hypertension: A Companion to Braunwald’s Heart Disease, 3rd ed; Elsevier: Amsterdam, 2018, pp. 341-352.
[10]
Udler, M.S.; Florez, J.C. Diabetes; Elsevier Inc.: Amsterdam, 2017.
[11]
Jessup, A.N. Diabetes mellitus: a nursing perspective., 2012.
[12]
Bahmani, M.; Golshahi, H.; Saki, K.; Rafieian-Kopaei, M.; Delfan, B.; Mohammadi, T. Medicinal plants and secondary metabolites for diabetes mellitus control. Asian Pac. J. Trop. Dis., 2014, 4(S2), S687-S692.
[http://dx.doi.org/10.1016/S2222-1808(14)60708-8]
[13]
Woods, N.; Niwasabutra, K.; Acevedo, R.; Igoli, J.; Altwaijry, N.A.; Tusiimire, J.; Gray, A.I.; Watson, D.G.; Ferro, V.A. Natural Vaccine Adjuvants and Immunopotentiators Derived From Plants, Fungi, Marine Organisms, and Insects; Elsevier: Amsterdam, 2016.
[14]
Piel, J. The chemistry of symbiotic interactions. Compr. Nat. Prod. II Chem. Biol., 2010, 2, 475-510.
[15]
Kulakovskaya, E.; Kulakovskaya, T. Introduction.Extracell. Glycolipids Yeasts; Kulakovskaya, E.; Kulakovskaya, T., Eds.; Elsevier Inc.: Amsterdam, 2014, pp. ix-xi.
[http://dx.doi.org/10.1016/B978-0-12-420069-2.00011-X]
[16]
Nishida, K.; Murakami, N.; Hiroyasu, H. Holographic measurement of evaporating diesel sprays at high pressure and temperature: heat transfer, combustion, power, thermophysical properties. JSME Int. J., 1987, 30(259), 107.
[17]
James, K.D. Animal Metabolites: From Amphibians, Reptiles, Aves/Birds, and Invertebrates.Pharmacognosy: Fundamentals, Applications and Strategies, Badal, S.; Delgoda, R; Elsevier Inc.: Amsterdam, 2016, pp. 401-411.
[18]
Clarke, C.J.; Haselden, J.N. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol. Pathol., 2008, 36(1), 140-147.
[http://dx.doi.org/10.1177/0192623307310947 ] [PMID: 18337232]
[19]
Clish, C.B. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud., 2015, 1(1), a000588.
[http://dx.doi.org/10.1101/mcs.a000588 ] [PMID: 27148576]
[20]
Schlotterbeck, G.; Ross, A.; Dieterle, F.; Senn, H. Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics, 2006, 7(7), 1055-1075.
[http://dx.doi.org/10.2217/14622416.7.7.1055 ] [PMID: 17054416]
[21]
Hussein, A. A., El-Anssary. A. Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants.Herbal Medicine; Builders, P., Ed.; IntechOpen: London, 2019, p. 4265.
[22]
Suhre, K. Metabolic profiling in diabetes. J. Endocrinol., 2014, 221(3), R75-R85.
[http://dx.doi.org/10.1530/JOE-14-0024 ] [PMID: 24868111]
[23]
Demain, A.L.; Fang, A. The natural functions of secondary metabolites. Adv. Biochem. Eng. Biotechnol., 2000, 69, 1-39.
[http://dx.doi.org/10.1007/3-540-44964-7_1 ] [PMID: 11036689]
[24]
Thirumurugan, D.; Cholarajan, A.; Raja, S.S.S.; Vijayakumar, R. An Introductory Chapter.Secondary Metabolites; IntechOpen: London, 2018, pp. 3-22.
[25]
Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2014(2), 377-392.
[http://dx.doi.org/10.1016/0300-9084(96)82199-7]
[26]
Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: a historical perspective. Plant Sci., 2001, 161(5), 839-851.
[http://dx.doi.org/10.1016/S0168-9452(01)00490-3]
[27]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4, 253-265.
[http://dx.doi.org/10.1038/nr1317]
[28]
Reyburn, H.; Mtove, G.; Hendriksen, I.; von Seidlein, L. Oral quinine for the treatment of uncomplicated malaria. BMJ, 2009, 339(7715), b2066.
[http://dx.doi.org/10.1136/bmj.b2066 ] [PMID: 19622550]
[29]
Genta, S.B.; Cabrera, W.M.; Mercado, M.I.; Grau, A.; Catalán, C.A.; Sánchez, S.S. Hypoglycemic activity of leaf organic extracts from Smallanthus sonchifolius: Constituents of the most active fractions. Chem. Biol. Interact., 2010, 185(2), 143-152.
[http://dx.doi.org/10.1016/j.cbi.2010.03.004 ] [PMID: 20211156]
[30]
Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic effects of simple phenolic acids: a comprehensive review. Phytother. Res., 2016, 30(2), 184-199.
[http://dx.doi.org/10.1002/ptr.5528 ] [PMID: 26634804]
[31]
Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; Chen, H.; Qin, W.; Wu, H.; Chen, S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 2016, 21(10), E1374.
[http://dx.doi.org/10.3390/molecules21101374 ] [PMID: 27754463]
[32]
Moorman, T.B.; Becerril, J.M.; Lydon, J.; Duke, S. Production of Bradyrhizobium japonicum strains after treatment with glyphosate. J. Agric. Food Chem., 1992, 40, 289-293.
[http://dx.doi.org/10.1021/jf00014a025]
[33]
Boudet, A.M. Evolution and current status of research in phenolic compounds. Phytochemistry, 2007, 68(22-24), 2722-2735.
[http://dx.doi.org/10.1016/j.phytochem.2007.06.012 ] [PMID: 17643453]
[34]
Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav., 2010, 5(4), 359-368.
[http://dx.doi.org/10.4161/psb.5.4.10871 ] [PMID: 20400851]
[35]
Kumar, N.; Goel, N. 2019.
[36]
Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci., 2014, 11(11), 1185-1200.
[http://dx.doi.org/10.7150/ijms.10001 ] [PMID: 25249787]
[37]
Jung, U.J.; Lee, M.K.; Park, Y.B.; Jeon, S.M.; Choi, M.S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther., 2006, 318(2), 476-483.
[http://dx.doi.org/10.1124/jpet.106.105163 ] [PMID: 16644902]
[38]
Prabhakar, P.K.; Doble, M. Interaction of cinnamic acid derivatives with commercial hypoglycemic drugs on 2-deoxyglucose uptake in 3T3-L1 adipocytes. J. Agric. Food Chem., 2011, 59(18), 9835-9844.
[http://dx.doi.org/10.1021/jf2015717 ] [PMID: 21870829]
[39]
Ong, K.W.; Hsu, A.; Tan, B.K.H. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One, 2012, 7(3), e32718.
[http://dx.doi.org/10.1371/journal.pone.0032718 ] [PMID: 22412912]
[40]
Gandhi, G.R.; Jothi, G.; Antony, P.J.; Balakrishna, K.; Paulraj, M.G.; Ignacimuthu, S.; Stalin, A.; Al-Dhabi, N.A. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur. J. Pharmacol., 2014, 745, 201-216.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.044 ] [PMID: 25445038]
[41]
Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 2010, 11(4), 1365-1402.
[http://dx.doi.org/10.3390/ijms11041365 ] [PMID: 20480025]
[42]
Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J. Med. Food, 2005, 8(3), 281-290.
[http://dx.doi.org/10.1089/jmf.2005.8.281 ] [PMID: 16176136]
[43]
Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 317S-325S.
[http://dx.doi.org/10.1093/ajcn/81.1.317S ] [PMID: 15640497]
[44]
de Bock, M.; Derraik, J.G.B.; Cutfield, W.S. Polyphenols and glucose homeostasis in humans. J. Acad. Nutr. Diet., 2012, 112(6), 808-815.
[http://dx.doi.org/10.1016/j.jand.2012.01.018 ] [PMID: 22709808]
[45]
Hajiaghaalipour, F.; Khalilpourfarshbafi, M.; Arya, A.; Arya, A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int. J. Biol. Sci., 2015, 11(5), 508-524.
[http://dx.doi.org/10.7150/ijbs.11241 ] [PMID: 25892959]
[46]
Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J., 2008, 54(4), 733-749.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03447.x ] [PMID: 18476875]
[47]
Deroles, S. Anthocyanins Biosynthesis in Plant Cell Cultures.Anthocyanins; Winefield, C.; Davies, K.; Davies, K., Eds.; Springer: Switzerland, 2009, pp. 108-167.
[48]
Samanta, A.; Das, G.; Das, S. Roles of flavonoids in plants. Carbon N.Y., 2011, 100, 6.
[49]
Kurmukov, A.G. Phytochemistry of medicinal plants. Med. Plants Cent. Asia Uzb. Kyrg., 2013, 1(6), 13-14.
[http://dx.doi.org/10.1007/978-1-4614-3912-7_4]
[50]
Bailey, C.J.; Day, C. Traditional plant medicines as treatments for diabetes. Diabetes Care, 1989, 12, 553-564.
[http://dx.doi.org/10.2337/diacare.12.8.553 ] [PMID: 2673695]
[51]
Wink, M. plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet., 1988, 75(2), 225-233.
[http://dx.doi.org/10.1007/BF00303957]
[52]
Bobkiewicz-Kozłowska, T.; Dworacka, M.; Kuczyński, S.; Abramczyk, M.; Kolanoś, R.; Wysocka, W.; Garcia Lopez, P.M.; Winiarska, H. Hypoglycaemic effect of quinolizidine alkaloids-lupanine and 2-thionosparteine on non-diabetic and streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2007, 565(1-3), 240-244.
[http://dx.doi.org/10.1016/j.ejphar.2007.02.032 ] [PMID: 17379208]
[53]
Agrawal, R.; Sethiya, N.K.; Mishra, S.H. Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats. Pharm. Biol., 2013, 51(5), 635-642.
[http://dx.doi.org/10.3109/13880209.2012.761244 ] [PMID: 23527955]
[54]
Sharma, B.; Salunke, R.; Balomajumder, C.; Daniel, S.; Roy, P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J. Ethnopharmacol., 2010, 127(2), 457-462.
[http://dx.doi.org/10.1016/j.jep.2009.10.013 ] [PMID: 19837152]
[55]
Jung, M.; Park, M.; Lee, H.C.; Kang, Y-H.; Kang, E.S.; Kim, S.K. Antidiabetic agents from medicinal plants. Curr. Med. Chem., 2006, 13(10), 1203-1218.
[http://dx.doi.org/10.2174/092986706776360860 ] [PMID: 16719780]
[56]
Knight, D.W. Feverfew: chemistry and biological activity. Nat. Prod. Rep., 1995, 12(3), 271-276.
[http://dx.doi.org/10.1039/np9951200271 ] [PMID: 7792073]
[57]
Oka, D.; Nishimura, K.; Shiba, M.; Nakai, Y.; Arai, Y.; Nakayama, M.; Takayama, H.; Inoue, H.; Okuyama, A.; Nonomura, N. Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-kappaB. Int. J. Cancer, 2007, 120(12), 2576-2581.
[http://dx.doi.org/10.1002/ijc.22570 ] [PMID: 17290398]
[58]
Jia, Q.Q.; Wang, J.C.; Long, J.; Zhao, Y.; Chen, S.J.; Zhai, J.D.; Wei, L.B.; Zhang, Q.; Chen, Y.; Long, H.B. Sesquiterpene lactones and their derivatives inhibit high glucose-induced NF-κB activation and MCP-1 and TGF-β1 expression in rat mesangial cells. Molecules, 2013, 18(10), 13061-13077.
[http://dx.doi.org/10.3390/molecules181013061 ] [PMID: 24152676]
[59]
Daisy, P.; Jasmine, R.; Ignacimuthu, S.; Murugan, E. A novel steroid from Elephantopus scaber L. an ethnomedicinal plant with antidiabetic activity. Phytomedicine, 2009, 16(2-3), 252-257.
[http://dx.doi.org/10.1016/j.phymed.2008.06.001 ] [PMID: 18693100]
[60]
Chaturvedi, D.; Dwivedi, P.K. Recent Developments on the Antidiabetic Sesquiterpene Lactones and Their Semisynthetic Analogues; Elsevier Inc., 2017.
[http://dx.doi.org/10.1016/B978-0-12-809450-1.00006-5]
[61]
Lin, H.R. Sesquiterpene lactones from Tithonia diversifolia act as peroxisome proliferator-activated receptor agonists. Bioorg. Med. Chem. Lett., 2012, 22(8), 2954-2958.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.043 ] [PMID: 22424975]
[62]
Chen, H.C.; Chou, C.K.; Lee, S.D.; Wang, J.C.; Yeh, S.F. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res., 1995, 27(1-2), 99-109.
[http://dx.doi.org/10.1016/0166-3542(94)00083-K ] [PMID: 7486962]
[63]
Park, H.J.; Kwon, S.H.; Han, Y.N.; Choi, J.W.; Miyamoto, K.; Lee, S.H.; Lee, K.T. Apoptosis-Inducing costunolide and a novel acyclic monoterpene from the stem bark of Magnolia sieboldii. Arch. Pharm. Res., 2001, 24(4), 342-348.
[http://dx.doi.org/10.1007/BF02975104 ] [PMID: 11534769]
[64]
Eliza, J.; Daisy, P.; Ignacimuthu, S.; Duraipandiyan, V. Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 2009, 179(2-3), 329-334.
[http://dx.doi.org/10.1016/j.cbi.2008.10.017 ] [PMID: 19007766]
[65]
Eliza, J.; Daisy, P.; Ignacimuthu, S.; Duraipandiyan, V. Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.)Sm., in STZ-induced diabetic rats. Chem. Biol. Interact., 2009, 182(1), 67-72.
[http://dx.doi.org/10.1016/j.cbi.2009.08.012 ] [PMID: 19695236]
[66]
Aybar, M.J.; Sánchez Riera, A.N.; Grau, A.; Sánchez, S.S. Hypoglycemic effect of the water extract of Smallantus sonchifolius (yacon) leaves in normal and diabetic rats. J. Ethnopharmacol., 2001, 74(2), 125-132.
[http://dx.doi.org/10.1016/S0378-8741(00)00351-2 ] [PMID: 11167030]
[67]
Serra-Barcellona, C.; Coll Aráoz, M.V.; Cabrera, W.M.; Habib, N.C.; Honoré, S.M.; Catalán, C.A.N.; Grau, A.; Genta, S.B.; Sánchez, S.S. Smallanthus macroscyphus: a new source of antidiabetic compounds. Chem. Biol. Interact., 2014, 209(1), 35-47.
[http://dx.doi.org/10.1016/j.cbi.2013.11.015 ] [PMID: 24309157]
[68]
Bento, A.F.; Marcon, R.; Dutra, R.C.; Claudino, R.F.; Cola, M.; Leite, D.F.P.; Calixto, J.B. β-Caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARγ pathway. Am. J. Pathol., 2011, 178(3), 1153-1166.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.052 ] [PMID: 21356367]
[69]
Hou, C.C.; Lin, S.J.; Cheng, J.T.; Hsu, F.L. Antidiabetic dimeric guianolides and a lignan glycoside from Lactuca indica. J. Nat. Prod., 2003, 66(5), 625-629.
[http://dx.doi.org/10.1021/np0205349 ] [PMID: 12762795]
[70]
Escandón-Rivera, S.; González-Andrade, M.; Bye, R.; Linares, E.; Navarrete, A.; Mata, R. α-glucosidase inhibitors from Brickellia cavanillesii. J. Nat. Prod., 2012, 75(5), 968-974.
[http://dx.doi.org/10.1021/np300204p ] [PMID: 22587572]
[71]
Sun, J.E.; Ao, Z.H.; Lu, Z.M.; Xu, H.Y.; Zhang, X.M.; Dou, W.F.; Xu, Z.H. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J. Ethnopharmacol., 2008, 118(1), 7-13.
[http://dx.doi.org/10.1016/j.jep.2008.02.030 ] [PMID: 18434051]
[72]
Lu, X.; Chen, H.; Dong, P.; Fu, L.; Zhang, X. Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus. J. Sci. Food Agric., 2010, 90(2), 276-280.
[http://dx.doi.org/10.1002/jsfa.3809 ] [PMID: 20355042]
[73]
Nolte, R.T.; Wisely, G.B.; Westin, S.; Cobb, J.E.; Lambert, M.H.; Kurokawa, R.; Rosenfeld, M.G.; Willson, T.M.; Glass, C.K.; Milburn, M.V. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature, 1998, 395(6698), 137-143.
[http://dx.doi.org/10.1038/25931 ] [PMID: 9744270]
[74]
Ying, Y.M.; Zhang, L.Y.; Zhang, X.; Bai, H.B.; Liang, D.E.; Ma, L.F.; Shan, W.G.; Zhan, Z.J. Terpenoids with alpha-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus. Phytochemistry, 2014, 108, 171-176.
[http://dx.doi.org/10.1016/j.phytochem.2014.09.022 ] [PMID: 25446238]
[75]
Bever, B.O.; Zahnd, G.R. Plants with oral hypoglycaemic action. Pharm. Biol., 1979, 17(3–4), 139-196.
[http://dx.doi.org/10.3109/13880207909065167]
[76]
Ota, A.; Ulrih, N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol., 2017, 8, 436.
[http://dx.doi.org/10.3389/fphar.2017.00436 ] [PMID: 28729836]
[77]
Parmar, S.; Gangwal, A.; Sheth, N. Solanum xanthocarpum (yellow berried night shade): a review. Der. Pharm. Lett., 2011, 2(4), 373-383.
[78]
Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed., 2012, 2(4), 320-330.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X ] [PMID: 23569923]
[79]
Eddouks, M.; Bidi, A.; El Bouhali, B.; Hajji, L.; Zeggwagh, N.A. Antidiabetic plants improving insulin sensitivity. J. Pharm. Pharmacol., 2014, 66(9), 1197-1214.
[http://dx.doi.org/10.1111/jphp.12243 ] [PMID: 24730446]
[80]
Chan, Y.S.; Cheng, L.N.; Wu, J.H.; Chan, E.; Kwan, Y.W.; Lee, S.M.Y.; Leung, G.P.H.; Yu, P.H.F.; Chan, S.W. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology, 2011, 19(5), 245-254.
[http://dx.doi.org/10.1007/s10787-010-0062-4 ] [PMID: 20981575]
[81]
Sites, U.B. Handbook of Neurochemistry and Molecular Neurobiology; Springer: Boston, 2010.
[82]
Zhao, R.; Li, Q.; Xiao, B. Effect of Lycium barbarum polysaccharide on the improvement of insulin resistance in NIDDM rats. Yakugaku Zasshi, 2005, 125(12), 981-988.
[http://dx.doi.org/10.1248/yakushi.125.981 ] [PMID: 16327243]
[83]
Farzaei, F.; Morovati, M.R.; Farjadmand, F.; Farzaei, M.H. A mechanistic review on medicinal plants used for diabetes mellitus in traditional persian Medicine. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 944-955.
[http://dx.doi.org/10.1177/2156587216686461 ] [PMID: 29228789]
[84]
Montonen, J.; Knekt, P.; Järvinen, R.; Reunanen, A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care, 2004, 27(2), 362-366.
[http://dx.doi.org/10.2337/diacare.27.2.362 ] [PMID: 14747214]
[85]
Facchini, F.S.; Humphreys, M.H.; DoNascimento, C.A.; Abbasi, F.; Reaven, G.M. Relation between insulin resistance and plasma concentrations of lipid hydroperoxides, carotenoids, and tocopherols. Am. J. Clin. Nutr., 2000, 72(3), 776-779.
[http://dx.doi.org/10.1093/ajcn/72.3.776 ] [PMID: 10966898]
[86]
Ylönen, K.; Alfthan, G.; Groop, L.; Saloranta, C.; Aro, A.; Virtanen, S.M. Dietary intakes and plasma concentrations of carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk of type 2 diabetes: the Botnia Dietary Study. Am. J. Clin. Nutr., 2003, 77(6), 1434-1441.
[http://dx.doi.org/10.1093/ajcn/77.6.1434 ] [PMID: 12791620]
[87]
Baynes, J.W. Role of oxidative stress in development of complications in diabetes. Diabetes, 1991, 40(4), 405-412.
[http://dx.doi.org/10.2337/diab.40.4.405 ] [PMID: 2010041]
[88]
Giugliano, D.; Ceriello, A.; Paolisso, G. Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress? Metabolism, 1995, 44(3), 363-368.
[http://dx.doi.org/10.1016/0026-0495(95)90167-1 ] [PMID: 7885282]
[89]
Thompson, K.H.; Godin, D.V. Micronutrients and antioxidants in the progression of diabetes. Nutr. Res., 1995, 15(9), 1377-1410.
[http://dx.doi.org/10.1016/0271-5317(95)02012-K]
[90]
1997.
[91]
Baydas, G.; Nedzvetskii, V.S.; Tuzcu, M.; Yasar, A.; Kirichenko, S.V. Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E. Eur. J. Pharmacol., 2003, 462(1-3), 67-71.
[http://dx.doi.org/10.1016/S0014-2999(03)01294-9 ] [PMID: 12591097]
[92]
De Young, L.; Yu, D.; Bateman, R.M.; Brock, G.B. Oxidative stress and antioxidant therapy: their impact in diabetes-associated erectile dysfunction. J. Androl., 2004, 25(5), 830-836.
[http://dx.doi.org/10.1002/j.1939-4640.2004.tb02862.x ] [PMID: 15292117]
[93]
McCune, L.M.; Johns, T. Antioxidant activity relates to plant part, life form and growing condition in some diabetes remedies. J. Ethnopharmacol., 2007, 112(3), 461-469.
[http://dx.doi.org/10.1016/j.jep.2007.04.006 ] [PMID: 17532584]
[94]
Chiang, Y.M.; Chang, C.L.T.; Chang, S.L.; Yang, W.C.; Shyur, L.F. Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator. J. Ethnopharmacol., 2007, 110(3), 532-538.
[http://dx.doi.org/10.1016/j.jep.2006.10.007 ] [PMID: 17101254]
[95]
Silva, F.L.; Fischer, D.C.H.; Tavares, J.F.; Silva, M.S.; de Athayde-Filho, P.F.; Barbosa-Filho, J.M. Compilation of secondary metabolites from Bidens pilosa L. Molecules, 2011, 16(2), 1070-1102.
[http://dx.doi.org/10.3390/molecules16021070 ] [PMID: 21270729]
[96]
Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol., 2005, 3(12), 937-947.
[http://dx.doi.org/10.1038/nrmicro1286 ] [PMID: 16322742]
[97]
Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genet. Biol., 2011, 48(1), 15-22.
[http://dx.doi.org/10.1016/j.fgb.2010.04.004 ] [PMID: 20433937]
[98]
Pusztahelyi, T.; Holb, I.J.; Pócsi, I. Secondary metabolites in fungus-plant interactions. Front. Plant Sci., 2015, 6(AUG), 573.
[http://dx.doi.org/10.3389/fpls.2015.00573 ] [PMID: 26300892]
[99]
Saha, D.; Fetzner, R.; Burkhardt, B.; Podlech, J.; Metzler, M.; Dang, H.; Lawrence, C.; Fischer, R. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata. PLoS One, 2012, 7(7), e40564.
[http://dx.doi.org/10.1371/journal.pone.0040564 ] [PMID: 22792370]
[100]
Hu, J.; Chen, C.; Peever, T.; Dang, H.; Lawrence, C.; Mitchell, T. Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics, 2012, 13, 171.
[http://dx.doi.org/10.1186/1471-2164-13-171 ] [PMID: 22559316]
[101]
de Wit, P.J.G.M.; van der Burgt, A.; Ökmen, B.; Stergiopoulos, I.; Abd-Elsalam, K.A.; Aerts, A.L.; Bahkali, A.H.; Beenen, H.G.; Chettri, P.; Cox, M.P.; Datema, E.; de Vries, R.P.; Dhillon, B.; Ganley, A.R.; Griffiths, S.A.; Guo, Y.; Hamelin, R.C.; Henrissat, B.; Kabir, M.S.; Jashni, M.K.; Kema, G.; Klaubauf, S.; Lapidus, A.; Levasseur, A.; Lindquist, E.; Mehrabi, R.; Ohm, R.A.; Owen, T.J.; Salamov, A.; Schwelm, A.; Schijlen, E.; Sun, H.; van den Burg, H.A.; van Ham, R.C.; Zhang, S.; Goodwin, S.B.; Grigoriev, I.V.; Collemare, J.; Bradshaw, R.E. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet., 2012, 8(11), e1003088.
[http://dx.doi.org/10.1371/journal.pgen.1003088 ] [PMID: 23209441]
[102]
Gao, S.; Li, Y.; Gao, J.; Suo, Y.; Fu, K.; Li, Y.; Chen, J. Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic fungus. BMC Genomics, 2014, 15(1), 627.
[http://dx.doi.org/10.1186/1471-2164-15-627 ] [PMID: 25056288]
[103]
Amselem, J.; Cuomo, C.A.; van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; Fournier, E.; Gout, L.; Hahn, M.; Kohn, L.; Lapalu, N.; Plummer, K.M.; Pradier, J.M.; Quévillon, E.; Sharon, A.; Simon, A.; ten Have, A.; Tudzynski, B.; Tudzynski, P.; Wincker, P.; Andrew, M.; Anthouard, V.; Beever, R.E.; Beffa, R.; Benoit, I.; Bouzid, O.; Brault, B.; Chen, Z.; Choquer, M.; Collémare, J.; Cotton, P.; Danchin, E.G.; Da Silva, C.; Gautier, A.; Giraud, C.; Giraud, T.; Gonzalez, C.; Grossetete, S.; Güldener, U.; Henrissat, B.; Howlett, B.J.; Kodira, C.; Kretschmer, M.; Lappartient, A.; Leroch, M.; Levis, C.; Mauceli, E.; Neuvéglise, C.; Oeser, B.; Pearson, M.; Poulain, J.; Poussereau, N.; Quesneville, H.; Rascle, C.; Schumacher, J.; Ségurens, B.; Sexton, A.; Silva, E.; Sirven, C.; Soanes, D.M.; Talbot, N.J.; Templeton, M.; Yandava, C.; Yarden, O.; Zeng, Q.; Rollins, J.A.; Lebrun, M.H.; Dickman, M. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet., 2011, 7(8), e1002230.
[http://dx.doi.org/10.1371/journal.pgen.1002230 ] [PMID: 21876677]
[104]
Islam, M.S.; Haque, M.S.; Islam, M.M.; Emdad, E.M.; Halim, A.; Hossen, Q.M.M.; Hossain, M.Z.; Ahmed, B.; Rahim, S.; Rahman, M.S.; Alam, M.M.; Hou, S.; Wan, X.; Saito, J.A.; Alam, M. Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics, 2012, 13(1), 493.
[http://dx.doi.org/10.1186/1471-2164-13-493 ] [PMID: 22992219]
[105]
Mousa, W.K.; Raizada, M.N. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front. Microbiol., 2013, 4(March), 65.
[http://dx.doi.org/10.3389/fmicb.2013.00065 ] [PMID: 23543048]
[106]
Chen, Y.; Sharma-Shivappa, R.R.; Keshwani, D.; Chen, C. Potential of agricultural residues and hay for bioethanol production. Appl. Biochem. Biotechnol., 2007, 142(3), 276-290.
[http://dx.doi.org/10.1007/s12010-007-0026-3 ] [PMID: 18025588]
[107]
Silva, G.H.; De Oliveira, C.M.; Teles, H.L.; Pauletti, P.M.; Castro-Gamboa, I.; Silva, D.H.S.; Bolzani, V.S.; Young, M.C.M.; Costa-Neto, C.M.; Pfenning, L.H. Sesquiterpenes from Xylaria Sp., an Endophytic Fungus Associated with Piper Aduncum (Piperaceae). Phytochem. Lett., 2010, 3(3), 164-167.
[http://dx.doi.org/10.1016/j.phytol.2010.07.001]
[108]
Hatakeyama, T.; Koseki, T.; Murayama, T.; Shiono, Y. Eremophilane Sesquiterpenes from the Endophyte Microdiplodia Sp. KS 75-1 and Revision of the Stereochemistries of Phomadecalins C and D. Phytochem. Lett., 2010, 3(3), 148-151.
[http://dx.doi.org/10.1016/j.phytol.2010.06.002]
[109]
Hussain, H.; Akhtar, N.; Draeger, S.; Schulz, B.; Pescitelli, G.; Salvadori, P.; Antus, S.; Kurtán, T.; Krohn, K. New Bioactive 2,3-Epoxycyclohexenes and Isocoumarins from the Endophytic Fungus Phomopsis Sp. from Laurus Azorica. Eur. J. Org. Chem., 2009, (5), 749-756.
[http://dx.doi.org/10.1002/ejoc.200801052]
[110]
Isaka, M.; Chinthanom, P.; Boonruangprapa, T.; Rungjindamai, N.; Pinruan, U. Eremophilane-type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J. Nat. Prod., 2010, 73(4), 683-687.
[http://dx.doi.org/10.1021/np100030x ] [PMID: 20155932]
[111]
Stierle, A.; Strobel, G.; Stierle, D. Taxol and Taxane Production by Taxomyces Andreanae, an Endop., 1993.
[112]
Stierle, A.; Strobel, G.; Stierle, D.; Grothaus, P.; Bignami, G. The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J. Nat. Prod., 1995, 58(9), 1315-1324.
[http://dx.doi.org/10.1021/np50123a002 ] [PMID: 7494141]
[113]
Pongcharoen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Kühn, T.; Pelzing, M.; Sakayaroj, J.; Taylor, W.C. Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry, 2008, 69(9), 1900-1902.
[http://dx.doi.org/10.1016/j.phytochem.2008.04.003 ] [PMID: 18495187]
[114]
Yuan, L.; Zhao, P.J.; Ma, J.; Lu, C.H.; Shen, Y.M. Labdane and Tetranorlabdane Diterpenoids from Botryosphaeria Sp. MHF, an Endophytic Fungus of Maytenus Hookeri. Helv. Chim. Acta, 2009, 92(6), 1118-1125.
[http://dx.doi.org/10.1002/hlca.200800424]
[115]
Gao, S.S.; Li, X.M.; Li, C.S.; Proksch, P.; Wang, B.G. Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg. Med. Chem. Lett., 2011, 21(10), 2894-2897.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.076 ] [PMID: 21489788]
[116]
Rowan, D.D. Lolitrems, Peramine and Paxilline: Mycotoxins of the Ryegrass/Endophyte Interaction. Agric. Ecosyst. Environ., 1993, 44(1–4), 103-122.
[http://dx.doi.org/10.1016/0167-8809(93)90041-M]
[117]
Blankenship, J.D.; Spiering, M.J.; Wilkinson, H.H.; Fannin, F.F.; Bush, L.P.; Schardl, C.L. Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry, 2001, 58(3), 395-401.
[http://dx.doi.org/10.1016/S0031-9422(01)00272-2 ] [PMID: 11557071]
[118]
Zou, W.X.; Meng, J.C.; Lu, H.; Chen, G.X.; Shi, G.X.; Zhang, T.Y.; Tan, R.X. Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J. Nat. Prod., 2000, 63(11), 1529-1530.
[http://dx.doi.org/10.1021/np000204t ] [PMID: 11087599]
[119]
Schulz, B.; Boyle, C.; Draeger, S.; Ro, A.; Krohn, K. S0953756202006342. Pdf., 2002, 106(September), 996-1004.
[http://dx.doi.org/10.1186/1471-2261-9-19]
[120]
Sahani, K.; Thakur, D.; Hemalatha, K.P.J.; Ganguly, A. Antiglycemic Activity of Endophytic Fungi from Selected Medicinal Plants by Alpha-Amylase Inhibition Method Anticancer Activity of Compound Isolated from Endophytic Fungi from Eastern Ghat of India View Project Antiglycemic Activity of Endophytic Fungi Fr. Artic. Int. J. Sci. Res., 2017, 6(3), 2203-2206.
[121]
Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol., 2010, 3(5), 544-563.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00179.x ] [PMID: 21255352]
[122]
Singla, R.; Dubey, H.; Dubey, A. Therapeutic Spectrum of Bacterial Metabolites. Indo Glob. J. Pharm. Sci., 2014, 2(2), 52-64.
[123]
Desjardine, K.; Pereira, A.; Wright, H.; Matainaho, T.; Kelly, M.; Andersen, R.J. Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J. Nat. Prod., 2007, 70(12), 1850-1853.
[http://dx.doi.org/10.1021/np070209r ] [PMID: 18044840]
[124]
Macherla, V.R.; Liu, J.; Sunga, M.; White, D.J.; Grodberg, J.; Teisan, S.; Lam, K.S.; Potts, B.C.M.; Lipoxazolidinones, A.; Lipoxazolidinones, A. B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J. Nat. Prod., 2007, 70(9), 1454-1457.
[http://dx.doi.org/10.1021/np0702032 ] [PMID: 17845000]
[125]
McArthur, K.A.; Mitchell, S.S.; Tsueng, G.; Rheingold, A.; White, D.J.; Grodberg, J.; Lam, K.S.; Potts, B.C.M. Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J. Nat. Prod., 2008, 71(10), 1732-1737.
[http://dx.doi.org/10.1021/np800286d ] [PMID: 18842058]
[126]
Uzair, B.; Ahmed, N.; Ahmad, V.U.; Mohammad, F.V.; Edwards, D.H. The isolation, purification and biological activity of a novel antibacterial compound produced by Pseudomonas stutzeri. FEMS Microbiol. Lett., 2008, 279(2), 243-250.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01036.x ] [PMID: 18093138]
[127]
El-Gendy, M.M.A.; Hawas, U.W.; Jaspars, M. Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. J. Antibiot. (Tokyo), 2008, 61(6), 379-386.
[http://dx.doi.org/10.1038/ja.2008.53 ] [PMID: 18667786]
[128]
Hughes, C.C.; Prieto-Davo, A.; Jensen, P.R.; Fenical, W. The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org. Lett., 2008, 10(4), 629-631.
[http://dx.doi.org/10.1021/ol702952n ] [PMID: 18205372]
[129]
Chatbar, G.; Kuppusamy, A. Anti Diabetic Activity of Bacteria and Fungi : A Review Ant Diabetic Activity of Bacteria and Fungi : A Review., 2018.
[130]
Solecka, J.; Zajko, J.; Postek, M.; Rajnisz, A. Biologically Active Secondary Metabolites from Actinomycetes. Cent. Eur. J. Biol., 2012, 7(3), 373-390.
[http://dx.doi.org/10.2478/s11535-012-0036-1]
[131]
Duan, F.F.; Liu, J.H.; March, J.C. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes, 2015, 64(5), 1794-1803.
[http://dx.doi.org/10.2337/db14-0635 ] [PMID: 25626737]
[132]
Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA, 1971, 68(10), 2374-2376.
[http://dx.doi.org/10.1073/pnas.68.10.2374 ] [PMID: 5289873]
[133]
Griffin, J.L.; Williams, H.J.; Sang, E.; Clarke, K.; Rae, C.; Nicholson, J.K. Metabolic profiling of genetic disorders: a multitissue (1)H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal. Biochem., 2001, 293(1), 16-21.
[http://dx.doi.org/10.1006/abio.2001.5096 ] [PMID: 11373073]
[134]
Fiehn, O. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol., 2002, 48(1-2), 155-171.
[http://dx.doi.org/10.1023/A:1013713905833 ] [PMID: 11860207]
[135]
Nicholson, J.K.; Connelly, J.; Lindon, J.C.; Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov., 2002, 1(2), 153-161.
[http://dx.doi.org/10.1038/nrd728 ] [PMID: 12120097]
[136]
Bain, J.R.; Stevens, R.D.; Wenner, B.R.; Ilkayeva, O.; Muoio, D.M.; Newgard, C.B. Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes, 2009, 58(11), 2429-2443.
[http://dx.doi.org/10.2337/db09-0580 ] [PMID: 19875619]
[137]
Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem., 2005, 77(13), 4108-4116.
[http://dx.doi.org/10.1021/ac0481001 ] [PMID: 15987116]
[138]
Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; Rochon, J.; Gallup, D.; Ilkayeva, O.; Wenner, B.R.; Yancy, W.S., Jr; Eisenson, H.; Musante, G.; Surwit, R.S.; Millington, D.S.; Butler, M.D.; Svetkey, L.P. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab., 2009, 9(4), 311-326.
[http://dx.doi.org/10.1016/j.cmet.2009.02.002 ] [PMID: 19356713]
[139]
Gall, W.E.; Beebe, K.; Lawton, K.A.; Adam, K.P.; Mitchell, M.W.; Nakhle, P.J.; Ryals, J.A.; Milburn, M.V.; Nannipieri, M.; Camastra, S.; Natali, A.; Ferrannini, E. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One, 2010, 5(5), e10883.
[http://dx.doi.org/10.1371/journal.pone.0010883 ] [PMID: 20526369]
[140]
Suhre, K.; Meisinger, C.; Döring, A.; Altmaier, E.; Belcredi, P.; Gieger, C.; Chang, D.; Milburn, M.V.; Gall, W.E.; Weinberger, K.M.; Mewes, H.W.; Hrabé de Angelis, M.; Wichmann, H.E.; Kronenberg, F.; Adamski, J.; Illig, T. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One, 2010, 5(11), e13953.
[http://dx.doi.org/10.1371/journal.pone.0013953 ] [PMID: 21085649]
[141]
Fiehn, O.; Garvey, W.T.; Newman, J.W.; Lok, K.H.; Hoppel, C.L.; Adams, S.H. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One, 2010, 5(12), e15234.
[http://dx.doi.org/10.1371/journal.pone.0015234 ] [PMID: 21170321]
[142]
Würtz, P.; Mäkinen, V.P.; Soininen, P.; Kangas, A.J.; Tukiainen, T.; Kettunen, J.; Savolainen, M.J.; Tammelin, T.; Viikari, J.S.; Rönnemaa, T.; Kähönen, M.; Lehtimäki, T.; Ripatti, S.; Raitakari, O.T.; Järvelin, M.R.; Ala-Korpela, M. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes, 2012, 61(6), 1372-1380.
[http://dx.doi.org/10.2337/db11-1355 ] [PMID: 22511205]
[143]
Menni, C.; Fauman, E.; Erte, I.; Perry, J.R.B.; Kastenmüller, G.; Shin, S-Y.; Petersen, A-K.; Hyde, C.; Psatha, M.; Ward, K.J.; Yuan, W.; Milburn, M.; Palmer, C.N.A.; Frayling, T.M.; Trimmer, J.; Bell, J.T.; Gieger, C.; Mohney, R.P.; Brosnan, M.J.; Suhre, K.; Soranzo, N.; Spector, T.D. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes, 2013, 62(12), 4270-4276.
[144]
Mook-Kanamori, D.O.; Selim, M.M.; Takiddin, A.H.; Al-Homsi, H.; Al-Mahmoud, K.A.S.; Al-Obaidli, A.; Zirie, M.A.; Rowe, J.; Yousri, N.A.; Karoly, E.D.; Kocher, T.; Sekkal Gherbi, W.; Chidiac, O.M.; Mook-Kanamori, M.J.; Abdul Kader, S.; Al Muftah, W.A.; McKeon, C.; Suhre, K. 1,5-Anhydroglucitol in saliva is a noninvasive marker of short-term glycemic control. J. Clin. Endocrinol. Metab., 2014, 99(3), E479-E483.
[http://dx.doi.org/10.1210/jc.2013-3596 ] [PMID: 24423354]
[145]
Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; O’Donnell, C.J.; Carr, S.A.; Mootha, V.K.; Florez, J.C.; Souza, A.; Melander, O.; Clish, C.B.; Gerszten, R.E. Metabolite profiles and the risk of developing diabetes. Nat. Med., 2011, 17(4), 448-453.
[http://dx.doi.org/10.1038/nm.2307 ] [PMID: 21423183]
[146]
Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.C.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.; Thorand, B.; Grallert, H.; Xu, T.; Bader, E.; Huth, C.; Mittelstrass, K.; Döring, A.; Meisinger, C.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Carstensen, M.; Xie, L.; Yamanaka-Okumura, H.; Xing, G.; Ceglarek, U.; Thiery, J.; Giani, G.; Lickert, H.; Lin, X.; Li, Y.; Boeing, H.; Joost, H.G.; de Angelis, M.H.; Rathmann, W.; Suhre, K.; Prokisch, H.; Peters, A.; Meitinger, T.; Roden, M.; Wichmann, H.E.; Pischon, T.; Adamski, J.; Illig, T. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol., 2012, 8(615), 615.
[http://dx.doi.org/10.1038/msb.2012.43 ] [PMID: 23010998]
[147]
Ferrannini, E.; Natali, A.; Camastra, S.; Nannipieri, M.; Mari, A.; Adam, K.P.; Milburn, M.V.; Kastenmüller, G.; Adamski, J.; Tuomi, T.; Lyssenko, V.; Groop, L.; Gall, W.E. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes, 2013, 62(5), 1730-1737.
[http://dx.doi.org/10.2337/db12-0707 ] [PMID: 23160532]
[148]
Floegel, A.; Stefan, N.; Yu, Z.; Mühlenbruch, K.; Drogan, D.; Joost, H.G.; Fritsche, A.; Häring, H.U.; Hrabě de Angelis, M.; Peters, A.; Roden, M.; Prehn, C.; Wang-Sattler, R.; Illig, T.; Schulze, M.B.; Adamski, J.; Boeing, H.; Pischon, T. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes, 2013, 62(2), 639-648.
[http://dx.doi.org/10.2337/db12-0495 ] [PMID: 23043162]
[149]
Wang, T.J.; Ngo, D.; Psychogios, N.; Dejam, A.; Larson, M.G.; Vasan, R.S.; Ghorbani, A.; O’Sullivan, J.; Cheng, S.; Rhee, E.P.; Sinha, S.; McCabe, E.; Fox, C.S.; O’Donnell, C.J.; Ho, J.E.; Florez, J.C.; Magnusson, M.; Pierce, K.A.; Souza, A.L.; Yu, Y.; Carter, C.; Light, P.E.; Melander, O.; Clish, C.B.; Gerszten, R.E. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Invest., 2013, 123(10), 4309-4317.
[http://dx.doi.org/10.1172/JCI64801 ] [PMID: 24091325]
[150]
Rebholz, C.M.; Yu, B.; Zheng, Z.; Chang, P.; Tin, A.; Köttgen, A.; Wagenknecht, L.E.; Coresh, J.; Boerwinkle, E.; Selvin, E. Serum metabolomic profile of incident diabetes. Diabetologia, 2018, 61(5), 1046-1054.
[http://dx.doi.org/10.1007/s00125-018-4573-7 ] [PMID: 29556673]
[151]
Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation, 2005, 111(11), 1448-1454.
[http://dx.doi.org/10.1161/01.CIR.0000158483.13093.9D ] [PMID: 15781756]
[152]
Rees, D.A.; Alcolado, J.C. Animal models of diabetes mellitus. Diabet. Med., 2005, 22(4), 359-370.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01499.x ] [PMID: 15787657]
[153]
Bugger, H.; Abel, E.D. Rodent models of diabetic cardiomyopathy. Dis. Model. Mech., 2009, 2(9-10), 454-466.
[http://dx.doi.org/10.1242/dmm.001941 ] [PMID: 19726805]
[154]
Lutz, T.A.; Woods, S.C. Overview of Animal Models of Obesity. Curr. Protocols Pharmacol., 2012(Suppl. 58), 1-18.
[155]
Wang, B.; Chandrasekera, P.C.; Pippin, J.J. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr. Diabetes Rev., 2014, 10(2), 131-145.
[http://dx.doi.org/10.2174/1573399810666140508121012 ] [PMID: 24809394]
[156]
Wayhart, J.P.; Lawson, H.A. Animal Models of Metabolic Syndrome, 2nd ed; Elsevier: Amsterdam, 2017.
[157]
Sowton, A.P.; Griffin, J.L.; Murray, A.J. Metabolic profiling of the diabetic heart: toward a richer picture. Front. Physiol., 2019, 10, 639.
[http://dx.doi.org/10.3389/fphys.2019.00639 ] [PMID: 31214041]
[158]
Yoshioka, M.; Kayo, T.; Ikeda, T.; Koizumi, A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes, 1997, 46(5), 887-894.
[http://dx.doi.org/10.2337/diab.46.5.887 ] [PMID: 9133560]
[159]
Wang, J.; Takeuchi, T.; Tanaka, S.; Kubo, S.K.; Kayo, T.; Lu, D.; Takata, K.; Koizumi, A.; Izumi, T. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Invest., 1999, 103(1), 27-37.
[http://dx.doi.org/10.1172/JCI4431 ] [PMID: 9884331]
[160]
Wicker, L.S.; Miller, B.J.; Coker, L.Z.; McNally, S.E.; Scott, S.; Mullen, Y.; Appel, M.C. Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J. Exp. Med., 1987, 165(6), 1639-1654.
[http://dx.doi.org/10.1084/jem.165.6.1639 ] [PMID: 3585250]
[161]
Serreze, D.V.; Leiter, E.H. Genetic and pathogenic basis of autoimmune diabetes in NOD mice. Curr. Opin. Immunol., 1994, 6(6), 900-906.
[http://dx.doi.org/10.1016/0952-7915(94)90011-6 ] [PMID: 7710714]
[162]
Hummel, K.P.; Dickie, M.M.; Coleman, D.L. Diabetes, a new mutation in the mouse. Science, 1966, 153(3740), 1127-1128.
[163]
Chen, H.; Charlat, O.; Tartaglia, L.A.; Woolf, E.A.; Weng, X.; Ellis, S.J.; Lakey, N.D.; Culpepper, J.; Moore, K.J.; Breitbart, R.E.; Duyk, G.M.; Tepper, R.I.; Morgenstern, J.P. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell, 1996, 84(3), 491-495.
[http://dx.doi.org/10.1016/S0092-8674(00)81294-5 ] [PMID: 8608603]
[164]
Friedman, J.M.; Leibel, R.L.; Siegel, D.S.; Walsh, J.; Bahary, N. Molecular mapping of the mouse ob mutation. Genomics, 1991, 11(4), 1054-1062.
[http://dx.doi.org/10.1016/0888-7543(91)90032-A ] [PMID: 1686014]
[165]
Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505), 425-432.
[http://dx.doi.org/10.1038/372425a0 ] [PMID: 7984236]
[166]
Zucker, L.M.; Zucker, T.F. Fatty, a New Mutation in the Rat. J. Hered., 1961, 52(6), 275-278.
[http://dx.doi.org/10.1093/oxfordjournals.jhered.a107093]
[167]
Mendez, J.D.; Ramos, H.G. Animal models in diabetes research. Arch. Med. Res., 1994, 25(4), 367-375.
[http://dx.doi.org/10.1007/978-1-62703-068-7 ] [PMID: 7858393]
[168]
Lehnen, A.M.; Rodrigues, B.; Irigoyen, M.C.; De Angelis, K.; Schaan, B.D.A. Cardiovascular changes in animal models of metabolic syndrome. J. Diabetes Res., 2013, •••, 2013761314.
[http://dx.doi.org/10.1155/2013/761314 ] [PMID: 23691518]
[169]
Diamanti, K.; Cavalli, M.; Pan, G.; Pereira, M.J.; Kumar, C.; Skrtic, S.; Grabherr, M.; Risérus, U.; Eriksson, J.W.; Komorowski, J. Intra- and inter-individual metabolic profiling highlights carnitine and lysophosphatidylcholine pathways as key molecular defects in type 2 diabetes. Sci. Rep., 2019, 9(1), 1-13.
[http://dx.doi.org/10.1038/s41598-019-45906-5 ] [PMID: 30626917]
[170]
Zheng, Y.; Hu, F.B. Comprehensive metabolomic profiling of type 2 diabetes. Clin. Chem., 2015, 61(3), 453-455.
[http://dx.doi.org/10.1373/clinchem.2014.235986 ] [PMID: 25595438]
[171]
Salihovic, S.; Fall, T.; Ganna, A.; Broeckling, C.D.; Prenni, J.E.; Hyötyläinen, T.; Kärrman, A.; Lind, P.M.; Ingelsson, E.; Lind, L. Identification of metabolic profiles associated with human exposure to perfluoroalkyl substances. J. Expo. Sci. Environ. Epidemiol., 2019, 29(2), 196-205.
[http://dx.doi.org/10.1038/s41370-018-0060-y ] [PMID: 30185940]
[172]
Yamanouchi, T.; Ogata, N.; Tagaya, T.; Kawasaki, T.; Sekino, N.; Funato, H.; Akaoka, L.; Miyashita, H. Clinical usefulness of serum 1,5-anhydroglucitol in monitoring glycaemic control. Lancet, 1996, 347(9014), 1514-1518.
[http://dx.doi.org/10.1016/S0140-6736(96)90672-8 ] [PMID: 8684103]
[173]
Deo, R.C.; Hunter, L.; Lewis, G.D.; Pare, G.; Vasan, R.S.; Chasman, D.; Wang, T.J.; Gerszten, R.E.; Roth, F.P. Interpreting metabolomic profiles using unbiased pathway models. PLOS Comput. Biol., 2010, 6(2), e1000692.
[http://dx.doi.org/10.1371/journal.pcbi.1000692 ] [PMID: 20195502]
[174]
Altmaier, E.; Ramsay, S.L.; Graber, A.; Mewes, H.W.; Weinberger, K.M.; Suhre, K. Bioinformatics analysis of targeted metabolomics-uncovering old and new tales of diabetic mice under medication. Endocrinology, 2008, 149(7), 3478-3489.
[http://dx.doi.org/10.1210/en.2007-1747 ] [PMID: 18372322]
[175]
Suhre, K.; Römisch-Margl, W.; de Angelis, M.H.; Adamski, J.; Luippold, G.; Augustin, R. Identification of a potential biomarker for FABP4 inhibition: the power of lipidomics in preclinical drug testing. J. Biomol. Screen., 2011, 16(5), 467-475.
[http://dx.doi.org/10.1177/1087057111402200 ] [PMID: 21543640]
[176]
Cohn, J.N.; Archibald, D.G.; Ziesche, S.; Franciosa, J.A.; Harston, W.E.; Tristani, F.E.; Duneman, B.; Baker, B. From the NEJM Archive; , 1986.
[177]
Caveney, E.J.; Cohen, O.J. Diabetes and biomarkers. J. Diabetes Sci. Technol., 2011, 5(1), 192-197.
[http://dx.doi.org/10.1177/193229681100500127 ] [PMID: 21303644]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy