Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Proinflammatory and Anti-inflammatory Genes in Stroke Pathogenesis

Author(s): Mengmeng Jiang, Penglin Yin, Xiaodan Bai, Liji Yang, Junping Zhang and Shixin Xu*

Volume 26, Issue 34, 2020

Page: [4220 - 4233] Pages: 14

DOI: 10.2174/1381612826666200701212859

Price: $65

Abstract

The brain's response to ischemic injury is an acute and long-term inflammatory process. This process involves activation of resident cells (mainly microglia, hematogenous macrophages), production of proinflammatory mediators and infiltration of various proinflammatory cells (mainly neutrophils and lymphocytes). These cells play an essential role in ischemic brain tissue by releasing either proinflammatory or anti-inflammatory mediators at different time points. However, the exact pathogenesis of proinflammatory or anti-inflammatory genes in this process has not yet been elucidated. This review aims to investigate the inflammatory process of stroke, especially the role of proinflammatory and anti-inflammatory genes in the pathogenesis of stroke. We also summarize the current clinical trials of drugs that target the inflammatory mechanism for intervention.

Keywords: Stroke, brain injury, inflammatory reaction, pro-inflammatory/anti-inflammatory genes, clinical trials, neutrophils.

[1]
Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation 2017; 14(1): 21.
[http://dx.doi.org/10.1186/s12974-016-0774-5] [PMID: 28115020]
[2]
Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 2009; 7: 97.
[http://dx.doi.org/10.1186/1479-5876-7-97] [PMID: 19919699]
[3]
Mehndiratta P, Chapman Smith S, Worrall BB. Etiologic stroke subtypes: updated definition and efficient workup strategies. Curr Treat Options Cardiovasc Med 2015; 17(1): 357.
[http://dx.doi.org/10.1007/s11936-014-0357-7] [PMID: 25398425]
[4]
Peruzzotti-Jametti L, Donegá M, Giusto E, Mallucci G, Marchetti B, Pluchino S. The role of the immune system in central nervous system plasticity after acute injury. Neuroscience 2014; 283: 210-21.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.036] [PMID: 24785677]
[5]
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2015; 22(10): 1258-77.
[http://dx.doi.org/10.2174/0929867322666150209154036] [PMID: 25666795]
[6]
Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007; 27(10): 2596-605.
[http://dx.doi.org/10.1523/JNEUROSCI.5360-06.2007] [PMID: 17344397]
[7]
Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin 2017; 38(4): 445-58.
[http://dx.doi.org/10.1038/aps.2016.162] [PMID: 28260801]
[8]
Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci 2017; 18(10): 18.
[http://dx.doi.org/10.3390/ijms18102135] [PMID: 29027964]
[9]
Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 2003; 183(1): 25-33.
[http://dx.doi.org/10.1016/S0014-4886(03)00082-7] [PMID: 12957485]
[10]
Tanaka R, Komine-Kobayashi M, Mochizuki H, et al. Migration of enhanced green fluorescent protein expressing bone marrowderived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 2003; 117(3): 531-9.
[http://dx.doi.org/10.1016/S0306-4522(02)00954-5] [PMID: 12617960]
[11]
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2016; 144: 103-20.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.008] [PMID: 26455456]
[12]
Choudhury GR, Ding S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 2016; 85: 234-44.
[http://dx.doi.org/10.1016/j.nbd.2015.05.003] [PMID: 25982835]
[13]
Huang L, Nakamura Y, Lo EH, Hayakawa K. Astrocyte signaling in the neurovascular unit after central nervous system injury. Int J Mol Sci 2019; 20(2): 282.
[http://dx.doi.org/10.3390/ijms20020282]
[14]
Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004; 24(9): 2143-55.
[http://dx.doi.org/10.1523/JNEUROSCI.3547-03.2004] [PMID: 14999065]
[15]
Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 2015; 16(5): 249-63.
[http://dx.doi.org/10.1038/nrn3898] [PMID: 25891508]
[16]
Cekanaviciute E, Buckwalter MS. Astrocytes: integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics 2016; 13(4): 685-701.
[http://dx.doi.org/10.1007/s13311-016-0477-8] [PMID: 27677607]
[17]
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[18]
Perez-de-Puig I, Miró-Mur F, Ferrer-Ferrer M, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol 2015; 129(2): 239-57.
[http://dx.doi.org/10.1007/s00401-014-1381-0] [PMID: 25548073]
[19]
de Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol 2016; 16(6): 378-91.
[http://dx.doi.org/10.1038/nri.2016.49] [PMID: 27231052]
[20]
Ruhnau J, Schulze J, Dressel A, Vogelgesang A. Thrombosis, neuroinflammation, and poststroke infection: the multifaceted role of neutrophils in stroke. J Immunol Res 2017; 2017: 5140679.
[http://dx.doi.org/10.1155/2017/5140679] [PMID: 28331857]
[21]
Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR. Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice. Stroke 2015; 46(10): 2916-25.
[http://dx.doi.org/10.1161/STROKEAHA.115.010620] [PMID: 26337969]
[22]
Gidday JM, Gasche YG, Copin JC, et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 2005; 289(2): H558-68.
[http://dx.doi.org/10.1152/ajpheart.01275.2004] [PMID: 15764676]
[23]
Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 2015; 35(6): 888-901.
[http://dx.doi.org/10.1038/jcbfm.2015.45] [PMID: 25806703]
[24]
Schmid-Schönbein GW. Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Fed Proc 1987; 46(7): 2397-401.
[PMID: 3552737]
[25]
Ikegame Y, Yamashita K, Hayashi S, Yoshimura S, Nakashima S, Iwama T. Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res 2010; 33(7): 703-7.
[http://dx.doi.org/10.1038/hr.2010.58] [PMID: 20485441]
[26]
Feng Y, Liao S, Wei C, et al. Infiltration and persistence of lymphocytes during late-stage cerebral ischemia in middle cerebral artery occlusion and photothrombotic stroke models. J Neuroinflammation 2017; 14(1): 248.
[http://dx.doi.org/10.1186/s12974-017-1017-0] [PMID: 29246244]
[27]
Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory Disequilibrium in Stroke. Circ Res 2016; 119(1): 142-58.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308022] [PMID: 27340273]
[28]
Cui Y, Wan Q. NKT cells in neurological diseases. Front Cell Neurosci 2019; 13: 245.
[http://dx.doi.org/10.3389/fncel.2019.00245] [PMID: 31231193]
[29]
Rayasam A, Hsu M, Kijak JA, et al. Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology 2018; 154(3): 363-76.
[http://dx.doi.org/10.1111/imm.12918] [PMID: 29494762]
[30]
Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018; 281(1): 8-27.
[http://dx.doi.org/10.1111/imr.12621] [PMID: 29247995]
[31]
Salmeron K, Aihara T, Redondo-Castro E, Pinteaux E, Bix G. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury. J Neurochem 2016; 136(3): 573-80.
[http://dx.doi.org/10.1111/jnc.13422] [PMID: 26546397]
[32]
Fields JK, Günther S, Sundberg EJ. Structural basis of IL-1 family cytokine signaling. Front Immunol 2019; 10: 1412.
[http://dx.doi.org/10.3389/fimmu.2019.01412] [PMID: 31281320]
[33]
Savard A, Brochu ME, Chevin M, Guiraut C, Grbic D, Sébire G. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia. J Neuroinflammation 2015; 12: 111.
[http://dx.doi.org/10.1186/s12974-015-0330-8] [PMID: 26025257]
[34]
Dickens AM, Tovar-Y-Romo LB, Yoo SW, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal 2017; 10(473): 12.
[http://dx.doi.org/10.1126/scisignal.aai7696] [PMID: 28377412]
[35]
Swaroop S, Mahadevan A, Shankar SK, Adlakha YK, Basu A. HSP60 critically regulates endogenous IL-1 beta production in activated microglia by stimulating NLRP3 inflammasome pathway. J Neuroinflammation 2018; 15: 19.
[36]
Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 2001; 21(15): 5528-34.
[http://dx.doi.org/10.1523/JNEUROSCI.21-15-05528.2001] [PMID: 11466424]
[37]
Zhang Z, Chopp M, Goussev A, Powers C. Cerebral vessels express interleukin 1beta after focal cerebral ischemia. Brain Res 1998; 784(1-2): 210-7.
[http://dx.doi.org/10.1016/S0006-8993(97)01317-6] [PMID: 9518616]
[38]
Touzani O, Boutin H, Chuquet J, Rothwell N. Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol 1999; 100(1-2): 203-15.
[http://dx.doi.org/10.1016/S0165-5728(99)00202-7] [PMID: 10695731]
[39]
Murphy JM, Jeong K, Rodriguez YAR, Kim JH, Ahn EYE, Lim STS. FAK and Pyk2 activity promote TNF-alpha and IL-1 betamediated pro-inflammatory gene expression and vascular inflammation. Sci Rep 2019; 9: 14.
[http://dx.doi.org/10.1038/s41598-019-44098-2]
[40]
Autieri MV. Pro- and Anti-inflammatory cytokine networks in atherosclerosis. ISRN Vascular Medicine 2012; 2012: 1-17.
[http://dx.doi.org/10.5402/2012/987629]
[41]
Martin D, Chinookoswong N, Miller G. The interleukin-1 receptor antagonist (rhIL-1ra) protects against cerebral infarction in a rat model of hypoxia-ischemia. Exp Neurol 1994; 130(2): 362-7.
[http://dx.doi.org/10.1006/exnr.1994.1215] [PMID: 7867766]
[42]
Hofer MJ, Campbell IL. Immunoinflammatory diseases of the central nervous system - the tale of two cytokines 2016; 173: 716-28.
[43]
Jiang X, Andjelkovic AV, Zhu L, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2018; 163-164: 144-71.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.001] [PMID: 28987927]
[44]
Aloisi F, Care A, Borsellino G, et al. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha J Immunology (Baltimore, Md :1950) 1992; 149: 2358-66.
[45]
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374(Pt 1): 1-20.
[http://dx.doi.org/10.1042/bj20030407] [PMID: 12773095]
[46]
Smith CJ, Emsley HCA, Gavin CM, et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol 2004; 4: 2.
[http://dx.doi.org/10.1186/1471-2377-4-2] [PMID: 14725719]
[47]
Loddick SA, Turnbull AV, Rothwell NJ. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 1998; 18(2): 176-9.
[http://dx.doi.org/10.1097/00004647-199802000-00008] [PMID: 9469160]
[48]
Penkowa M, Giralt M, Carrasco J, Hadberg H, Hidalgo J. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 2000; 32(3): 271-85.
[http://dx.doi.org/10.1002/1098-1136(200012)32:3<271::AIDGLIA70>3.0.CO;2-5] [PMID: 11102968]
[49]
Gertz K, Kronenberg G, Kälin RE, et al. Essential role of interleukin-6 in post-stroke angiogenesis. Brain 2012; 135(Pt 6): 1964-80.
[http://dx.doi.org/10.1093/brain/aws075] [PMID: 22492561]
[50]
Jung JE, Kim GS, Chan PH. Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke 2011; 42(12): 3574-9.
[http://dx.doi.org/10.1161/STROKEAHA.111.626648] [PMID: 21940958]
[51]
Beurel E, Lowell JA. Th17 cells in depression. Brain Behav Immun 2018; 69: 28-34.
[http://dx.doi.org/10.1016/j.bbi.2017.08.001] [PMID: 28779999]
[52]
Lawrence SM, Ruoss JL, Wynn JL. IL-17 in neonatal health and disease. Am J Reprod Immunol 2018; 79(5): e12800.
[http://dx.doi.org/10.1111/aji.12800] [PMID: 29243317]
[53]
Garg AV, Amatya N, Chen K, et al. MCPIP1 Endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 2015; 43(3): 475-87.
[http://dx.doi.org/10.1016/j.immuni.2015.07.021] [PMID: 26320658]
[54]
Jovanovic DV, Di Battista JA, Martel-Pelletier J, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol 1998; 160(7): 3513-21.
[PMID: 9531313]
[55]
Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000 2015; 69(1): 142-59.
[http://dx.doi.org/10.1111/prd.12083] [PMID: 26252407]
[56]
Zhu S, Pan W, Shi P, et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J Exp Med 2010; 207(12): 2647-62.
[http://dx.doi.org/10.1084/jem.20100703] [PMID: 21078888]
[57]
Lin Y, Zhang JC, Yao CY, et al. Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice. Cell Death Dis 2016; 7(6): e2273.
[http://dx.doi.org/10.1038/cddis.2015.284] [PMID: 27336717]
[58]
Zhang J, Mao X, Zhou T, Cheng X, Lin Y. IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. Neuroscience 2014; 274: 419-28.
[http://dx.doi.org/10.1016/j.neuroscience.2014.06.001] [PMID: 24928352]
[59]
Ma K, Zhang H, Baloch Z. Pathogenetic and therapeutic applications of tumor necrosis factor-α (TNF-α) in major depressive disorder: A systematic review. Int J Mol Sci 2016; 17(5): 17.
[http://dx.doi.org/10.3390/ijms17050733] [PMID: 27187381]
[60]
Gautam SC, Noth CJ, Niewenhuis LM, Janakiraman N, Kim JS, Chopp M. Transforming growth factor beta-1 (TGF-beta 1) potentiates IL1 alpha-induced IL6 mRNA and cytokine protein production in a human astrocytoma cell line. Oncol Res 1993; 5(10-11): 423-32.
[PMID: 8054703]
[61]
Sébire G, Héry C, Peudenier S, Tardieu M. Adhesion proteins on human microglial cells and modulation of their expression by IL1 alpha and TNF alpha. Res Virol 1993; 144(1): 47-52.
[http://dx.doi.org/10.1016/S0923-2516(06)80011-7] [PMID: 8446777]
[62]
Liu Y, Wu XM, Luo QQ, et al. CX3CL1/CX3CR1-mediated microglia activation plays a detrimental role in ischemic mice brain via p38MAPK/PKC pathway. J Cereb Blood Flow Metab 2015; 35(10): 1623-31.
[http://dx.doi.org/10.1038/jcbfm.2015.97] [PMID: 25966946]
[63]
Zhan J, Qin W, Zhang Y, et al. Upregulation of neuronal zinc finger protein A20 expression is required for electroacupuncture to attenuate the cerebral inflammatory injury mediated by the nuclear factorkB signaling pathway in cerebral ischemia/reperfusion rats. J Neuroinflammation 2016; 13(1): 258.
[http://dx.doi.org/10.1186/s12974-016-0731-3] [PMID: 27716383]
[64]
Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G. Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 1995; 15(1): 42-51.
[http://dx.doi.org/10.1038/jcbfm.1995.5] [PMID: 7528223]
[65]
Sairanen T, Carpén O, Karjalainen-Lindsberg ML, et al. Evolution of cerebral tumor necrosis factor-alpha production during human ischemic stroke. Stroke 2001; 32(8): 1750-8.
[http://dx.doi.org/10.1161/01.STR.32.8.1750] [PMID: 11486101]
[66]
Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke 1997; 28(6): 1233-44.
[http://dx.doi.org/10.1161/01.STR.28.6.1233] [PMID: 9183357]
[67]
Seckinger P, Isaaz S, Dayer JM. A human inhibitor of tumor necrosis factor alpha. J Exp Med 1988; 167(4): 1511-6.
[http://dx.doi.org/10.1084/jem.167.4.1511] [PMID: 2833558]
[68]
Belarbi K, Jopson T, Tweedie D, et al. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 2012; 9: 23.
[http://dx.doi.org/10.1186/1742-2094-9-23] [PMID: 22277195]
[69]
Tau G, Rothman P. Biologic functions of the IFN-γ receptors. Allergy 1999; 54(12): 1233-51.
[http://dx.doi.org/10.1034/j.1398-9995.1999.00099.x] [PMID: 10688427]
[70]
Billiau A. Interferon-gamma: biology and role in pathogenesis. Adv Immunol 1996; 62: 61-130.
[http://dx.doi.org/10.1016/S0065-2776(08)60428-9] [PMID: 8781267]
[71]
Jin WN, Ducruet AF, Liu Q, et al. Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia. FASEB J 2018; 32(5): 2757-67.
[http://dx.doi.org/10.1096/fj.201700962R] [PMID: 29401578]
[72]
Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 2006; 113(17): 2105-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.593046] [PMID: 16636173]
[73]
Li HL, Kostulas N, Huang YM, et al. IL-17 and IFN-gamma mRNA expression is increased in the brain and systemically after permanent middle cerebral artery occlusion in the rat. J Neuroimmunol 2001; 116(1): 5-14.
[http://dx.doi.org/10.1016/S0165-5728(01)00264-8] [PMID: 11311324]
[74]
Seifert HA, Collier LA, Chapman CB, Benkovic SA, Willing AE, Pennypacker KR. Pro-inflammatory interferon gamma signaling is directly associated with stroke induced neurodegeneration. J Neuroimmune Pharmacol 2014; 9(5): 679-89.
[http://dx.doi.org/10.1007/s11481-014-9560-2] [PMID: 25104571]
[75]
Wojkowska DW, Szpakowski P, Glabinski A. Interleukin 17A promotes lymphocytes adhesion and induces CCL2 and CXCL1 release from brain endothelial cells. Int J Mol Sci 2017; 18(5): 15.
[http://dx.doi.org/10.3390/ijms18051000] [PMID: 28481289]
[76]
Barna BP, Pettay J, Barnett GH, Zhou P, Iwasaki K, Estes ML. Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J Neuroimmunol 1994; 50(1): 101-7.
[http://dx.doi.org/10.1016/0165-5728(94)90220-8] [PMID: 8300851]
[77]
Standiford TJ, Kunkel SL, Phan SH, Rollins BJ, Strieter RM. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 1991; 266(15): 9912-8.
[PMID: 2033076]
[78]
Stowe AM, Wacker BK, Cravens PD, et al. CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke. J Neuroinflammation 2012; 9: 33.
[http://dx.doi.org/10.1186/1742-2094-9-33] [PMID: 22340958]
[79]
Thompson WL, Van Eldik LJ. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFkB and MAPK dependent pathways in rat astrocytes. Brain Res 2009; 1287: 47-57.
[http://dx.doi.org/10.1016/j.brainres.2009.06.081] [PMID: 19577550]
[80]
Mojsilovic-Petrovic J, Callaghan D, Cui H, Dean C, Stanimirovic DB, Zhang W. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes. J Neuroinflammation 2007; 4: 12.
[http://dx.doi.org/10.1186/1742-2094-4-12] [PMID: 17474992]
[81]
Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 2010; 411(21-22): 1570-9.
[http://dx.doi.org/10.1016/j.cca.2010.07.006] [PMID: 20633546]
[82]
Arakelyan A, Petrkova J, Hermanova Z, Boyajyan A, Lukl J, Petrek M. Serum levels of the MCP-1 chemokine in patients with ischemic stroke and myocardial infarction. Mediators Inflamm 2005; 2005(3): 175-9.
[http://dx.doi.org/10.1155/MI.2005.175] [PMID: 16106105]
[83]
Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 2002; 22(3): 308-17.
[http://dx.doi.org/10.1097/00004647-200203000-00008] [PMID: 11891436]
[84]
Garcia JM, Stillings SA, Leclerc JL, et al. Role of interleukin-10 in acute brain injuries. Front Neurol 2017; 8: 244.
[http://dx.doi.org/10.3389/fneur.2017.00244] [PMID: 28659854]
[85]
Grilli M, Barbieri I, Basudev H, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 2000; 12(7): 2265-72.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00090.x] [PMID: 10947805]
[86]
Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI. IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways. Brain Res 2011; 1373: 189-94.
[http://dx.doi.org/10.1016/j.brainres.2010.11.096] [PMID: 21138740]
[87]
Pérez-de Puig I, Miró F, Salas-Perdomo A, et al. IL-10 deficiency exacerbates the brain inflammatory response to permanent ischemia without preventing resolution of the lesion. J Cereb Blood Flow Metab 2013; 33(12): 1955-66.
[http://dx.doi.org/10.1038/jcbfm.2013.155] [PMID: 24022622]
[88]
Londoño D, Carvajal J, Strle K, Kim KS, Cadavid D. IL-10 Prevents apoptosis of brain endothelium during bacteremia. J Immunol 2011; 186(12): 7176-86.
[http://dx.doi.org/10.4049/jimmunol.1100060] [PMID: 21602495]
[89]
de Bilbao F, Arsenijevic D, Moll T, et al. In vivo over-expression of interleukin-10 increases resistance to focal brain ischemia in mice. J Neurochem 2009; 110(1): 12-22.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06098.x] [PMID: 19457075]
[90]
Liang QJ, Jiang M, Wang XH, et al. Pre-existing interleukin 10 in cerebral arteries attenuates subsequent brain injury caused by ischemia/reperfusion. IUBMB Life 2015; 67(9): 710-9.
[http://dx.doi.org/10.1002/iub.1429] [PMID: 26337686]
[91]
Spera PA, Ellison JA, Feuerstein GZ, Barone FC. IL-10 reduces rat brain injury following focal stroke. Neurosci Lett 1998; 251(3): 189-92.
[http://dx.doi.org/10.1016/S0304-3940(98)00537-0] [PMID: 9726375]
[92]
Liu X, Liu J, Zhao S, et al. Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke 2016; 47(2): 498-504.
[http://dx.doi.org/10.1161/STROKEAHA.115.012079] [PMID: 26732561]
[93]
McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015; 75(1): 38-50.
[http://dx.doi.org/10.1016/j.cyto.2015.05.023] [PMID: 26187331]
[94]
Derecki NC, Cardani AN, Yang CH, et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 2010; 207(5): 1067-80.
[http://dx.doi.org/10.1084/jem.20091419] [PMID: 20439540]
[95]
Kim HM, Shin HY, Jeong HJ, et al. Reduced IL-2 but elevated IL-4, IL-6, and IgE serum levels in patients with cerebral infarction during the acute stage. J Mol Neurosci 2000; 14(3): 191-6.
[http://dx.doi.org/10.1385/JMN:14:3:191] [PMID: 10984195]
[96]
Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 2011; 42(7): 2026-32.
[http://dx.doi.org/10.1161/STROKEAHA.110.593772] [PMID: 21597016]
[97]
Zhang QX, Zhu W, Xu F, et al. The interleukin-4/PPAR gamma signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol 2019; 17: 33.
[http://dx.doi.org/10.1371/journal.pbio.3000330]
[98]
Zhang YE. Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol 2017; 9(2): 18.
[http://dx.doi.org/10.1101/cshperspect.a022129] [PMID: 27864313]
[99]
Meyers EA, Kessler JA. TGF-β family signaling in neural and neuronal differentiation, development, and function. Cold Spring Harb Perspect Biol 2017; 9(8): 25.
[http://dx.doi.org/10.1101/cshperspect.a022244] [PMID: 28130363]
[100]
Krupinski J, Kumar P, Kumar S, Kaluza J. Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke 1996; 27(5): 852-7.
[http://dx.doi.org/10.1161/01.STR.27.5.852] [PMID: 8623105]
[101]
Krupinski J, Vodovotz Y, Li C, et al. Inducible nitric oxide production and expression of transforming growth factor-beta1 in serum and CSF after cerebral ischaemic stroke in man. Nitric Oxide 1998; 2(6): 442-53.
[http://dx.doi.org/10.1006/niox.1998.0204] [PMID: 10342487]
[102]
Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, Gaffney J. Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke 2000; 31(8): 1863-70.
[http://dx.doi.org/10.1161/01.STR.31.8.1863] [PMID: 10926948]
[103]
Vincze C, Pál G, Wappler EA, et al. Distribution of mRNAs encoding transforming growth factors-beta1, -2, and -3 in the intact rat brain and after experimentally induced focal ischemia. J Comp Neurol 2010; 518(18): 3752-70.
[http://dx.doi.org/10.1002/cne.22422] [PMID: 20653032]
[104]
Gross CE, Bednar MM, Howard DB, Sporn MB. Transforming growth factor-beta 1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke 1993; 24(4): 558-62.
[http://dx.doi.org/10.1161/01.STR.24.4.558] [PMID: 8465363]
[105]
Zhu Y, Yang GY, Ahlemeyer B, et al. Transforming growth factorbeta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 2002; 22(10): 3898-909.
[http://dx.doi.org/10.1523/JNEUROSCI.22-10-03898.2002] [PMID: 12019309]
[106]
Ruocco A, Nicole O, Docagne F, et al. A transforming growth factor-beta antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury. J Cereb Blood Flow Metab 1999; 19(12): 1345-53.
[http://dx.doi.org/10.1097/00004647-199912000-00008] [PMID: 10598939]
[107]
Pál G, Lovas G, Dobolyi A. Induction of transforming growth factor beta receptors following focal ischemia in the rat brain. PLoS One 2014; 9(9): e106544.
[http://dx.doi.org/10.1371/journal.pone.0106544] [PMID: 25192322]
[108]
Reyes-Vázquez C, Prieto-Gómez B, Dafny N. Interferon modulates central nervous system function. Brain Res 2012; 1442: 76-89.
[http://dx.doi.org/10.1016/j.brainres.2011.09.061] [PMID: 22322149]
[109]
Capobianchi MR, Uleri E, Caglioti C, Dolei A. Type I IFN family members: similarity, differences and interaction. Cytokine Growth Factor Rev 2015; 26(2): 103-11.
[http://dx.doi.org/10.1016/j.cytogfr.2014.10.011] [PMID: 25466633]
[110]
Wanve M, Kaur H, Sarmah D, et al. Therapeutic spectrum of interferon-β in ischemic stroke. J Neurosci Res 2019; 97(2): 116-27.
[http://dx.doi.org/10.1002/jnr.24333] [PMID: 30320448]
[111]
Kuo PC, Scofield BA, Yu IC, Chang FL, Ganea D, Yen JH. Interferon-β modulates inflammatory response in cerebral ischemia. J Am Heart Assoc 2016; 5(1): 5.
[http://dx.doi.org/10.1161/JAHA.115.002610] [PMID: 26747000]
[112]
Kieseier BC. The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs 2011; 25(6): 491-502.
[http://dx.doi.org/10.2165/11591110-000000000-00000] [PMID: 21649449]
[113]
Alawieh A, Tomlinson S. Injury site-specific targeting of complement inhibitors for treating stroke. Immunol Rev 2016; 274(1): 270-80.
[http://dx.doi.org/10.1111/imr.12470] [PMID: 27782326]
[114]
Mocco J, Wilson DA, Komotar RJ, et al. Alterations in plasma complement levels after human ischemic stroke. Neurosurgery 2006; 59(1): 28-33.
[http://dx.doi.org/10.1227/01.NEU.0000219221.14280.65] [PMID: 16823297]
[115]
Pedersen ED, Løberg EM, Vege E, Daha MR, Maehlen J, Mollnes TE. In situ deposition of complement in human acute brain ischaemia. Scand J Immunol 2009; 69(6): 555-62.
[http://dx.doi.org/10.1111/j.1365-3083.2009.02253.x] [PMID: 19439017]
[116]
Mocco J, Mack WJ, Ducruet AF, et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res 2006; 99(2): 209-17.
[http://dx.doi.org/10.1161/01.RES.0000232544.90675.42] [PMID: 16778128]
[117]
Ten VS, Sosunov SA, Mazer SP, et al. C1q-deficiency is neuroprotective against hypoxic-ischemic brain injury in neonatal mice. Stroke 2005; 36(10): 2244-50.
[http://dx.doi.org/10.1161/01.STR.0000182237.20807.d0] [PMID: 16179576]
[118]
Takada Y, Ye X, Simon S. The integrins. Genome Biol 2007; 8(5): 215.
[http://dx.doi.org/10.1186/gb-2007-8-5-215] [PMID: 17543136]
[119]
Edwards DN, Bix GJ. Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am J Physiol Cell Physiol 2019; 316(2): C252-63.
[http://dx.doi.org/10.1152/ajpcell.00151.2018] [PMID: 30462535]
[120]
Chavakis T. Leucocyte recruitment in inflammation and novel endogenous negative regulators thereof. Eur J Clin Invest 2012; 42(6): 686-91.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02677.x] [PMID: 22577952]
[121]
Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 7(9): 678-89.
[http://dx.doi.org/10.1038/nri2156] [PMID: 17717539]
[122]
Schittenhelm L, Hilkens CM, Morrison VL. β2 Integrins as regulators of dendritic cell, monocyte, and macrophage function. Front Immunol 2017; 8: 1866.
[http://dx.doi.org/10.3389/fimmu.2017.01866] [PMID: 29326724]
[123]
Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN. Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol 2004; 287(6): H2555-60.
[http://dx.doi.org/10.1152/ajpheart.00588.2004] [PMID: 15308480]
[124]
Chen H, Chopp M, Zhang RL, et al. Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol 1994; 35(4): 458-63.
[http://dx.doi.org/10.1002/ana.410350414] [PMID: 8154873]
[125]
Edwards DN, Bix GJ. The inflammatory response after ischemic stroke: Targeting β2 and β1 integrins. Front Neurosci 2019; 13: 540.
[http://dx.doi.org/10.3389/fnins.2019.00540] [PMID: 31191232]
[126]
Becker K, Kindrick D, Relton J, Harlan J, Winn R. Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 2001; 32(1): 206-11.
[http://dx.doi.org/10.1161/01.STR.32.1.206] [PMID: 11136938]
[127]
Llovera G, Hofmann K, Roth S, et al. Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Sci Transl Med 2015; 7(299): 299ra121.
[http://dx.doi.org/10.1126/scitranslmed.aaa9853] [PMID: 26246166]
[128]
Li L, Liu F, Welser-Alves JV, McCullough LD, Milner R. Upregulation of fibronectin and the α5β1 and αvβ3 integrins on blood vessels within the cerebral ischemic penumbra. Exp Neurol 2012; 233(1): 283-91.
[http://dx.doi.org/10.1016/j.expneurol.2011.10.017] [PMID: 22056225]
[129]
Roberts J, de Hoog L, Bix GJ. Mice deficient in endothelial α5 integrin are profoundly resistant to experimental ischemic stroke. J Cereb Blood Flow Metab 2017; 37(1): 85-96.
[http://dx.doi.org/10.1177/0271678X15616979] [PMID: 26661237]
[130]
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36(9): 1481-507.
[http://dx.doi.org/10.1177/0271678X16655551] [PMID: 27323783]
[131]
Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases.matrix metalloproteinses and tissue remodeling in health and disease: cardiovascular remodeling. Elsevier Academic Press Inc San Diego 2017; 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005]
[132]
Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR. Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 1997; 238(1-2): 53-6.
[http://dx.doi.org/10.1016/S0304-3940(97)00859-8] [PMID: 9464653]
[133]
Lee SR, Tsuji K, Lee SR, Lo EH. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci 2004; 24(3): 671-8.
[http://dx.doi.org/10.1523/JNEUROSCI.4243-03.2004] [PMID: 14736853]
[134]
Maddahi A, Chen Q, Edvinsson L. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat. BMC Neurosci 2009; 10: 56.
[http://dx.doi.org/10.1186/1471-2202-10-56] [PMID: 19497125]
[135]
Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front Mol Neurosci 2015; 8: 77.
[http://dx.doi.org/10.3389/fnmol.2015.00077] [PMID: 26733801]
[136]
Mussbacher M, Salzmann M, Brostjan C, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol 2019; 10: 85.
[http://dx.doi.org/10.3389/fimmu.2019.00085] [PMID: 30778349]
[137]
Nurmi A, Lindsberg PJ, Koistinaho M, et al. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 2004; 35(4): 987-91.
[http://dx.doi.org/10.1161/01.STR.0000120732.45951.26] [PMID: 14988572]
[138]
Kawai T, Akira S. TLR signaling. Semin Immunol 2007; 19(1): 24-32.
[http://dx.doi.org/10.1016/j.smim.2006.12.004] [PMID: 17275323]
[139]
Anttila JE, Whitaker KW, Wires ES, Harvey BK, Airavaara M. Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors Prog Neuropsychopharmacol Biol Psychiatry 2017; 79(Pt A): 3-14.
[http://dx.doi.org/10.1016/j.pnpbp.2016.07.003] [PMID: 27389423]
[140]
Singh AK, Jiang Y. How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 2004; 201(1-3): 197-207.
[http://dx.doi.org/10.1016/j.tox.2004.04.015] [PMID: 15297033]
[141]
Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 2009; 158(3): 1007-20.
[http://dx.doi.org/10.1016/j.neuroscience.2008.07.067] [PMID: 18809468]
[142]
Gesuete R, Kohama SG, Stenzel-Poore MP. Toll-like receptors and ischemic brain injury. J Neuropathol Exp Neurol 2014; 73(5): 378-86.
[http://dx.doi.org/10.1097/NEN.0000000000000068] [PMID: 24709682]
[143]
Goulopoulou S, McCarthy CG, Webb RC. Toll-like receptors in the vascular system: sensing the dangers within. Pharmacol Rev 2016; 68(1): 142-67.
[http://dx.doi.org/10.1124/pr.114.010090] [PMID: 26721702]
[144]
Wang PF, Xiong XY, Chen J, Wang YC, Duan W, Yang QW. Function and mechanism of toll-like receptors in cerebral ischemic tolerance: from preconditioning to treatment. J Neuroinflammation 2015; 12: 80.
[http://dx.doi.org/10.1186/s12974-015-0301-0] [PMID: 25928750]
[145]
Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 2007; 353(2): 509-14.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.057] [PMID: 17188246]
[146]
Bohacek I, Cordeau P, Lalancette-Hébert M, et al. Toll-like receptor 2 deficiency leads to delayed exacerbation of ischemic injury. J Neuroinflammation 2012; 9: 191.
[http://dx.doi.org/10.1186/1742-2094-9-191] [PMID: 22873409]
[147]
Brea D, Blanco M, Ramos-Cabrer P, et al. Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values. J Cereb Blood Flow Metab 2011; 31(6): 1424-31.
[http://dx.doi.org/10.1038/jcbfm.2010.231] [PMID: 21206505]
[148]
Fann DYW, Lim YA, Cheng YL, et al. Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol 2018; 55(2): 1082-96.
[http://dx.doi.org/10.1007/s12035-017-0394-9] [PMID: 28092085]
[149]
Shao BZ, Cao Q, Liu C. Targeting NLRP3 inflammasome in the treatment of CNS diseases. Front Mol Neurosci 2018; 11: 320.
[http://dx.doi.org/10.3389/fnmol.2018.00320] [PMID: 30233319]
[150]
Yang F, Wang Z, Wei X, et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 2014; 34(4): 660-7.
[http://dx.doi.org/10.1038/jcbfm.2013.242] [PMID: 24424382]
[151]
Ye X, Shen T, Hu J, et al. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol 2017; 292: 46-55.
[http://dx.doi.org/10.1016/j.expneurol.2017.03.002] [PMID: 28274860]
[152]
Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009; 8(4): 398-412.
[http://dx.doi.org/10.1016/S1474-4422(09)70054-7] [PMID: 19296922]
[153]
Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 2018; 833: 531-44.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.028] [PMID: 29935175]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy