Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Evaluating Phenyl Propanoids Isolated from Citrus medica as Potential Inhibitors for Mitotic kinesin Eg5

Author(s): Himesh Makala, Venkatasubramanian Ulaganathan*, Aravind Sivasubramanian, Narendran Rajendran and Shankar Subramanian

Volume 17, Issue 11, 2020

Page: [1355 - 1363] Pages: 9

DOI: 10.2174/1570180817999200630125449

Price: $65

Abstract

Background: Human mitotic kinesins play an essential role in mitotic cell division. Targeting the spindle separation phase of mitosis has gained much attention in cancer chemotherapy. Spindle segregation is carried out mainly by the kinesin, Eg5. Many Eg5 inhibitors are in different phases of clinical trials as cancer drugs. This enzyme has two allosteric binding sites to which the inhibitors can bind. The first site is formed by loop L5, helix α2 and helix α3 and all the current drug candidates bind un-competitively to this site with ATP/ADP. The second site, formed by helix α4 and helix α6, which has gained attention recently, has not been explored well. Some inhibitors that bind to this site are competitive, while others are uncompetitive to ATP/ADP. Phenylpropanoids are pharmacologically active secondary metabolites.

Methods: In this study, we have evaluated fourteen phenyl propanoids extracted from Citrus medica for inhibitory activity against human mitotic kinesin Eg5 in vitro steady-state ATPase assay. Ther interactions and stability using molecular docking and molecular dynamics simulations.

Results and Discussions: Of the fourteen compounds tested, naringin and quercetin showed good activity with IC50 values in the micromolar range. Molecular docking studies of these complexes showed that both the molecules interact with the key residues of the active site predominantly thorough hydrophobic & aromatic π–π interactions consistent with the known inhibitors. Besides, these molecules also form hydrogen bonding interactions stabilizing the complexes. Molecular dynamics simulations of these complexes confirm the stability of these interactions.

Conclusion: These results can be used as a strong basis for further modification of these compounds to design new inhibitors with higher potency using structure-based drug design.

Keywords: Mitotic kinesin Eg5, Citrus phenylpropanoids, steady-state ATPase assay, molecular docking, molecular dynamics simulations, ATP/ADP.

Graphical Abstract

[1]
Rodionov, V.I.; Gelfand, V.I.; Borisy, G.G. Kinesin-like molecules involved in spindle formation. J. Cell Sci., 1993, 106(Pt 4), 1179-1188.
[PMID: 8126099]
[2]
Wordeman, L. How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays. Semin. Cell Dev. Biol., 2010, 21(3), 260-268.
[http://dx.doi.org/10.1016/j.semcdb.2010.01.018] [PMID: 20109570]
[3]
Zhu, C.; Zhao, J.; Bibikova, M.; Leverson, J.D.; Bossy-Wetzel, E.; Fan, J.B.; Abraham, R.T.; Jiang, W. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol. Cell, 2005, 16(7), 3187-3199.
[http://dx.doi.org/10.1091/mbc.e05-02-0167] [PMID: 15843429]
[4]
Tanenbaum, M.E.; Medema, R.H. Mechanisms of centrosome separation and bipolar spindle assembly. Dev. Cell, 2010, 19(6), 797-806.
[http://dx.doi.org/10.1016/j.devcel.2010.11.011] [PMID: 21145497]
[5]
Liu, C.; Zhou, N. Overexpression Is Predictive of Poor Prognosis in Hepatocellular Carcinoma Patients, 2017., 2176460.
[6]
Chin, G.M.; Herbst, R. Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Mol. Cancer Ther., 2006, 5(10), 2580-2591.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0201] [PMID: 17041103]
[7]
Manchado, E.; Guillamot, M.; Malumbres, M. Killing cells by targeting mitosis. Cell Death Differ., 2012, 19(3), 369-377.
[http://dx.doi.org/10.1038/cdd.2011.197] [PMID: 22223105]
[8]
Tao, W.; South, V.J.; Diehl, R.E.; Davide, J.P.; Sepp-Lorenzino, L.; Fraley, M.E.; Arrington, K.L.; Lobell, R.B. An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis. Mol. Cell. Biol., 2007, 27(2), 689-698.
[http://dx.doi.org/10.1128/MCB.01505-06] [PMID: 17101792]
[9]
Rath, O.; Kozielski, F. Kinesins and cancer. Nat. Rev. Cancer, 2012, 12(8), 527-539.
[http://dx.doi.org/10.1038/nrc3310] [PMID: 22825217]
[10]
Rosenfeld, S.S.; Xing, J.; Jefferson, G.M.; King, P.H. Docking and rolling, a model of how the mitotic motor Eg5 works. J. Biol. Chem., 2005, 280(42), 35684-35695.
[http://dx.doi.org/10.1074/jbc.M506561200] [PMID: 16115880]
[11]
Cochran, J.C.; Krzysiak, T.C.; Gilbert, S.P. Pathway of ATP hydrolysis by monomeric kinesin Eg5. Biochemistry, 2006, 45(40), 12334-12344.
[http://dx.doi.org/10.1021/bi0608562] [PMID: 17014086]
[12]
Parke, C.L.; Wojcik, E.J.; Kim, S.; Worthylake, D.K. ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. J. Biol. Chem., 2010, 285(8), 5859-5867.
[http://dx.doi.org/10.1074/jbc.M109.071233] [PMID: 20018897]
[13]
Wojcik, E.J.; Dalrymple, N.A.; Alford, S.R.; Walker, R.A.; Kim, S. Disparity in allosteric interactions of monastrol with Eg5 in the presence of ADP and ATP: a difference FT-IR investigation. Biochemistry, 2004, 43(31), 9939-9949.
[http://dx.doi.org/10.1021/bi048982y] [PMID: 15287721]
[14]
Cochran, J.C.; Gilbert, S.P. ATPase mechanism of Eg5 in the absence of microtubules: insight into microtubule activation and allosteric inhibition by monastrol. Biochemistry, 2005, 44(50), 16633-16648.
[http://dx.doi.org/10.1021/bi051724w] [PMID: 16342954]
[15]
Maliga, Z.; Kapoor, T.M.; Mitchison, T.J. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem. Biol., 2002, 9(9), 989-996.
[http://dx.doi.org/10.1016/S1074-5521(02)00212-0] [PMID: 12323373]
[16]
Skoufias, D.A.; DeBonis, S.; Saoudi, Y.; Lebeau, L.; Crevel, I.; Cross, R.; Wade, R.H.; Hackney, D.; Kozielski, F. S-trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J. Biol. Chem., 2006, 281(26), 17559-17569.
[http://dx.doi.org/10.1074/jbc.M511735200] [PMID: 16507573]
[17]
Kaan, H.Y.K.; Ulaganathan, V.; Rath, O.; Prokopcová, H.; Dallinger, D.; Kappe, C.O.; Kozielski, F. Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J. Med. Chem., 2010, 53(15), 5676-5683.
[http://dx.doi.org/10.1021/jm100421n] [PMID: 20597485]
[18]
Behnke-Parks, W.M.; Vendome, J.; Honig, B.; Maliga, Z.; Moores, C.; Rosenfeld, S.S. Loop L5 acts as a conformational latch in the mitotic kinesin Eg5. J. Biol. Chem., 2011, 286(7), 5242-5253.
[http://dx.doi.org/10.1074/jbc.M110.192930] [PMID: 21148480]
[19]
Zhang, W.; Li, R.; Shin, R.; Wang, Y.; Padmalayam, I.; Zhai, L.; Krishna, N.R. Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMA-ST calculations. ChemMedChem, 2013, 8(10), 1629-1633.
[http://dx.doi.org/10.1002/cmdc.201300267] [PMID: 23894090]
[20]
Ulaganathan, V.; Talapatra, S.K.; Rath, O.; Pannifer, A.; Hackney, D.D.; Kozielski, F. Structural insights into a unique inhibitor binding pocket in kinesin spindle protein. J. Am. Chem. Soc., 2013, 135(6), 2263-2272.
[http://dx.doi.org/10.1021/ja310377d] [PMID: 23305346]
[21]
Yokoyama, H.; Sawada, J.; Katoh, S.; Matsuno, K.; Ogo, N.; Ishikawa, Y.; Hashimoto, H.; Fujii, S.; Asai, A. Structural basis of new allosteric inhibition in Kinesin spindle protein Eg5. ACS Chem. Biol., 2015, 10(4), 1128-1136.
[http://dx.doi.org/10.1021/cb500939x] [PMID: 25622007]
[22]
Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines (Basel), 2015, 2(3), 251-286.
[http://dx.doi.org/10.3390/medicines2030251] [PMID: 28930211]
[23]
Chhikara, N.; Kour, R.; Jaglan, S.; Gupta, P.; Gat, Y.; Panghal, A. Citrus medica: nutritional, phytochemical composition and health benefits - a review. Food Funct., 2018, 9(4), 1978-1992.
[http://dx.doi.org/10.1039/C7FO02035J] [PMID: 29594287]
[24]
Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant, 2010, 3(1), 2-20.
[http://dx.doi.org/10.1093/mp/ssp106] [PMID: 20035037]
[25]
Fraser, C.M.; Chapple, C. The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book, 2011, 9, e0152-e0152.
[http://dx.doi.org/10.1199/tab.0152] [PMID: 22303276]
[26]
Manthey, J.A.; Grohmann, K.; Guthrie, N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem., 2001, 8(2), 135-153.
[http://dx.doi.org/10.2174/0929867013373723] [PMID: 11172671]
[27]
Batra, P.; Sharma, A. K. Anti-cancer potential of flavonoids: recent trends and future perspectives 3 Biotech, 2013, 3(6), 439-459.
[28]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[29]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[30]
Kaan, H.Y.; Ulaganathan, V.; Hackney, D.D.; Kozielski, F. An allosteric transition trapped in an intermediate state of a new kinesin-inhibitor complex. Biochem. J., 2009, 425(1), 55-60.
[http://dx.doi.org/10.1042/BJ20091207] [PMID: 19793049]
[31]
Subramaniam, S.; Raju, R.; Sivasubramanian, A. A benign alternative process for efficient separation of pure commercially important flavonoid nutraceuticals from edible plants. J. Food Sci. Technol., 2017, 54(6), 1519-1526.
[http://dx.doi.org/10.1007/s13197-017-2583-y] [PMID: 28559611]
[32]
Banks, J.L.; Beard, H.S.; Cao, Y.; Cho, A.E.; Damm, W.; Farid, R.; Felts, A.K.; Halgren, T.A.; Mainz, D.T.; Maple, J.R.; Murphy, R.; Philipp, D.M.; Repasky, M.P.; Zhang, L.Y.; Berne, B.J.; Friesner, R.A.; Gallicchio, E.; Levy, R.M. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem., 2005, 26(16), 1752-1780.
[http://dx.doi.org/10.1002/jcc.20292] [PMID: 16211539]
[33]
Schrödinger, L. Maestro, version 9.1. New York; ; , 2010.
[34]
System, D. M. D. Maestro‐Desmond Interoperability Tools,
[35]
Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D.S. Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med., 2014, 80(6), 437-451.
[http://dx.doi.org/10.1055/s-0034-1368351] [PMID: 24710903]
[36]
Wang, L.; Wang, J.; Fang, L.; Zheng, Z.; Zhi, D.; Wang, S.; Li, S.; Ho, C-T.; Zhao, H. Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. BioMed Res. Int., 2014, 2014, 453972-453972.
[http://dx.doi.org/10.1155/2014/453972] [PMID: 25250322]

© 2025 Bentham Science Publishers | Privacy Policy