Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

QSAR Studies of Sulfonamide Hydroxamates Derivatives as MMP-2 Inhibitors Topomer CoMFA and Molecular Docking

Author(s): Jian-Bo Tong*, Feng Yi, Ding Luo and Tian-Hao Wang

Volume 17, Issue 11, 2020

Page: [1364 - 1371] Pages: 8

DOI: 10.2174/1570180817999200630124920

Price: $65

Abstract

Background: In recent years, cancer has become the main cause of death and it is a serious threat to human health, so the development of new, selective and safe anticancer drugs is still the focus of medical research. Matrix metalloproteinases-2 (MMP-2) has been determined to play an important role in the regulation of tumor angiogenesis, which is closely related to the development of the tumor. Therefore, MMP-2 is considered as a promising target for tumor therapy. In this study, Tomper comparative molecular field analysis (Topomer CoMFA) and molecular docking were used to investigate the important role of sulfonamide hydroxamate derivatives, an inhibitor of MMP-2, in the inhibition of angiogenesis.

Methods: Quantitative structure active relationship (QSAR) models of 35 sulfonamide hydroxamate derivatives with inhibitory MMPs were developed. The quantitative structure-activity relationship (QSAR) model was built by using Topomer comparative molecular field analysis (Topomer CoMFA) technique.

Results and Discussions: The results show that the cross-validated q2 value of the Topomer CoMFA model is 0.881 and the non-cross-validated r2 value is 0.967. The results show that the model is reasonable and reliable, and has good prediction ability. Molecular docking studies were used to find the actual conformations of chemicals in active sites of cancer protease, as well as the binding mode pattern to the binding site in MMP-2. The information provided by the 3D-QSAR model and molecular docking may lead to a better understanding of the structural requirements of 35 sulfonamide hydroxamate derivatives and help to design potential anti-cancer protease inhibitor molecules.

Conclusion: Thirty-five analogs were used in the 3D-QSAR study. Topomer CoMFA 3D-QSAR method was used to build the model, and the model was well predicted and statistically validated. The results of 3D-QSAR and molecular docking analysis provide theoretical guidance for the synthesis of new MMP-2 inhibitors.

Keywords: Sulfonamide hydroxamate derivatives, MMP-2, 3D-QSAR, matrix metalloproteinases, topomer CoMFA, molecular docking.

Graphical Abstract

[1]
Murphy, G.J.; Murphy, G.; Reynolds, J.J. The origin of matrix metalloproteinases and their familial relationships. FEBS Lett., 1991, 289(1), 4-7.
[http://dx.doi.org/10.1016/0014-5793(91)80895-A PMID: 1894005]
[2]
Polette, M.; Nawrocki-Raby, B.; Gilles, C.; Clavel, C.; Birembaut, P. Tumour invasion and matrix metalloproteinases. Crit. Rev. Oncol. Hematol., 2004, 49(3), 179-186.
[http://dx.doi.org/10.1016/j.critrevonc.2003.10.008 PMID: 15036258]
[3]
Björklund, M.; Koivunen, E. Gelatinase-mediated migration and invasion of cancer cells. Biochim. Biophys. Acta, 2005, 1755(1), 37-69.
[PMID: 15907591]
[4]
Kargiotis, O.; Chetty, C.; Gondi, C.S.; Tsung, A.J.; Dinh, D.H.; Gujrati, M.; Lakka, S.S.; Kyritsis, A.P.; Rao, J.S. Adenovirusmediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene, 2008, 27(35), 4830-4840.
[http://dx.doi.org/10.1038/onc.2008.122 PMID: 18438431]
[5]
Hanessian, S.; Moitessier, N. Sulfonamide-based acyclic and conformationally constrained MMP inhibitors: from computer-assisted design to nanomolar compounds. Curr. Top. Med. Chem., 2004, 4(12), 1269-1287.
[http://dx.doi.org/10.2174/1568026043387953 PMID: 15320726]
[6]
Klebe, G. Recent developments in structure-based drug design. J. Mol. Med. (Berl.), 2000, 78(5), 269-281.
[http://dx.doi.org/10.1007/s001090000084 PMID: 10954199]
[7]
Abbasi, M.; Ramezani, F.; Elyasi, M.; Sadeghi-Aliabadi, H.; Amanlou, M. A study on quantitative structure-activity relationship and molecular docking of metalloproteinase inhibitors based on L-tyrosine scaffold. Daru, 2015, 23(1), 29.
[http://dx.doi.org/10.1186/s40199-015-0111-z PMID: 25925871]
[8]
MIHAI P.; CORINA, D.S.; DANIEL, D.S.; ANA-MARIA, P.; IULIA, A.; MARIA, M.; SPERANTA, A . Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions. Int. J. Mol. Sci., 2016, 17(7), 1087-1120.
[http://dx.doi.org/10.3390/ijms17071087]
[9]
Free, S.M., Jr; Wilson, J.W. A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem., 1964, 7(8), 395-399.
[http://dx.doi.org/10.1021/jm00334a001 PMID: 14221113]
[10]
FU F.; SANDER, J.D.; MORGAN, M.; STACEY, T.B.; KEITH, J.J.; DRENA, D.; LESLIE, M.; VOYTAS, D.F . Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res., 2008, 37(5), 279-283.
[11]
Thillainayagam, M.; Malathi, K.; Anbarasu, A.; Singh, H.; Bahadur, R.; Ramaiah, S. MAHALAKSHMI. Insights on inhibition of Plasmodium falciparum plasmepsin I by novel epoxyazadiradione derivatives - molecular docking and comparative molecular field analysis. J. Biomol. Struct. Dyn., 2019, 37(12), 3168-3182.
[http://dx.doi.org/10.1080/07391102.2018.1510342 PMID: 30092746]
[12]
Cheng, X.C.; Wang, Q.; Fang, H.; Tang, W.; Xu, W.F. Design, synthesis and evaluation of novel sulfonyl pyrrolidine derivatives as matrix metalloproteinase inhibitors. Bioorg. Med. Chem., 2008, 16(10), 5398-5404.
[http://dx.doi.org/10.1016/j.bmc.2008.04.027 PMID: 18440232]
[13]
Cheng, X.C.; Wang, Q.; Fang, H.; Tang, W.; Xu, W.F. Synthesis of new sulfonyl pyrrolidine derivatives as matrix metalloproteinase inhibitors. Bioorg. Med. Chem., 2008, 16(17), 7932-7938.
[http://dx.doi.org/10.1016/j.bmc.2008.07.073 PMID: 18718763]
[14]
Kitagawa, Y.; Saito, T.; Nakanishi, Y.; Kataoka, Y.; Matsui, T.; Kawakami, T.; Okumura, M.; Yamaguchi, K. YASUTA. Spin contamination error in optimized geometry of singlet carbene ((1)A1) by broken-symmetry method. J. Phys. Chem. A, 2009, 113(52), 15041-15046.
[http://dx.doi.org/10.1021/jp905125g PMID: 19817370]
[15]
Lape, M.; Elam, C.; Paula, S. Comparison of current docking tools for the simulation of inhibitor binding by the transmembrane domain of the sarco/endoplasmic reticulum calcium ATPase. Biophys. Chem., 2010, 150(1-3), 88-97.
[http://dx.doi.org/10.1016/j.bpc.2010.01.011 PMID: 20167416]
[16]
WU B.; SUN, J.; CHENG, S.P.; GU, J.D.; LI, A.M.; ZHANG, X.X . Comparative analysis of binding affinities between styrene and mammalian CYP2E1 by bioinformatics approaches. Ecotoxico., 2011, 20(5), 1041-1046.
[http://dx.doi.org/10.1007/s10646-011-0643-z]
[17]
Durgun, M.; Türkeş, C.; Işık, M.; Demir, Y.; Saklı, A.; Kuru, A.; Güzel, A.; Beydemir, Ş.; Akocak, S.; Osman, S.M.; AlOthman, Z.; Supuran, C.T. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 950-962.
[http://dx.doi.org/10.1080/14756366.2020.1746784 PMID: 32249705]
[18]
T RKEŞ C.; DEMIR, Y.; BEYDEMIR, Ş . Calcium channel blockers: molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. J. Biomol. Struct. Dyn., 2020, 1-9.
[19]
LIANG J.; WANG, M.; LI, X.; XIN, H.; CHONG, C.; MENG, F. . Determination of Structural Requirements of N-Substituted Tetrahydro-β-Carboline Imidazolium Salt Derivatives Using in Silico Approaches for Designing MEK-1 Inhibitors. Molecules, 2017, 22(6), 1020-1034.
[http://dx.doi.org/10.3390/molecules22061020]
[20]
Yue, J.; Liu, S.; Xie, Z.; Xing, Y.; Jing, X. Size-dependent biodistribution and antitumor efficacy of polymer micelle drug delivery systems. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(34), 4273-4280.
[http://dx.doi.org/10.1039/c3tb20296h PMID: 32261023]
[21]
Cramer, R.D.I.; Patterson, D.E.; Bunce, J.D. ChemInform Abstract: Comparative Molecular Field Analysis (CoMFA). Part 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J. Cheminform., 1988, 19(51), 5959-5967.
[22]
Acton, N.; Klayman, D.L. Conversion of artemisinin (qinghaosu) to iso-artemisitene and to 9-epi-artemisinin1. Planta Med., 1987, 53(3), 266-268.
[http://dx.doi.org/10.1055/s-2006-962700 PMID: 17269016]
[23]
KRISTAM. R.; RAO, S.N.; D’CRUZ, A.S.; MAHADEVAN, V.; VISWANADHAN, V.N. . TRPV1 antagonism by piperazinyl-aryl compounds: A Topomer-CoMFA study and its use in virtsual creening for identification of novel antagonists. J. Mol. Graph. Model., 2017, 72, 112-128.
[http://dx.doi.org/10.1016/j.jmgm.2017.01.010 PMID: 28092830]
[24]
SU. T.T.; MCCLURE, W.R . Selective binding of Escherichia coli RNA polymerase to topoisomers of minicircles carrying the TAC16 and TAC17 promoters. J. Biochem., 1994, 269(18), 13511-13521.
[25]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52(7), 1757-1768.
[http://dx.doi.org/10.1021/ci3001277 PMID: 22587354]
[26]
T RKEŞ C.. A potential risk factor for paraoxonase 1: in silico and in-vitro analysis of the biological activity of proton-pump inhibitors. J. Pharm. (Cairo), 2019, 71(10), 1553-1564.
[http://dx.doi.org/10.1111/jphp.13141]
[27]
Türkeş, C. Investigation of Potential Paraoxonase-I Inhibitors by Kinetic and Molecular Docking Studies: Chemotherapeutic Drugs. Protein Pept. Lett., 2019, 26(6), 392-402.
[http://dx.doi.org/10.2174/0929866526666190226162225 PMID: 30819074]
[28]
T RKEŞ C.; ARSLAN, M.; DEMIR, Y.; ÇO AJ, L.; RIFATI NIXHA, A.; BEYDEMIR, Ş . Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 2019(89), 1-12.
[29]
Işık, M.; Beydemir, Ş.; Demir, Y.; Durgun, M.; Türkeş, C.; Nasır, A.; Necip, A.; Akkuş, M. Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int. J. Biol. Macromol., 2020, 146(5), 1111-1123.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.237 PMID: 31739032]
[30]
JIAN B.T. YANG W. SHAN L. SHANG-SHANG Q . Comprehensive 3D-QSAR and Binding Mode of DAPY Inhibitors Using Rgroup Search and Molecular Docking j. struct. chem.,, 38(1), 25-36.2019, http://CNKI:SUN:JGHX.0.2019-01-004
[31]
Tong, J.; Zhan, P.; Wang, X.S.; Wu, Y. Quionolone carboxylic acid derivatives as HIV-1 integrase inhibitors: Docking-based HQSAR and topomer CoMFA analyses. J. Chemometr., 2017, 31(12), 2934-2947.
[http://dx.doi.org/10.1002/cem.2934 PMID: 29606793]
[32]
Wang, Y.; Zhang, G.; Yan, J.; Gong, D. Inhibitory effect of morin on tyrosinase: insights from spectroscopic and molecular docking studies. Food Chem., 2014, 163(15), 226-233.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.106 PMID: 24912720]
[33]
TONG J.B.; LIU, S.L.; LIU, Y.T.; ZHONG-JIN, L.I.; HAN, Y.Y.; WANG, X.F.. QSAR Studies of Pyrrole Derivatives Anti-HIV Drug using Three-dimensional Holographic Vector of Atomic Interaction Field. J. Analy. Sci., 2008, 3, 275-279.

© 2024 Bentham Science Publishers | Privacy Policy