Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

褪黑素通过调节淀粉样前体蛋白-结合蛋白1途径,防止了Aβ42-暴露的SH-SY5Y神经母细胞瘤细胞中的类泛素化功能障碍

卷 17, 期 5, 2020

页: [446 - 459] 页: 14

弟呕挨: 10.2174/1567205017666200624201356

价格: $65

摘要

背景:淀粉样前体蛋白(APP)结合蛋白1 (APP-BP1)是许多关键信号通路的重要调控因子,主要作为一种支架蛋白,增强分子间相互作用,促进催化反应。APP-BP1与APP的相互作用在细胞周期调控中发挥作用,这决定了阿尔茨海默病(AD)细胞周期调控缺失的机制。相比之下,泛素化修饰,一种由泛素样蛋白神经前体细胞表达的发育下调蛋白8 (NEDD8)偶联介导的翻译后修饰,被一种由APP-BP1和NEDD8激活酶E1催化亚基(Uba3)组成的异源二聚体激活。NEDD8控制着重要的生物事件,和APP-BP1一样,它的水平在AD中被解除管制。 目的:本文研究了褪黑素在生理和病理条件下调节APP-BP1通路的作用,以了解其潜在机制。 方法: 人类SH-SY5Y神经母细胞瘤细胞用不同浓度的Aβ-42处理后可产生类似AD的神经毒性。 结果:该结果首次证明了褪黑素可以阻止由Aβ-42诱导的APP-BP1蛋白表达的增强和NEDD8细胞定位的改变。此外,我们还利用MLN4924 (APP-BP1通路阻断剂)验证了APP-BP1通路下游效应级联的成分,包括tau、APP -裂解分泌素、β-连环蛋白和p53。 结论: 褪黑素可调控与APP-BP1通路相关分子信号的相互作用,可能阻断疾病发生过程中的致病机制,为预防AD提供有利的治疗策略。

关键词: 阿兹海默病,褪黑素,淀粉样前体蛋白-结合蛋白1,类泛素化修饰,淀粉样蛋白,tau,分泌素,β-连环蛋白。

[1]
Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol Basis Dis 2017; 1863(1): 324-36.
[http://dx.doi.org/10.1016/j.bbadis.2016.09.010] [PMID: 27639832]
[2]
Zheng D, Zhu G, Liao S, et al. Dysregulation of the PI3K/Akt signaling pathway affects cell cycle and apoptosis of side population cells in nasopharyngeal carcinoma. Oncol Lett 2015; 10(1): 182-8.
[http://dx.doi.org/10.3892/ol.2015.3218] [PMID: 26170996]
[3]
Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 2003; 23(7): 2557-63.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02557.2003] [PMID: 12684440]
[4]
Subaiea GM, Adwan LI, Ahmed AH, Stevens KE, Zawia NH. Short-term treatment with tolfenamic acid improves cognitive functions in Alzheimer’s disease mice. Neurobiol Aging 2013; 34(10): 2421-30.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.04.002] [PMID: 23639209]
[5]
Tse KH, Herrup K. Re-imagining Alzheimer’s disease - the diminishing importance of amyloid and a glimpse of what lies ahead. J Neurochem 2017; 143(4): 432-44.
[http://dx.doi.org/10.1111/jnc.14079] [PMID: 28547865]
[6]
Chen Y, Neve R, Zheng H, Griffin W, Barger S, Mrak R. Cycle on wheels: Is app key to the appbp1 pathway? Austin Alzheimers Parkinsons Dis 2014; 1(2) id1008.
[7]
Chen Y, Liu W, McPhie DL, Hassinger L, Neve RL. APP-BP1 mediates APP-induced apoptosis and DNA synthesis and is increased in Alzheimer’s disease brain. J Cell Biol 2003; 163(1): 27-33.
[http://dx.doi.org/10.1083/jcb.200304003] [PMID: 14557245]
[8]
Chen Y, Liu W, Naumovski L, Neve RL. ASPP2 inhibits APP-BP1-mediated NEDD8 conjugation to cullin-1 and decreases APP-BP1-induced cell proliferation and neuronal apoptosis. J Neurochem 2003; 85(3): 801-9.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01727.x] [PMID: 12694406]
[9]
Chen Y, McPhie DL, Hirschberg J, Neve RL. The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S-M checkpoint and causes apoptosis in neurons. J Biol Chem 2000; 275(12): 8929-35.
[http://dx.doi.org/10.1074/jbc.275.12.8929] [PMID: 10722740]
[10]
Yang HJ, Joo Y, Hong BH, et al. Amyloid precursor protein binding protein-1 is up-regulated in Brains of Tg2576 Mice. Korean J Physiol Pharmacol 2010; 14(4): 229-33.
[http://dx.doi.org/10.4196/kjpp.2010.14.4.229] [PMID: 20827337]
[11]
Oliveira J, Costa M, de Almeida MSC, da Cruz E, Silva OAB, Henriques AG. Protein phosphorylation is a key mechanism in Alzheimer’s disease. J Alzheimers Dis 2017; 58(4): 953-78.
[http://dx.doi.org/10.3233/JAD-170176] [PMID: 28527217]
[12]
Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 2017; 216(8): 2259-71.
[http://dx.doi.org/10.1083/jcb.201703170] [PMID: 28684425]
[13]
Walden H, Podgorski MS, Huang DT, et al. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol Cell 2003; 12(6): 1427-37.
[http://dx.doi.org/10.1016/S1097-2765(03)00452-0] [PMID: 14690597]
[14]
Walden H, Podgorski MS, Schulman BA. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 2003; 422(6929): 330-4.
[http://dx.doi.org/10.1038/nature01456] [PMID: 12646924]
[15]
Chen Y, Neve RL, Liu H. Neddylation dysfunction in Alzheimer’s disease. J Cell Mol Med 2012; 16(11): 2583-91.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01604.x] [PMID: 22805479]
[16]
Mori F, Nishie M, Piao YS, et al. Accumulation of NEDD8 in neuronal and glial inclusions of neurodegenerative disorders. Neuropathol Appl Neurobiol 2005; 31(1): 53-61.
[http://dx.doi.org/10.1111/j.1365-2990.2004.00603.x] [PMID: 15634231]
[17]
Song W, Lahiri DK. Melatonin alters the metabolism of the beta-amyloid precursor protein in the neuroendocrine cell line PC12. J Mol Neurosci 1997; 9(2): 75-92.
[http://dx.doi.org/10.1007/BF02736852] [PMID: 9407389]
[18]
Shukla M, Htoo HH, Wintachai P, et al. Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J Pineal Res 2015; 58(2): 151-65.
[http://dx.doi.org/10.1111/jpi.12200] [PMID: 25491598]
[19]
Panmanee J, Nopparat C, Chavanich N, et al. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J Pineal Res 2015; 59(3): 308-20.
[http://dx.doi.org/10.1111/jpi.12260] [PMID: 26123100]
[20]
Chinchalongporn V, Shukla M, Govitrapong P. Melatonin ameliorates Aβ42 -induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells. J Pineal Res 2018; 64(4)e12470
[http://dx.doi.org/10.1111/jpi.12470] [PMID: 29352484]
[21]
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr Neuropharmacol 2017; 15(7): 1010-31.
[http://dx.doi.org/10.2174/1570159X15666170313123454] [PMID: 28294066]
[22]
Bondy SC, Yang YE, Walsh TJ, Gie YW, Lahiri DK. Dietary modulation of age-related changes in cerebral pro-oxidant status. Neurochem Int 2002; 40(2): 123-30.
[http://dx.doi.org/10.1016/S0197-0186(01)00084-5] [PMID: 11738478]
[23]
Lahiri DK, Ge YW, Sharman EH, Bondy SC. Age-related changes in serum melatonin in mice: Higher levels of combined melatonin and 6-hydroxymelatonin sulfate in the cerebral cortex than serum, heart, liver and kidney tissues. J Pineal Res 2004; 36(4): 217-23.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00120.x] [PMID: 15066045]
[24]
Lahiri DK, Chen D, Ge YW, Bondy SC, Sharman EH. Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. J Pineal Res 2004; 36(4): 224-31.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00121.x] [PMID: 15066046]
[25]
Bondy SC, Li H, Zhou J, Wu M, Bailey JA, Lahiri DK. Melatonin alters age-related changes in transcription factors and kinase activation. Neurochem Res 2010; 35(12): 2035-42.
[http://dx.doi.org/10.1007/s11064-010-0206-3] [PMID: 20535557]
[26]
Mukda S, Panmanee J, Boontem P, Govitrapong P. Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus. Neurosci Lett 2016; 621: 39-46.
[http://dx.doi.org/10.1016/j.neulet.2016.04.013] [PMID: 27068758]
[27]
Vriend J, Reiter RJ. Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system--a review. Mol Cell Endocrinol 2015; 417: 1-9.
[http://dx.doi.org/10.1016/j.mce.2015.09.001] [PMID: 26363225]
[28]
Vriend J, Reiter RJ. The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol 2015; 401: 213-20.
[http://dx.doi.org/10.1016/j.mce.2014.12.013] [PMID: 25528518]
[29]
Shen X, Chen J, Li J, Kofler J, Herrup K. Neurons in vulnerable regions of the Alzheimer’s disease brain display reduced ATM signaling. eNeuro 2016; 3(1): ENEURO.012415.2016-.
[http://dx.doi.org/10.1523/ENEURO.0124-15.2016] [PMID: 27022623]
[30]
Chen YZ. APP induces neuronal apoptosis through APP-BP1-mediated downregulation of β-catenin. Apoptosis 2004; 9(4): 415-22.
[http://dx.doi.org/10.1023/B:APPT.0000031447.05354.9f] [PMID: 15192323]
[31]
Chen Y, Bodles AM. Amyloid precursor protein modulates β-catenin degradation. J Neuroinflammation 2007; 4: 29.
[http://dx.doi.org/10.1186/1742-2094-4-29] [PMID: 18070361]
[32]
Rajmohan R, Reddy PH. Amyloid-β and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease Neurons. J Alzheimers Dis 2017; 57(4): 975-99.
[http://dx.doi.org/10.3233/JAD-160612] [PMID: 27567878]
[33]
Soucy TA, Smith PG, Milhollen MA, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009; 458(7239): 732-6.
[http://dx.doi.org/10.1038/nature07884] [PMID: 19360080]
[34]
Soucy TA, Dick LR, Smith PG, Milhollen MA, Brownell JE. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer 2010; 1(7): 708-16.
[http://dx.doi.org/10.1177/1947601910382898] [PMID: 21779466]
[35]
Savaskan E, Jockers R, Ayoub M, et al. The MT2 melatonin receptor subtype is present in human retina and decreases in Alzheimer’s disease. Curr Alzheimer Res 2007; 4(1): 47-51.
[http://dx.doi.org/10.2174/156720507779939823] [PMID: 17316165]
[36]
Sulkava S, Muggalla P, Sulkava R, et al. Melatonin receptor type 1A gene linked to Alzheimer’s disease in old age. Sleep (Basel) 2018; 41(7)zsy103
[37]
Pappolla MA, Chyan YJ, Poeggeler B, et al. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: Implications for Alzheimer’s disease. J Neural Transm (Vienna) 2000; 107(2): 203-31.
[http://dx.doi.org/10.1007/s007020050018] [PMID: 10847561]
[38]
Pappolla MA, Matsubara E, Vidal R, et al. Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr Alzheimer Res 2018; 15(7): 637-42.
[http://dx.doi.org/10.2174/1567205015666180411092551] [PMID: 29637859]
[39]
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443(1): 75-96.
[http://dx.doi.org/10.1111/nyas.14005] [PMID: 30756405]
[40]
Kwon KJ, Kim JN, Kim MK, et al. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: A possible role in neuroprotection. J Pineal Res 2011; 50(2): 110-23.
[PMID: 21073519]
[41]
Vriend J, Liu W, Reiter RJ. The pineal gland: A model for adrenergic modulation of ubiquitin ligases. PLoS One 2017; 12(2)e0172441
[http://dx.doi.org/10.1371/journal.pone.0172441] [PMID: 28212404]
[42]
Majd S, Zarifkar A, Rastegar K, Takhshid MA. Different fibrillar Abeta 1-42 concentrations induce adult hippocampal neurons to reenter various phases of the cell cycle. Brain Res 2008; 1218: 224-9.
[http://dx.doi.org/10.1016/j.brainres.2008.04.050] [PMID: 18533137]
[43]
Enchev RI, Schulman BA, Peter M. Protein neddylation: Beyond cullin-RING ligases. Nat Rev Mol Cell Biol 2015; 16(1): 30-44.
[http://dx.doi.org/10.1038/nrm3919] [PMID: 25531226]
[44]
Atkin G, Paulson H. Ubiquitin pathways in neurodegenerative disease. Front Mol Neurosci 2014; 7: 63.
[http://dx.doi.org/10.3389/fnmol.2014.00063] [PMID: 25071440]
[45]
Parr C, Mirzaei N, Christian M, Sastre M. Activation of the Wnt/β-catenin pathway represses the transcription of the β-amyloid precursor protein cleaving enzyme (BACE1) via binding of T-cell factor-4 to BACE1 promoter. FASEB J 2015; 29(2): 623-35.
[http://dx.doi.org/10.1096/fj.14-253211] [PMID: 25384422]
[46]
Jeong JK, Lee JH, Moon JH, Lee YJ, Park SY. Melatonin-mediated β-catenin activation protects neuron cells against prion protein-induced neurotoxicity. J Pineal Res 2014; 57(4): 427-34.
[http://dx.doi.org/10.1111/jpi.12182] [PMID: 25251028]
[47]
He H, Dong W, Huang F. Anti-amyloidogenic and anti-apoptotic role of melatonin in Alzheimer disease. Curr Neuropharmacol 2010; 8(3): 211-7.
[http://dx.doi.org/10.2174/157015910792246137] [PMID: 21358971]
[48]
Alves da Costa C, Sunyach C, Pardossi-Piquard R, et al. Presenilin-dependent γ-secretase-mediated control of p53-associated cell death in Alzheimer’s disease. J Neurosci 2006; 26(23): 6377-85.
[http://dx.doi.org/10.1523/JNEUROSCI.0651-06.2006] [PMID: 16763046]
[49]
Ait-Bouziad N, Lv G, Mahul-Mellier AL, et al. Discovery and characterization of stable and toxic tau/phospholipid oligomeric complexes. Nat Commun 2017; 8(1): 1678.
[http://dx.doi.org/10.1038/s41467-017-01575-4] [PMID: 29162800]
[50]
Héraud C, Goufak D, Ando K, et al. Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiol Dis 2014; 62: 100-12.
[http://dx.doi.org/10.1016/j.nbd.2013.09.010] [PMID: 24076100]
[51]
Reddy PH. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: Implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta 2013; 1832(12): 1913-21.
[http://dx.doi.org/10.1016/j.bbadis.2013.06.012] [PMID: 23816568]
[52]
Deng J, Habib A, Obregon DF, et al. Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3β signaling pathway. J Neurochem 2015; 135(3): 630-7.
[http://dx.doi.org/10.1111/jnc.13351] [PMID: 26342176]
[53]
Ali T, Kim MO. Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus. J Pineal Res 2015; 59(1): 47-59.
[http://dx.doi.org/10.1111/jpi.12238] [PMID: 25858697]
[54]
Malhab LJ, Descamps S, Delaval B, Xirodimas DP. The use of the NEDD8 inhibitor MLN4924 (Pevonedistat) in a cyclotherapy approach to protect wild-type p53 cells from MLN4924 induced toxicity. Sci Rep 2016; 6: 37775.
[http://dx.doi.org/10.1038/srep37775] [PMID: 27901050]
[55]
Tong S, Si Y, Yu H, Zhang L, Xie P, Jiang W. MLN4924 (Pevonedistat), a protein neddylation inhibitor, suppresses proliferation and migration of human clear cell renal cell carcinoma. Sci Rep 2017; 7(1): 5599.
[http://dx.doi.org/10.1038/s41598-017-06098-y] [PMID: 28717191]
[56]
Szybińska A, Leśniak W. P53 Dysfunction in neurodegenerative diseases - the cause or effect of pathological changes? Aging Dis 2017; 8(4): 506-18.
[http://dx.doi.org/10.14336/AD.2016.1120] [PMID: 28840063]
[57]
Dil Kuazi A, Kito K, Abe Y, Shin RW, Kamitani T, Ueda N. NEDD8 protein is involved in ubiquitinated inclusion bodies. J Pathol 2003; 199(2): 259-66.
[http://dx.doi.org/10.1002/path.1283] [PMID: 12533840]
[58]
Seward ME, Swanson E, Norambuena A, et al. Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 2013; 126(Pt 5): 1278-86.
[http://dx.doi.org/10.1242/jcs.1125880] [PMID: 23345405]
[59]
Lim S, Haque MM, Kim D, Kim DJ, Kim YK. Cell-based models to investigate tau aggregation. Comput Struct Biotechnol J 2014; 12(20-21): 7-13.
[http://dx.doi.org/10.1016/j.csbj.2014.09.011] [PMID: 25505502]
[60]
Vriend J, Reiter RJ. Melatonin and ubiquitin: What’s the connection? Cell Mol Life Sci 2014; 71(18): 3409-18.
[http://dx.doi.org/10.1007/s00018-014-1659-3] [PMID: 24920061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy