Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Determination of three Unsaturated Fatty Acids in Pressure Ulcer Rats Using A UPLC-MS/MS Method

Author(s): Fuman Cai, Yuwei Dong, Shaosheng Lou, Zeping Ma, Ting Wu, Liuqing Yang, Congcong Wen* and Chenxiang Wang*

Volume 17, Issue 8, 2021

Published on: 24 June, 2020

Page: [1008 - 1015] Pages: 8

DOI: 10.2174/1573412916999200624155618

Price: $65

Abstract

Background: The serum levels of Docosahexaenoic Acid (DHA), Eicosapentaenoic Acid (EPA) and Arachidonic Acid (AA) under the state of Pressure Ulcers (PUs) are still unclear.

Introduction: In order to investigate serum levels of DHA, EPA, and AA in PUs rats, an ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS) method was developed and validated.

Methods: Chromatographic separation of DHA, EPA, AA was carried out on a BEH C18 column and gradient elute consisted of 5 mM ammonium acetate-0.1% formic acid and acetonitrile. Subsequently, fifty rats were divided into five groups (n=10), four PU groups (A-D) underwent various pressure and release time protocols, with group E as the control. The concentrations of DHA, EPA, AA from five groups were determined by using a validated method.

Results: The results showed there was good linearity for DHA (327.3/283.4), EPA (301.2/257.0), and AA (303.1/258.9) within 0.05-6.4 μg/mL. In control group, the levels of DHA, AA and EPA were 1.16±0.68, 0.59±0.19 and 0.78±0.21 μg/mL. At the end of modeling, concentrations of DHA, EPA and AA were increased after long and persistent pressure (>8 h). Especially, the level of DHA was significantly higher (P<0.01) than that of control group.

Conclusion: A stable, reliable and accurate UPLC-MS/MS for determination of DHA, EPA, AA in blood was developed. Serum concentrations of DHA, EPA and AA were altered differently after long and persistent pressure (>8 h), and DHA is a remarkable one.

Keywords: UPLC-MS/MS, pressure ulcer, docosahexaenoic acid, eicosapentaenoic acid, arachidonic acid, rat.

Graphical Abstract

[1]
Lopez-Huertas, E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol. Res., 2010, 61(3), 200-207.
[http://dx.doi.org/10.1016/j.phrs.2009.10.007] [PMID: 19897038]
[2]
Lopez-Huertas, E. The effect of EPA and DHA on metabolic syndrome patients: a systematic review of randomised controlled trials. Br. J. Nutr., 2012, 107(2), S185-S194.
[http://dx.doi.org/10.1017/S0007114512001572]
[3]
Moloudizargari, M.; Mortaz, E.; Asghari, M.H.; Adcock, I.M.; Redegeld, F.A.; Garssen, J. Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review. Oncotarget, 2018, 9(14), 11858-11875.
[http://dx.doi.org/10.18632/oncotarget.24405] [PMID: 29545942]
[4]
Mansara, P.P.; Deshpande, R.A.; Vaidya, M.M.; Kaul-Ghanekar, R. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS One, 2015, 10(9)e0136542
[http://dx.doi.org/10.1371/journal.pone.0136542] [PMID: 26325577]
[5]
Huang, R.; Xue, X.; Li, S. Alterations of polyunsaturated fatty acid metabolism in ovarian tissues of polycystic ovary syndrome rats. J. Cell. Mol. Med., 2018, 22(7), 3388-3396.
[http://dx.doi.org/10.1111/jcmm.13614] [PMID: 29602230]
[6]
Sala, V.A.; Castellote-Bargalló, A.I.; Rodríguez, P.S.M.; López-Sabater, M.C. High-performance liquid chromatography with evaporative light-scattering detection for the determination of phospholipid classes in human milk, infant formulas and phospholipid sources of long-chain polyunsaturated fatty acids. J. Chromatogr. A, 2003, 1008(1), 73-80.
[http://dx.doi.org/10.1016/S0021-9673(03)00989-0] [PMID: 12943251]
[7]
Olsen, E.F.; Rukke, E.O.; Flåtten, A.; Isaksson, T. Quantitative determination of saturated-, monounsaturated- and polyunsaturated fatty acids in pork adipose tissue with non-destructive Raman spectroscopy. Meat Sci., 2007, 76(4), 628-634.
[http://dx.doi.org/10.1016/j.meatsci.2007.02.004] [PMID: 22061238]
[8]
Svetashev, V.I. Mild method for preparation of 4,4-dimethyloxazoline derivatives of polyunsaturated fatty acids for GC-MS. Lipids, 2011, 46(5), 463-467.
[http://dx.doi.org/10.1007/s11745-011-3550-4] [PMID: 21461869]
[9]
Giusepponi, D.; Galarini, R.; Barola, C. LC-MS/MS assay for the simultaneous determination of tocopherols, polyunsaturated fatty acids and their metabolites in human plasma and serum. Free Radic. Biol. Med., 2019, 144, 134-143.
[10]
Zhou, B.; Lin, C.; Xie, S. Determination of four omega-3 polyunsaturated fatty acids by UPLC-MS/MS in plasma of hyperlipidemic and normolipidemic subjects. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1126-1127.
[11]
Serraes, B.; van Leen, M.; Schols, J.; Van Hecke, A.; Verhaeghe, S.; Beeckman, D. Prevention of pressure ulcers with a static air support surface: A systematic review. Int. Wound J., 2018, 15(3), 333-343.
[http://dx.doi.org/10.1111/iwj.12870] [PMID: 29504266]
[12]
Sullivan, N.; Schoelles, K.M. Preventing in-facility pressure ulcers as a patient safety strategy: a systematic review. Ann. Intern. Med., 2013, 158(5 Pt 2), 410-416.
[http://dx.doi.org/10.7326/0003-4819-158-5-201303051-00008] [PMID: 23460098]
[13]
Jiang, L.P.; Tu, Q.; Wang, Y.; Zhang, E. Ischemia-reperfusion injury-induced histological changes affecting early stage pressure ulcer development in a rat model. Ostomy Wound Manage., 2011, 57(2), 55-60.
[PMID: 21350273]
[14]
Cui, F.F.; Pan, Y.Y.; Xie, H.H. Pressure combined with ischemia/reperfusion injury induces deep tissue injury via endoplasmic reticulum stress in a rat pressure ulcer model. Int. J. Mol. Sci., 2016, 17(3), 284.
[http://dx.doi.org/10.3390/ijms17030284] [PMID: 26927073]
[15]
Tsutakawa, S.; Kobayashi, D.; Kusama, M.; Moriya, T.; Nakahata, N. Nicotine enhances skin necrosis and expression of inflammatory mediators in a rat pressure ulcer model. Br. J. Dermatol., 2009, 161(5), 1020-1027.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09349.x] [PMID: 19673871]
[16]
Kasuya, A.; Sakabe, J.; Tokura, Y. Potential application of in vivo imaging of impaired lymphatic duct to evaluate the severity of pressure ulcer in mouse model. Sci. Rep., 2014, 4, 4173.
[17]
Balbas, G.M.; Regana, M.S.; Millet, P.U. Study on the use of omega-3 fatty acids as a therapeutic supplement in treatment of psoriasis. Clin. Cosmet. Investig. Dermatol., 2011, 4, 73-77.
[18]
Rahman, M.; Beg, S.; Ahmad, M.Z. Omega-3 fatty acids as pharmacotherapeutics in psoriasis: current status and scope of nanomedicine in its effective delivery. Curr. Drug Targets, 2013, 14(6), 708-722.
[http://dx.doi.org/10.2174/1389450111314060011] [PMID: 23531113]
[19]
Upala, S.; Yong, W.C.; Theparee, T.; Sanguankeo, A. Effect of omega-3 fatty acids on disease severity in patients with psoriasis: A systematic review. Int. J. Rheum. Dis., 2017, 20(4), 442-450.
[http://dx.doi.org/10.1111/1756-185X.13051] [PMID: 28261950]
[20]
Miura, K.; Vail, A.; Chambers, D. Omega-3 fatty acid supplement skin cancer prophylaxis in lung transplant recipients: A randomized, controlled pilot trial. J. Heart Lung Transplant., 2019, 38(1), 59-65.
[http://dx.doi.org/10.1016/j.healun.2018.09.009] [PMID: 30352778]
[21]
Kumar, P.; Sharma, G.; Kumar, R. Enhanced brain delivery of dimethyl fumarate employing tocopherol-acetate-based nanolipidic carriers: evidence from pharmacokinetic, biodistribution, and cellular uptake studies. ACS Chem. Neurosci., 2017, 8(4), 860-865.
[http://dx.doi.org/10.1021/acschemneuro.6b00428] [PMID: 27983793]
[22]
Sanghvi, R.; Mogalian, E.; Machatha, S.G. Preformulation and pharmacokinetic studies on antalarmin: a novel stress inhibitor. J. Pharm. Sci., 2009, 98(1), 205-214.
[http://dx.doi.org/10.1002/jps.21421] [PMID: 18428980]
[23]
Sun, Y.N.; Lin, F.Y.; Wang, D. Early changes in blood biochemistry and CYP450 metabolism in a rat model of alcoholic fatty liver disease. Int. J. Clin. Exp. Med., 2018, 11(3), 2232-2239.
[24]
Hu, L.F.; Yang, X.Z.; Wang, X.Q.; Zhu, J.Y.; Tong, S.H.; Cao, G.Z. Rapid LC-APCI-MS-MS method for simultaneous determination of phenacetin and its metabolite paracetamol in rabbit plasma. Chromatographia, 2009, 70(3-4), 585-590.
[http://dx.doi.org/10.1365/s10337-009-1163-3]
[25]
Kotani, A.; Watanabe, M.; Yamamoto, K.; Kusu, F.; Hakamata, H. Determination of Eicosapentaenoic, docosahexaenoic, and arachidonic acids in human plasma by high-performance liquid chromatography with electrochemical detection. Anal. Sci., 2016, 32(9), 1011-1014.
[http://dx.doi.org/10.2116/analsci.32.1011] [PMID: 27682409]
[26]
Steele, K.L.; Scott, D.O.; Lunte, C.E. Pharmacokinetic studies of aspirin in rats using in vivo microdialysis sampling. Anal. Chim. Acta, 1991, 246(1), 181-186.
[http://dx.doi.org/10.1016/S0003-2670(00)80675-3]
[27]
Wiesner, L.; Govender, K.; Meredith, S.A.; Norman, J.; Smith, P.J. A liquid-liquid LC/MS/MS assay for the determination of artemether and DHA in malaria patient samples. J. Pharm. Biomed. Anal., 2011, 55(2), 373-378.
[http://dx.doi.org/10.1016/j.jpba.2011.01.036] [PMID: 21353430]
[28]
Aslan, M.; Özcan, F.; Aslan, I.; Yücel, G. LC-MS/MS analysis of plasma polyunsaturated fatty acids in type 2 diabetic patients after insulin analog initiation therapy. Lipids Health Dis., 2013, 12, 169.
[http://dx.doi.org/10.1186/1476-511X-12-169] [PMID: 24195588]
[29]
McCusker, M.M.; Grant-Kels, J.M. Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clin. Dermatol., 2010, 28(4), 440-451.
[http://dx.doi.org/10.1016/j.clindermatol.2010.03.020] [PMID: 20620762]
[30]
Rupp, H.; Wagner, D.; Rupp, T.; Schulte, L.M.; Maisch, B. Risk stratification by the “EPA+DHA level” and the “EPA/AA ratio” focus on anti-inflammatory and antiarrhythmogenic effects of long-chain omega-3 fatty acids. Herz, 2004, 29(7), 673-685.
[http://dx.doi.org/10.1007/s00059-004-2602-4] [PMID: 15580322]

© 2025 Bentham Science Publishers | Privacy Policy