Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Exploitation of Kojic Acid in Multicomponent Reactions

Author(s): Ankita Chaudhary*

Volume 24, Issue 14, 2020

Page: [1643 - 1662] Pages: 20

DOI: 10.2174/1385272824999200622113153

Price: $65

Abstract

Kojic acid, one of the most widespread 3-hydroxypyran-4-one derivatives, displays a wide range of biological activities and found application in food as well as cosmetics industry. The synthesis of kojic acid derivatives has provoked great interest as an easily available and biologically active precursor among organic and medicinal researchers. Multicomponent reactions, involving three or more reactants in one-pot thereby resulting in a structure with functional diversity are efficient methods for the promotion of green chemistry in the context of modern drug discovery. They offer several advantages over conventional stepwise protocols like simplicity, efficiency, selectivity, convergence and atom economy. This review aims to highlight the versatility of kojic acid as an important synthon in multicomponent reactions for the construction of various biologically relevant compounds such as pyrano[3,2‐ b]chromenediones, pyrano[3,2-b]pyrans, pyrano[2′,3′:5,6]pyrano[2,3‑b]pyridines, spiro[indoline-3,4’-pyrano[3, 2-b]pyrans, 2-substituted kojic acid conjugates, etc.

Keywords: Kojic aid, multicomponent reactions, green chemistry, one-pot synthesis, organic synthesis, heterocycles.

« Previous
Graphical Abstract

[1]
Brtko, J.; Rondahl, L.; Ficková, M.; Hudecová, D.; Eybl, V.; Uher, M. Kojic acid and its derivatives: history and present state of art. Cent. Eur. J. Public Health, 2004, 12(Suppl.), S16-S18.
[PMID: 15141965]
[2]
Bentley, R. From miso, saké and shoyu to cosmetics: a century of science for kojic acid. Nat. Prod. Rep., 2006, 23(6), 1046-1062.
[http://dx.doi.org/10.1039/b603758p] [PMID: 17119644]
[3]
Saito, K. Über die Säurebinding von Aspergillus oryzae. Bot. Mag. Tokyo, 1907, 21, 7-11.
[http://dx.doi.org/10.15281/jplantres1887.21.240_7]
[4]
Yabuta, T. The constitution of kojic acid, a δ-pyrone derivative formed by Aspergillus flavus from carbohydrates. J. Chem. Soc. Trans., 1924, 125, 575-587.
[http://dx.doi.org/10.1039/CT9242500575]
[5]
Lin, M.T.; Mahajan, J.R.; Dianese, J.C.; Takatsu, A. High production of kojic acid crystals by Aspergillus parasiticus UNBF A12 in liquid medium. Appl. Environ. Microbiol., 1976, 32(2), 298-299.
[http://dx.doi.org/10.1128/AEM.32.2.298-299.1976] [PMID: 16345171]
[6]
Baláz, S.; Uher, M.; Brtko, J.; Veverka, M.; Bransová, J.; Dobias, J.; Pódová, M.; Buchvald, J. Relationship between antifungal activity and hydrophobicity of kojic acid derivatives. Folia Microbiol. (Praha), 1993, 38(5), 387-391.
[http://dx.doi.org/10.1007/BF02898762] [PMID: 8262449]
[7]
Fickova, M.; Pravdova, E.; Rondhal, L.; Uher, M.; Brtko, J. In vitro antiproliferative and cytotoxic activities of novel kojic acid derivatives: 5-benzyloxy-2-selenocyanatomethyl- and 5-methoxy-2-selenocyanatomethyl-4-pyranone. J. Appl. Toxicol., 2008, 28(4), 554-559.
[http://dx.doi.org/10.1002/jat.1300] [PMID: 17879241]
[8]
Reddy, B.V.S.; Reddy, S.M.; Swain, M.; Dudem, S.; Kalivendi, S.V.; Reddy, C.S. Enantioselective 1,4-addition of kojic acid derivatives to β-nitroolefins catalyzed by a cinchonine derived sugar thiourea. RSC Advances, 2014, 4, 9107-9111.
[http://dx.doi.org/10.1039/c3ra47423b]
[9]
Tanaka, R.; Tsujii, H.; Yamada, T.; Kajimoto, T.; Amano, F.; Hasegawa, J.; Hamashima, Y.; Node, M.; Katoh, K.; Takebe, Y. Novel 3α-methoxyserrat-14-en-21β-ol (PJ-1) and 3β-methoxyserrat-14-en-21β-ol (PJ-2)-curcumin, kojic acid, quercetin, and baicalein conjugates as HIV agents. Bioorg. Med. Chem., 2009, 17(14), 5238-5246.
[http://dx.doi.org/10.1016/j.bmc.2009.05.049] [PMID: 19515569]
[10]
Aytemir, M.D.; Ozçelik, B. A study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities. Eur. J. Med. Chem., 2010, 45(9), 4089-4095.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.069] [PMID: 20591538]
[11]
Novotný, L.; Rauko, P.; Hamid, M.A.; Váchalková, A. Kojic acid--a new leading molecule for a preparation of compounds with an anti-neoplastic potential. Neoplasma, 1999, 46(2), 89-92.
[PMID: 10466431]
[12]
Aytemir, M.D.; Çalış, U. Anticonvulsant and neurotoxicity evaluation of some novel kojic acids and allomaltol derivatives. Arch. Pharm. (Weinheim), 2010, 343(3), 173-181.
[http://dx.doi.org/10.1002/ardp.200900236] [PMID: 20108269]
[13]
Aytemir, M.D.; Caliş, U.; Özalp, M. Synthesis and evaluation of anticonvulsant and antimicrobial activities of 3-hydroxy-6-methyl-2-substituted 4h-pyran-4-one derivatives. Arch. Pharm. (Weinheim), 2004, 337(5), 281-288.
[http://dx.doi.org/10.1002/ardp.200200754] [PMID: 15095421]
[14]
Wei, Y.; Zhang, C.; Zhao, P.; Yang, X.; Wang, K. A new salicylic acid-derivatized kojic acid vanadyl complex: synthesis, characterization and anti-diabetic therapeutic potential. J. Inorg. Biochem., 2011, 105(8), 1081-1085.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.008] [PMID: 21726771]
[15]
Wu, Y.; Shi, Y.G.; Zeng, L.Y.; Pan, Y.; Huang, X.Y.; Bian, L.Q.; Zhu, Y.J.; Zhang, R.R.; Zhang, J. Evaluation of antibacterial and anti-biofilm properties of kojic acid against five food-related bacteria and related subcellular mechanisms of bacterial inactivation. Food Sci. Technol. Int., 2019, 25(1), 3-15.
[http://dx.doi.org/10.1177/1082013218793075] [PMID: 30111175]
[16]
Rho, H.S.; Ahn, S.M.; Yoo, D.S.; Kim, M.K.; Cho, D.H.; Cho, J.Y. Kojyl thioether derivatives having both tyrosinase inhibitory and anti-inflammatory properties. Bioorg. Med. Chem. Lett., 2010, 20(22), 6569-6571.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.042] [PMID: 20934336]
[17]
Lee, Y.S.; Park, J.H.; Kim, M.H.; Seo, S.H.; Kim, H.J. Synthesis of tyrosinase inhibitory kojic acid derivative. Arch. Pharm. (Weinheim), 2006, 339(3), 111-114.
[http://dx.doi.org/10.1002/ardp.200500213] [PMID: 16511808]
[18]
Emami, S.; Hosseinimehr, S.J.; Taghdisi, S.M.; Akhlaghpoor, S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg. Med. Chem. Lett., 2007, 17(1), 45-48.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.097] [PMID: 17049858]
[19]
Vajragupta, O.; Boonchoong, P.; Sumanont, Y.; Watanabe, H.; Wongkrajang, Y.; Kammasud, N. Manganese-based complexes of radical scavengers as neuroprotective agents. Bioorg. Med. Chem., 2003, 11(10), 2329-2337.
[http://dx.doi.org/10.1016/S0968-0896(03)00070-1] [PMID: 12713845]
[20]
İyidoǧan, N.F.; Bayındırlı, A. Effect of L-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice. J. Food Eng., 2004, 62, 299-304.
[http://dx.doi.org/10.1016/S0260-8774(03)00243-7]
[21]
Saleh, R.M. Screening and production of antibacterial compound from Trichoderma spp. against human-pathogenic bacteria. Afr. J. Microbiol. Res., 2011, 5, 1619-1628.
[http://dx.doi.org/10.5897/AJMR11.197]
[22]
Lim, J.T. Treatment of melasma using kojic acid in a gel containing hydroquinone and glycolic acid. Dermatol. Surg., 1999, 25(4), 282-284.
[http://dx.doi.org/10.1046/j.1524-4725.1999.08236.x] [PMID: 10417583]
[23]
Garcia, A.; Fulton, J.E. The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions. Dermatol. Surg., 1996, 22(5), 443-447.
[http://dx.doi.org/10.1111/j.1524-4725.1996.tb00345.x] [PMID: 8634807]
[24]
Saeedi, M.; Eslamifar, M.; Khezri, K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother., 2019, 110, 582-593.
[http://dx.doi.org/10.1016/j.biopha.2018.12.006] [PMID: 30537675]
[25]
Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143]
[26]
Herrera, R.P.; López, E.M. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; John Wiley & Sons, Inc., 2015.
[27]
Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions in the synthesis of bioactive compounds: a review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
[28]
Ferreira, S.B.; Silva, F.C.; Bezerra, F.A.; Lourenço, M.C.; Kaiser, C.R.; Pinto, A.C.; Ferreira, V.F. Synthesis of alpha- and beta-pyran naphthoquinones as a new class of antitubercular agents. Arch. Pharm. (Weinheim), 2010, 343(2), 81-90.
[http://dx.doi.org/10.1002/ardp.200900162] [PMID: 20077521]
[29]
Schiller, R.; Tichotová, L.; Pavlík, J.; Buchta, V.; Melichar, B.; Votruba, I.; Kunes, J.; Spulák, M.; Pour, M. 3,5-disubstituted pyranone analogues of highly antifungally active furanones: conversion of biological effect from antifungal to cytostatic. Bioorg. Med. Chem. Lett., 2010, 20(24), 7358-7360.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.052] [PMID: 21074433]
[30]
Hussain, H.; Aziz, S.; Schulz, B.; Krohn, K. Synthesis of a 4H-anthra[1,2-b]pyran derivative and its antimicrobial activity. Nat. Prod. Commun., 2011, 6(6), 841-843.
[http://dx.doi.org/10.1177/1934578X1100600621] [PMID: 21815422]
[31]
Wang, S.; Milne, G.W.A.; Yan, X.; Posey, I.J.; Nicklaus, M.C.; Graham, L.; Rice, W.G. Discovery of novel, non-peptide HIV-1 protease inhibitors by pharmacophore searching. J. Med. Chem., 1996, 39(10), 2047-2054.
[http://dx.doi.org/10.1021/jm950874+] [PMID: 8642563]
[32]
Osman, S.; Albert, B.J.; Wang, Y.; Li, M.; Czaicki, N.L.; Koide, K. Structural requirements for the antiproliferative activity of pre-mRNA splicing inhibitor FR901464. Chemistry, 2011, 17(3), 895-904.
[http://dx.doi.org/10.1002/chem.201002402] [PMID: 21226105]
[33]
He, M.Z.; Yang, N.; Sun, C.L.; Yao, X.J.; Yang, M. Modification and biological evaluation of novel 4-hydroxy-pyrone derivatives as non-peptidic HIV-1 protease inhibitors. Med. Chem. Res., 2011, 20, 200-209.
[http://dx.doi.org/10.1007/s00044-010-9307-4]
[34]
Bisht, S.S.; Jaiswal, N.; Sharma, A.; Fatima, S.; Sharma, R.; Rahuja, N.; Srivastava, A.K.; Bajpai, V.; Kumar, B.; Tripathi, R.P. A convenient synthesis of novel pyranosyl homo-C-nucleosides and their antidiabetic activities. Carbohydr. Res., 2011, 346(10), 1191-1201.
[http://dx.doi.org/10.1016/j.carres.2011.03.006] [PMID: 21550025]
[35]
Mineeva, I.V. Cyclopropanol methodology in the synthesis of (4R)- and (4S)-4-methyltetrahydro-2Hpyran-2-ones. Application in the synthesis of insect pheromones with methyl-branched carbon skeleton. Russ. J. Org. Chem., 2015, 51, 341-351.
[http://dx.doi.org/10.1134/S1070428015030094]
[36]
Bianchi, G.; Tava, A. Synthesis of (2R)-(+)-2,3-dihydro-2,6-dimethyl-4H-Pyran-4-one, a homologue of pheromones of a species in the Hepialidae family. Agric. Biol. Chem., 1987, 51, 2001-2002.
[http://dx.doi.org/10.1080/00021369.1987.10868286]
[37]
Armesto, D.; Horspool, W.M.; Martin, N.; Ramos, A.; Seoane, C. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans. J. Org. Chem., 1989, 54, 3069-3072.
[http://dx.doi.org/10.1021/jo00274a021]
[38]
Awuah, S.G.; Polreis, J.; Prakash, J.; Qiao, Q.; You, Y. New pyran dyes for dye-sensitized solar cells. J. Photochem. Photobiol. Chem., 2011, 224, 116-122.
[http://dx.doi.org/10.1016/j.jphotochem.2011.09.014]
[39]
Raj, T.; Bhatia, R.K.; Sharma, R.K.; Gupta, V.; Sharma, D.; Ishar, M.P. Mechanism of unusual formation of 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides and their antimicrobial evaluation. Eur. J. Med. Chem., 2009, 44(8), 3209-3216.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.030] [PMID: 19375826]
[40]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med. Chem. Res., 2010, 20, 854-864.
[http://dx.doi.org/10.1007/s00044-010-9399-x]
[41]
El-Saghier, A.M.M.; Naili, M.B.; Rammash, B.K.; Saleh, N.A.; Kreddan, K.M. Synthesis and antibacterial activity of some new fused chromenes. ARKIVOC, 2007, 16, 83-91.
[http://dx.doi.org/10.3998/ark.5550190.0008.g09]
[42]
Singh, O.M.; Devi, N.S.; Thokchom, D.S.; Sharma, G.J. Novel 3-alkanoyl/aroyl/heteroaroyl-2H-chromene-2-thiones: synthesis and evaluation of their antioxidant activities. Eur. J. Med. Chem., 2010, 45(6), 2250-2257.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.070] [PMID: 20170989]
[43]
Patil, S.A.; Wang, J.; Li, X.S.; Chen, J.; Jones, T.S.; Ahmed, A.H.; Pattil, R.; Seibel, W.L.; Miller, D.D. New substituted 4H-chromenes as anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22, 4458-4461.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.074]
[44]
Li, W.L.; Liang, J.Y.; Wang, T.B.; Yang, Y.Q. FeCl3–SiO2 as heterogeneous catalysts for the preparation of dihydropyrano[3,2-b]chromenediones. Collect. Czech. Chem. Commun., 2011, 76, 1791-1797.
[http://dx.doi.org/10.1135/cccc2011108]
[45]
Zhang, C.; Qu, Y. CeCl3⋅7H2O/SiO2 as an efficient and recyclable catalyst for the synthesis of dihydropyrano[3,2-b]chromenediones. J. Chem., 2013, 2013, 1-4.
[http://dx.doi.org/10.1155/2013/682973]
[46]
Estakhri, E.; Esfahani, M.N.; Baltork, I.M.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V. Chloroaluminate ionic liquid-modified silica-coated magnetic nanoparticles: efficient and reusable catalyst for selective synthesis of mono- and bis-dihydropyrano[3,2-b]chromenediones. Appl. Organomet. Chem., 2017, 31e3799
[http://dx.doi.org/10.1002/aoc.3799]
[47]
Ziraka, M.; Azinfara, M.; Khalili, M. Three-component reactions of kojic acid: efficient synthesis of dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with nano-Bi2O3-ZnO and nano-ZnO. Cur. Chem. Lett, 2017, 6, 105-116.
[http://dx.doi.org/10.5267/j.ccl.2017.4.001]
[48]
Sadeghi, B.; Lasemi, Z.; Abadi, M.P. Nano-peanut shell-OSO3H: green and natural-based renewable nanocatalyst for one-pot synthesis of dihydropyrano[3,2-b]chromenedione derivatives. Iran. J. Catal., 2019, 9, 155-162.
[49]
Sarnikar, Y.P.; Mane, Y.D.; Biradar, D.O.; Khade, B.C.B. (C6F5)3 catalyzed synthesis of dihydropyrano[3,2-b]chromenediones under solvent-free conditions. Synth. Commun., 2019, 49, 1143-1152.
[http://dx.doi.org/10.1080/00397911.2019.1585542]
[50]
Pourshahrestani, S.; Baltork, I.M.; Moghadam, M.; Tangestaninejad, S.; Khosropour, A.R.; Mirkhani, V. Bismuth triflate, Bi(OTf)3, as an efficient and reusable catalyst for synthesis of dihydropyrano[3,2-b]chromenediones. J. Iran. Chem. Soc, 2014, 12, 573-580.
[http://dx.doi.org/10.1007/s13738-014-0514-7]
[51]
Li, W.L.; Wu, L.Q.; Yan, F.L. Alum-catalyzed one-pot synthesis of dihydropyrano[3,2-b]chromenediones. J. Braz. Chem. Soc., 2011, 22, 2202-2205.
[http://dx.doi.org/10.1590/S0103-50532011001100025]
[52]
Reddy, B.V.S.; Reddy, M.R.; Narasimhulu, G.; Yadav, J.S. InCl3-catalyzed three-component reaction: a novel synthesis of dihydropyrano[3,2-b]chromenediones under solvent-free conditions. Tetrahedron Lett., 2010, 51, 5677-5679.
[http://dx.doi.org/10.1016/j.tetlet.2010.08.044]
[53]
Sravya, G.; Suresh, G.; Zyryanov, G.V.; Balakrishna, A.; Reddy, K.M.K.; Reddy, C.S.; Venkataramaiah, C.; Rajendra, W.; Reddy, N.B. A meglumine catalyst-based synthesis, molecular docking, and antioxidant studies of dihydropyrano[3,2‐b]chromenedione derivatives. J. Heterocycl. Chem., 2019, 57, 355-369.
[http://dx.doi.org/10.1002/jhet.3786]
[54]
Asghari, S.; Ahmadipour, M. A facile one-pot synthesis of functionalized 4,8-dihydropyrano[3,2-b]-pyran-4-ones. Acta Chim. Slov., 2010, 57(4), 953-956.
[PMID: 24061903]
[55]
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res., 2013, 46(8), 1825-1837.
[http://dx.doi.org/10.1021/ar300197s] [PMID: 23350747]
[56]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem, 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[57]
Sadeghi, B.; Nezhad, F.P.; Hashemian, S. SiO2–OSO3H nanoparticles: an efficient, versatile and new reagent for the one-pot synthesis of 2-amino-8-oxo-4,8-dihydropyrano[3,2-b]pyran-3carbonitrile derivatives in water, a green protocol. J. Chem. Res., 2014, 38, 54-57.
[http://dx.doi.org/10.3184/174751914X13866053657371]
[58]
Banitaba, S.H. A mild protocol for the preparation of 2-aminodihydropyrano[3,2-b] pyran-3-carbonitriles via cobalt nanoparticles-catalyzed multi-component reaction in water. Iran. Chem. Commun, 2017, 6, 389-401.
[59]
Baghbanian, S.M. Synthesis, characterization, and application of Cu2O and NiO nanoparticles supported on natural nanozeolite clinoptilolite as a heterogeneous catalyst for the synthesis of pyrano[3,2-b]pyrans and pyrano[3,2-c]pyridones. RSC Advances, 2014, 4, 59397-59404.
[http://dx.doi.org/10.1039/C4RA10537K]
[60]
Asghari, S.; Mohammadnia, M. Synthesis and characterization of pyridine-4-carboxylic acid functionalized Fe3O4 nanoparticles as a magnetic catalyst for synthesis of pyrano[3,2-b]pyranone derivatives under solvent-free conditions. Res. Chem. Intermed., 2015, 42, 1899-1911.
[http://dx.doi.org/10.1007/s11164-015-2124-0]
[61]
Azarifar, D.; Ebrahimiasl, H.; Karamian, R.; Khoei, M.A. s-Triazinium-based ionic liquid immobilized on silica-coated Fe3O4 magnetic nanoparticles: an efficient and magnetically separable heterogeneous catalyst for synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile derivatives for antioxidant and antifungal evaluation studies. J. Iran. Chem. Soc., 2018, 16, 341-35.
[http://dx.doi.org/10.1007/s13738-018-1521-x]
[62]
Sis, B.E.; Karajabad, M.S.; Haqverd, S. Pyridylmethylaminoacetic acid functionalized Fe3O4 magnetic nanorods as an ecient catalyst for the synthesis of 2-aminochromene and 2-aminopyran derivatives. Sci. Iran., 2017, 24, 3022-3031.
[http://dx.doi.org/10.24200/SCI.2017.4513]
[63]
Baghbanian, S.M.; Rezaei, N.; Tashakkorian, H. Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4H-chromene derivatives in aqueous media. Green Chem., 2013, 15, 3446-3458.
[http://dx.doi.org/10.1039/c3gc41302k]
[64]
Mofrad, R.T.; Esmati, S.; Rabiei, M.; Nazari, M.G. Ferrocene-containing ionic liquid supported on silica nanospheres (SiO2@Imid-Cl@Fc) as a mild and efficient heterogeneous catalyst for the synthesis of pyrano[3,2-b]pyran derivatives under ultrasound irradiation. J. Chem. Res., 2018, 42, 7-12.
[http://dx.doi.org/10.3184/174751918X15161933697754]
[65]
Nazari, M.G.; Esmati, S.; Safa, K.D.; Khataee, A.; Mofrad, R.T. Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2: a novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation. Res. Chem. Intermed., 2018, 45, 1841-1862.
[http://dx.doi.org/10.1007/s11164-018-3704-6]
[66]
Rigi, F.; Shaterian, H.R. One-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyranes and pyridopyrimidines under mild conditions. J. Chin. Chem. Soc., 2018, 66, 434-437.
[http://dx.doi.org/10.1002/jccs.201800048]
[67]
Sarrafi, Y.; Mehrasbi, E.; Mashalchi, S.Z. MCM-41-SO3H: an efficient, reusable, heterogeneous catalyst for the one-pot, three-component synthesis of pyrano[3,2-b]pyrans. Res. Chem. Intermed., 2015, 2015, 1-13.
[http://dx.doi.org/10.1007/s11164-015-2275-z]
[68]
Kataev, E.A.; Reddy, M.R.; Reddy, G.N.; Reddy, V.H.; Reddy, C.S.; Reddy, B.V.S. Supramolecular catalysis by β-cyclodextrin for the synthesis of kojic acid derivatives in water. New J. Chem., 2016, 40, 1693-1697.
[http://dx.doi.org/10.1039/C5NJ01902H]
[69]
Khan, M.N.; Pal, S.; Karamthulla, S.; Choudhury, L.H. Imidazole as organocatalyst for multicomponent reactions: diversity oriented synthesis of functionalized hetero- and carbocycles using in situ-generated benzylidenemalononitrile derivatives. RSC Advances, 2014, 4, 3750-3759.
[http://dx.doi.org/10.1039/C3RA45252B]
[70]
Shestopalov, A.A.; Rodinovskaya, L.A.; Shestopalov, A.M.; Litvinov, V.P. One-step synthesis of substituted 4,8-dihydropyrano[3,2-b]pyran-4-ones. Russ. Chem. Bull., 2004, 53, 724-725.
[http://dx.doi.org/10.1023/B:RUCB.0000035666.05686.89]
[71]
Banitaba, S.H.; Safari, J.; Khalili, S.D. Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: a complementary ‘green chemistry’ tool to organic synthesis. Ultrason. Sonochem., 2013, 20(1), 401-407.
[http://dx.doi.org/10.1016/j.ultsonch.2012.07.007] [PMID: 22939001]
[72]
Asghari, S.; Baharfar, R.; Alimi, M.; Ahmadipour, M.; Mohseni, M. Synthesis and antibacterial activities of pyrano[3,2-b]pyranones from kojic acid, ethyl cyanoacetate, and benzaldehydes in aqueous K2CO3. Monatsh. Chem., 2014, 145, 1337-1342.
[http://dx.doi.org/10.1007/s00706-014-1190-0]
[73]
Kumarasamy, C.; Sundarasamy, A.; Mathan, S.; Chokkalingam, U.; Athar, A.; Subramaniam, M.P.; Thangaraj, S. An Yb(OTf)3 ‐catalyzed, convergent synthesis of new pyranyl‐ and chromenyl‐substituted quinolines through an eco‐friendly approach. J. Heterocycl. Chem., 2019, 56, 2986-2992.
[http://dx.doi.org/10.1002/jhet.3692]
[74]
Mehrabadi, S.R.S.; Sadeghi, B.; Zavar, S. Nano-rice bran/TiCl4 a highly efficient catalyst for the one-pot synthesis of pyrano[3,2-b]pyrans. J. App. Chem. Res, 2018, 12, 65-73.
[75]
Dehghanpoor, S.; Sadeghi, B.; Mosslemin, M.H. Green nano-silica sulfuric acid-catalyzed synthesis of new 6-amino-8-aryl-7-(benzenesulfonyl)-2-(hydroxymethyl)- pyrano[3,2-b]pyran-4(8H)-one derivatives. Russ. J. Org. Chem., 2019, 55, 1957-1960.
[http://dx.doi.org/10.1134/S107042801912025X]
[76]
Sadeghi, B. Synthesis of novel 6 amino 2 (hydroxymethyl) 8 aryl 7 (phenylsulfonyl) pyrano[3,2-b]pyran 4(8H) one derivatives catalyzed by nano cellulose OSO3H. Res. Chem. Intermed., 2019, 45, 1-10.
[http://dx.doi.org/10.1007/s11164-019-03870-9]
[77]
Tu, X.J.; Fan, W.; Hao, W.J.; Jiang, B.; Tu, S.J. Three-component bicyclization providing an expedient access to pyrano[2′,3′:5,6]pyrano[2,3-b]pyridines and its derivatives. ACS Comb. Sci., 2014, 16(11), 647-651.
[http://dx.doi.org/10.1021/co500100c] [PMID: 25229308]
[78]
Panda, S.S.; Jones, R.A.; Bachawala, P.; Mohapatra, P.P. Spirooxindoles as potential pharmacophores. Mini Rev. Med. Chem., 2017, 17(16), 1515-1536.
[http://dx.doi.org/10.2174/1389557516666160624125108] [PMID: 29056096]
[79]
Yu, B.; Yu, D.Q.; Liu, H.M. Spirooxindoles: promising scaffolds for anticancer agents. Eur. J. Med. Chem., 2015, 97, 673-698.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056] [PMID: 24994707]
[80]
Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2016, 20(1), 299-344.
[http://dx.doi.org/10.1007/s11030-015-9629-8] [PMID: 26419598]
[81]
Rahmati, A.; Khalesi, Z.; Kenarkoohi, T. Three-component synthesis of spiro[indoline-3,4′-pyrano[3,2-b]pyran]- 2,8′-diones using a one-pot reaction. Comb. Chem. High Throughput Screen., 2014, 17(2), 132-140.
[http://dx.doi.org/10.2174/13862073113166660067] [PMID: 24164049]
[82]
Azimi, R.; Baharfar, R. DABCO-functionalized mesoporous SBA-15: an efficient and recyclable catalyst for the synthesis of spiro-pyranoxindoles as antioxidant agents. Can. J. Chem., 2014, 92, 1163-1168.
[http://dx.doi.org/10.1139/cjc-2014-0309]
[83]
Parthasarathy, K.; Praveen, C.; Balachandran, C. Senthil kumar, P.; Ignacimuthu, S.; Perumal, P.T. Cu(OTf)2 catalyzed three component reaction: efficient synthesis of spiro[indoline-3,4′-pyrano[3,2-b]pyran derivatives and their anticancer potency towards A549 human lung cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(9), 2708-2713.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.086] [PMID: 23522833]
[84]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[85]
Mathew, B.P.; Kumar, A.; Sharma, S.; Shukla, P.K.; Nath, M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1502-1507.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.058] [PMID: 20116901]
[86]
Zhang, P.; Terefenko, E.A.; Fensome, A.; Wrobel, J.; Winneker, R.; Zhang, Z. Novel 6-aryl-1,4-dihydrobenzo[d]oxazine-2-thiones as potent, selective, and orally active nonsteroidal progesterone receptor agonists. Bioorg. Med. Chem. Lett., 2003, 13(7), 1313-1316.
[http://dx.doi.org/10.1016/S0960-894X(03)00128-8] [PMID: 12657271]
[87]
Zanatta, N.; Squizani, A.M.C.; Fantinel, L.; Nachtigall, F.M.; Borchhardt, D.M.; Bonacorso, H.G.; Martins, M.A.P. Synthesis of N-substituted 6-trifluoromethyl-1,3-oxazinanes. J. Braz. Chem. Soc., 2005, 16, 1255-1261.
[http://dx.doi.org/10.1590/S0103-50532005000700025]
[88]
Miri, M.; Hassanabadi, A. One-pot and three-component condensation of kojic acid with aromatic aldehydes and methyl carbamate: synthesis of pyrano-1,3-oxazine derivatives in aqueous media. J. Chem. Res., 2018, 42, 416-418.
[http://dx.doi.org/10.3184/174751918X15341755203029]
[89]
Mirbalouchzehi, M.; Hassanabadi, A. Three-component reaction between kojic acid and aroyl chlorides with ammonium thiocyanate: synthesis of 2-aryl-6-hydroxymethyl-4-thioxo-4H-pyrano[2,3-e][1,3]oxazin-8-ones. J. Chem. Res., 2016, 40, 147-148.
[http://dx.doi.org/10.3184/174751916X14546017704262]
[90]
Ozdemir, A.; Turan-Zitouni, G.; Asim Kaplancikli, Z.; Işcan, G.; Khan, S.; Demirci, F. Synthesis and the selective antifungal activity of 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine derivatives. Eur. J. Med. Chem., 2010, 45(5), 2080-2084.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.023] [PMID: 20106559]
[91]
el-Gazzar, A.B.A.; Hafez, H.N.; Nawwar, G.A.M. New acyclic nucleosides analogues as potential analgesic, anti-inflammatory, anti-oxidant and anti-microbial derived from pyrimido[4,5-b]quinolines. Eur. J. Med. Chem., 2009, 44(4), 1427-1436.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.030] [PMID: 18977557]
[92]
Chezal, J.M.; Paeshuyse, J.; Gaumet, V.; Canitrot, D.; Maisonial, A.; Lartigue, C.; Gueiffier, A.; Moreau, E.; Teulade, J.C.; Chavignon, O.; Neyts, J. Synthesis and antiviral activity of an imidazo[1,2-a]pyrrolo[2,3-c]pyridine series against the bovine viral diarrhea virus. Eur. J. Med. Chem., 2010, 45(5), 2044-2047.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.023] [PMID: 20149501]
[93]
Nargund, L.V.G.; Reddy, Y.S.R.; Jose, R. Synthesis and antibacterial activity of pyrido[1,2-a]pyrimidine-(1)-ones. Indian Drugs, 1991, 29, 45-46.
[94]
Nicolaou, K.C.; Scarpelli, R.; Bollbuck, B.; Werschkun, B.; Pereira, M.M.; Wartmann, M.; Altmann, K.H.; Zaharevitz, D.; Gussio, R.; Giannakakou, P. Chemical synthesis and biological properties of pyridine epothilones. Chem. Biol., 2000, 7(8), 593-599.
[http://dx.doi.org/10.1016/S1074-5521(00)00006-5] [PMID: 11048950]
[95]
Safaei, S.; Baltork, I.M.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Khavasi, H.R. One-pot three-component synthesis of pyrano [3,2-b]pyrazolo[4,3-e]pyridin-8(1H)-ones. ACS Comb. Sci., 2013, 15(3), 141-146.
[http://dx.doi.org/10.1021/co3001204] [PMID: 23406379]
[96]
Rahmani, F.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Efficient one-pot synthesis of new fused pyridines and bis-pyridines catalyzed by triazine diphosphonium hydrogen sulfate ionic liquid supported on functionalized nano-silica. Tetrahedron Lett., 2016, 57, 2294-2297.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.053]
[97]
Garg, V.; Maurya, R.K.; Thanikachalam, P.V.; Bansal, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: a review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[98]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem., 2018, 18(1), 9-25.
[PMID: 28782480]
[99]
Zhang, H.Y.; Hao, X.P.; Mo, L.P.; Liu, S.S.; Zhang, W.B.; Zhang, Z.H. A magnetic metal-organic framework as a highly active heterogeneous catalyst for one-pot synthesis of 2-substituted alkyl and aryl(indolyl)kojic acid derivatives. New J. Chem., 2017, 41, 7108-7115.
[http://dx.doi.org/10.1039/C7NJ01592E]
[100]
Sadeghi, B.; Lasemi, Z.; Amiri Tavasoli, F.; Hashemian, S.; Zahedi, H. Synthesis of FAU zeolite nanoparticles as heterogeneous catalyst for one-pot synthesis of 2-substituted aryl (indolyl) kojic acid derivatives under solvent-free condition. Synth. React. Inorg. M., 2014, 44, 1497-1503.
[http://dx.doi.org/10.1080/15533174.2013.818019]
[101]
Kardooni, R.; Kiasat, A.R.; Sabzi, N.E. Hyper-cross-linked β-cyclodextrin nanosponge: a three-dimensional, porous and biodegradable catalyst in the one-pot synthesis of kojic acid-based heterocyclic compounds. Res. Chem. Intermed., 2020, 46, 1857-1868.
[http://dx.doi.org/10.1007/s11164-019-04067-w]
[102]
Sadeghi, B.; Shahedi, M.R.A. Clean, simple, and efficient synthesis of 2-substituted aryl (indolyl) kojic acid derivatives by kaolin/Ag nanocomposite as a reusable catalyst: a green protocol. J. Chem., 2013, 2013418969
[http://dx.doi.org/10.1155/2013/418969]
[103]
Reddy, B.V.S.; Reddy, M.R.; Madan, Ch.; Kumar, K.P.; Rao, M.S. Indium(III) chloride catalyzed three-component coupling reaction: a novel synthesis of 2-substituted aryl(indolyl)kojic acid derivatives as potent antifungal and antibacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(24), 7507-7511.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.003] [PMID: 21067928]
[104]
Baharfar, R.; Asghar, S.; Kiani, M. Regioselective synthesis and antibacterial activity of 3-(cyanoacetyl)indole-based kojic acid derivatives. Monatsh. Chem., 2014, 146, 335-343.
[http://dx.doi.org/10.1007/s00706-014-1310-x]
[105]
Baharfar, R.; Alinezhad, H.; Azimi, R. Use of DABCO-functionalized mesoporous SBA-15 as catalyst for efficient synthesis of kojic acid derivatives, potential antioxidants. Res. Chem. Intermed., 2015, 41, 8637-8650.
[http://dx.doi.org/10.1007/s11164-014-1916-y]
[106]
Forouzani, M.; Bosra, H.G. One-pot three-component coupling reaction: solvent-free synthesis of novel 2-substituted aryl (amino) kojic acid by pTSA-catalyzed. Orient. J. Chem., 2013, 29, 573-578.
[http://dx.doi.org/10.13005/ojc/290226]
[107]
Mofrad, R.T.; Shahrisa, A.; Nazari, M.G.; Arsalani, N. Eco-friendly one-pot, three-component synthesis of novel derivatives of kojic acid by the Mannich-type reaction under solvent-free ball-milling conditions. Res. Chem. Intermed., 2015, 42, 3425-3439.
[http://dx.doi.org/10.1007/s11164-015-2221-0]
[108]
Woods, L.L. Mannich bases from kojic acid and aryl amines. J. Am. Chem. Soc., 1946, 68, 2744-2745.
[http://dx.doi.org/10.1021/ja01216a528]
[109]
Emami, S.; Ghafouri, E.; Faramarzi, M.A.; Samadi, N.; Irannejad, H.; Foroumadi, A. Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study. Eur. J. Med. Chem., 2013, 68, 185-191.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.032] [PMID: 23974018]
[110]
Nurchi, V.M.; Crisponi, G.; Arca, M.; Crespo-Alonso, M.; Lachowicz, J.I.; Mansoori, D.; Toso, L.; Pichiri, G.; Santos, M.A.; Marques, S.M.; Gutiérrez, J.N.; Pérez, J.M.G.; Martín, A.D.; Lazarte, D.C.; Szewczuk, Z.; Zoroddu, M.A.; Peana, M. A new bis-3-hydroxy-4-pyrone as a potential therapeutic iron chelating agent. Effect of connecting and side chains on the complex structures and metal ion selectivity. J. Inorg. Biochem., 2014, 141, 132-143.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.09.002] [PMID: 25260149]
[111]
Asghari, S.; Malekian, N.; Esmaeilpour, R.; Ahmadipour, M.; Mohseni, M. Three-component synthesis and antibacterial evaluation of some novel 1,2-dihydroisoquinoline derivatives. Chin. Chem. Lett., 2014, 25, 1441-1444.
[http://dx.doi.org/10.1016/j.cclet.2014.05.047]
[112]
Elinson, M.N.; Vereshchagin, A.N.; Anisina, Y.E.; Krymov, S.K.; Fakhrutdinov, A.N.; Egorov, M.P. Multicomponent assembling of salicylaldehydes, kojic acid and malonic acid derivatives. Mendeleev Commun., 2019, 29, 581-583.
[http://dx.doi.org/10.1016/j.mencom.2019.09.035]
[113]
Elinson, M.N.; Ryzhkova, Y.E.; Krymov, S.E.; Vereshchagin, A.N.; Goloveshkin, A.S.; Egorov, M.P. Electrochemically induced multicomponent ‘one-pot’ assembling benzaldehydes, N,N′-dimethylbarbituric acid, and kojic acid. Monatsh. Chem., 2020, 151, 567-573.
[http://dx.doi.org/10.1007/s00706-020-02578-6]
[114]
Elinson, M.N.; Vereshchagin, A.N.; Ryzhkova, Y.E.; Krymov, S.E.; Leonovs, N.A.; Goloveshkin, A.S.; Egorov, M.P. Electrocatalytic one-pot multicomponent assembly of aldehydes, 2,4-dihydro-3H-pyrazol-3-ones and kojic acid. Mendeleev Commun., 2020, 30, 223-225.
[http://dx.doi.org/10.1016/j.mencom.2020.03.031]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy