Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Reactivity of Barbituric, Thiobarbituric Acids and Their Related Analogues: Synthesis of Substituted and Heterocycles-based Pyrimidines

Author(s): Ahmed El-Mekabaty*, Hassan A. Etman, Ahmed Mosbah and Ahmed A. Fadda

Volume 24, Issue 14, 2020

Page: [1610 - 1642] Pages: 33

DOI: 10.2174/1385272824999200608134859

Price: $65

Abstract

Barbituric, thiobarbituric acids and their related analogs are reactive synthons for the synthesis of drugs and biologically, and pharmaceutically active pyrimidines. The present review aimed to summarize the recent advances in the synthesis of different alkylsubstituted, fused cycles, spiro-, and binary heterocycles incorporated pyrimidine skeleton based on barbituric derivatives. In this sequence, the eco-friendly techniques under catalytic conditions were used for the diverse types of multicomponent reactions under different conditions for the synthesis of various types of heterocycles. Nano-catalysts are efficient for the synthesis of these compounds in high yields and effective catalyst reusability. The compounds are potent antibacterial, cytotoxic, xanthine oxidase inhibitory activities, and attend as urease inhibitors. The projected mechanisms for the synthesis of pyranopyrimidines, benzochromenopyrimidines, chromeno-pyranopyrimidines, spiroxyindoles, oxospiro-tricyclic furopyrimidines, pyrimidine-based monoand bicyclic pyridines were discussed. The potent and diverse biological activities for instance, antioxidant, antibacterial, cytotoxic, and xanthine oxidase inhibitory activities, as well as urease inhibitors, are specified.

Keywords: Barbituric acid, thiobarbituric acid, fused cyclic systems, spirocyclic, binary heterocycles, biological activities.

Graphical Abstract

[1]
Rathee, P.; Tonk, R.K.; Dalal, A.; Ruhil, M.K.; Kumar, A. Synthesis and application of thiobarbituric acid derivatives as antifungal agents. Cell. Mol. Biol., 2016, 62, 141-145.
[http://dx.doi.org/10.4172/1165-158X.1000141]
[2]
Mobinikhaledi, A.; Kalhor, M. Synthesis and biological activity of some oxo- and thioxopyrimidines. Int. J. Drug Dev. Res., 2010, 2, 268-272.
[http://dx.doi.org/10.1080/10426500500272087]
[3]
Mohamed, N.R.; Saidi, M.M.T.E.; Ali, Y.M.; Elnagdi, M.H. Utility of 6-amino-2-thiouracil as a precursor for the synthesis of bioactive pyrimidine derivatives. Bioorg. Med. Chem., 2007, 15(18), 6227-6235.
[http://dx.doi.org/10.1016/j.bmc.2007.06.023] [PMID: 17600721]
[4]
Li, J.; Shi, W.; Yang, W.; Kang, Z.; Zhang, M.; Song, L. First synthesis of unexpected functionalized trifluoromethylated 8-oxa-2,4-diazaspiro[5.5]und-ecanes via one-pot MCRs. RSC Advances, 2014, 4, 29549-29554.
[http://dx.doi.org/10.1039/C4RA03199G]
[5]
Khalafi-Nezhad, A.; Panahi, F. Synthesis of new dihydropyrimido[4,5-b]quinolinetrione derivatives using a four-component coupling reaction. Synthesis, 2011, 2011, 984-992.
[http://dx.doi.org/10.1055/s-0030-1258446]
[6]
Soleimani, E.; Ghorbani, S.; Ghasempour, H.R. Novel isocyanide-based three-component reaction: a facile synthesis of substituted 1H-chromeno[2,3-d]pyrimidine-5-carboxamides. Tetrahedron, 2013, 69, 8511-8515.
[http://dx.doi.org/10.1016/j.tet.2013.06.080]
[7]
Safaei, H.R.; Shekouhy, M.; Rahmanpur, S.; Shirinfeshan, A. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans. Green Chem., 2012, 14, 1696-1704.
[http://dx.doi.org/10.1039/c2gc35135h]
[8]
Deng, J.; Mo, L.P.; Zhao, F.Y.; Zhang, Z.H.; Liu, S.X. One-pot, three component synthesis of a library of spirooxindole-pyrimidines catalyzed by magnetic nanoparticle supported dodecyl benzenesulfonic acid in aqueous media. ACS Comb. Sci., 2012, 14(5), 335-341.
[http://dx.doi.org/10.1021/co3000264] [PMID: 22533528]
[9]
Azzam, S.H.S.; Pasha, M.A. Microwave-assisted, mild, facile, and rapid one-pot three-component synthesis of some novel pyrano[2,3-d]pyrimidine-2,4,7-triones. Tetrahedron Lett., 2012, 53, 7056-7059.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.056]
[10]
Kazemi-Rad, R.; Azizian, J.; Kefayati, H. Electrogenerated acetonitrile anions/tetrabutylammonium cations: an effective catalytic system for the synthesis of novel chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines. Tetrahedron Lett., 2014, 55, 6887-6890.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.099]
[11]
Ziarani, G.M.; Aleali, F.; Lashgari, N. Recent applications of barbituric acid in multicomponent reactions. RSC Advances, 2016, 6, 50895-50922.
[http://dx.doi.org/10.1039/C6RA09874F]
[12]
Bojarski, J.T.; Mokrocz, J.L.; Barton, H.J.; Paluchowska, M.H. Recent progress in barbituric acid chemistry. Adv. Heterocycl. Chem., 1985, 38, 229-297.
[http://dx.doi.org/10.1016/S0065-2725(08)60921-6]
[13]
Frangin, Y.; Guimbal, C.; Wissocq, F.; Zamarlik, H. Synthesis of substituted barbituric acids via organozinc reagents. Synthesis, 1986, 12, 1046-1049.
[http://dx.doi.org/10.1055/s-1986-31870]
[14]
Figueroa-Villar, J.D.; Rangel, C.E.; Dos Santos, L.N. Synthesis of oxadeazaflavines from barbituric acid and aromatic aldehydes. Synth. Commun., 1992, 22, 1159-1164.
[http://dx.doi.org/10.1080/00397919208021101]
[15]
Tanaka, K.; Cheng, X.; Yoneda, F. Oxidation of thiol with 5-arylidene-1,3-dimethylbarbituric acid: application to synthesis of unsymmetrical disulfide. Tetrahedron, 1988, 44, 3241-3249.
[http://dx.doi.org/10.1016/S0040-4020(01)85957-3]
[16]
Wang, C.; Ma, J.J.; Zhou, X.; Zang, X.H.; Wang, Z.; Gao, Y.J.; Cui, P.L. 1‐n‐butyl‐3‐methylimmidazolium tetrafluoroborate–promoted green synthesis of 5‐arylidene barbituric acids and thiobarbituric acid derivatives. Synth. Commun., 2005, 35, 2759-2764.
[http://dx.doi.org/10.1080/00397910500288254]
[17]
Li, J.T.; Dai, H.G.; Liu, D.; Li, T.S. Efficient method for synthesis of the derivatives of 5‐arylidene barbituric acid catalyzed by aminosulfonic acid with grinding. Synth. Commun., 2006, 36, 789-794.
[http://dx.doi.org/10.1080/00397910500451324]
[18]
Khurana, J.M.; Vij, K. Nickel nanoparticles catalyzed knoevenagel condensation of aromatic aldehydes with barbituric acids and 2-thiobarbituric acids. Catal. Lett., 2010, 138, 104-110.
[http://dx.doi.org/10.1007/s10562-010-0376-2]
[19]
Kamble, S.; Rashinkar, G.; Kumbhar, A.; Mote, K.; Salunkhe, R. Green chemistry approach for synthesis of 5-arylidine barbituric acid derivatives by hydrotrope induced Knovenagel condensation in aqueous medium. Arch. Appl. Sci. Res., 2010, 2, 217-222.
[20]
Rathod, S.B.; Gambhire, A.B.; Arbad, B.R.; Lande, M.K. Synthesis, characterization and catalytic activity of Ce1MgxZr1-xO2 (CMZO) solid heterogeneous catalyst for the synthesis of 5-arylindne barbituric acid derivatives. Bull. Korean Chem. Soc., 2010, 31, 339-343.
[http://dx.doi.org/10.5012/bkcs.2010.31.02.339]
[21]
Rajput, J.K.; Kaur, J. CoFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for “click” synthesis of arylidene barbituric acid derivatives at room temperature. Chin. J. Catal., 2013, 34, 1697-1704.
[http://dx.doi.org/10.1016/S1872-2067(12)60646-9]
[22]
Shirini, F.; Langarudi, M.S.N.; Seddighi, M.; Jolodar, O.G. Bi-SO3H functionalized ionic liquid based on DABCO as a mild and efficient catalyst for the synthesis of 1,8-dioxo-octahydro-xanthene and 5-arylmethylene-pyrimidine-2,4,6-trione derivatives. Res. Chem. Intermed., 2015, 41, 8483-8497.
[http://dx.doi.org/10.1007/s11164-014-1905-1]
[23]
Balalaie, S.; Abdolmohammadi, S.; Bijanzadeh, H.R.; Amani, A.M. Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media. Mol. Divers., 2008, 12(2), 85-91.
[http://dx.doi.org/10.1007/s11030-008-9079-7] [PMID: 18512127]
[24]
Bararjanian, M.; Balalaie, S.; Movassagh, B.; Amani, A.M. One-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by L-proline in aqueous media. J. Iran. Chem. Soc., 2009, 6, 436-442.
[http://dx.doi.org/10.1007/BF03245854]
[25]
Mobinikhaledi, A.; Fard, M.A. Tetrabutylammonium bromide in water as a green mediafor the synthesis of pyrano[[2,3-d]]pyrimidinone and tetrahydrobenzo[b]pyran derivatives. Acta Chim. Slov., 2010, 57(4), 931-935.
[PMID: 24061899]
[26]
Mobinikhaledi, A.; Foroughifar, N.; Fard, M.A.B. Eco-friendly and efficient synthesis of pyrano[2,3-d]pyrimidinone and tetrahydrobenzo[b]pyran derivatives in water. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2010, 40, 179-185.
[27]
Azizian, J.; Shameli, A.; Balalaie, S.; Ghanbari, M.M.; Zomorodbakhsh, S.; Entezari, M.; Bagheri, S.; Fakhrpour, G. The one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives with 1,4-diazabicyclo[2.2.2]octane in aqueous media. Orient. J. Chem., 2012, 28, 327-332.
[http://dx.doi.org/10.13005/ojc/280141]
[28]
Ziarani, G.M.; Faramarzi, S.; Asadi, S.; Badiei, A.; Bazl, R.; Amanlou, M. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H) and their docking and urease inhibitory activity. Daru, 2013, 21(1), 3.
[http://dx.doi.org/10.1186/2008-2231-21-3] [PMID: 23351402]
[29]
Sabour, B.; Peyrovi, M.H.; Hajimohammadi, M. Al-HMS-20 catalyzed synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res. Chem. Intermed., 2015, 41, 1343-1350.
[http://dx.doi.org/10.1007/s11164-013-1277-y]
[30]
Sadeghi, B.; Bouslik, M.; Shishehbore, M.R. Nano-sawdust-OSO3H as a new, cheap and effective nanocatalyst for one-pot synthesis of pyrano[2,3-d]pyrimidines. J. Iran. Chem. Soc., 2015, 12, 1801-1808.
[http://dx.doi.org/10.1007/s13738-015-0655-3]
[31]
Goli-Jolodar, O.; Shirini, F.; Seddighi, M. Succinimidinium hydrogensulfate ([H-Suc]HSO4) as an efficient ionic liquid catalyst for the synthesis of 5-arylidenepyrimidine-2,4,6(1H, 3H, 5H)-trione and pyrano-pyrimidinones derivatives. J. Iran. Chem. Soc., 2016, 13, 457-463.
[http://dx.doi.org/10.1007/s13738-015-0754-1]
[32]
Albadi, J.; Mansournezhad, A.; Sadeghi, T. Eco-friendly synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by a novel nanocatalyst of ZnO-supported copper oxide in water. Res. Chem. Intermed., 2015, 41, 8317-8326.
[http://dx.doi.org/10.1007/s11164-014-1894-0]
[33]
Baeyer, A. Untersuchungen über die Harnsäuregruppe. Eur. J. Org. Chem., 2006, 127(2), 199-236.
[http://dx.doi.org/10.1002/jlac.18631270214]
[34]
Grimaux, E. Synthèse des dérivés uriques de la série de l’alloxane. Bull. Soc. Chim. France, 1879, 31, 146-149.
[35]
Michael, A. On new reactions with sodium acetoacetic acid and sodium malonic acid ether. J. Prakt. Chem., 1887, 35, 449-459.
[http://dx.doi.org/10.1002/prac.18870350147]
[36]
Dickey, J.B.; Gray, A.R. A publication of reliable methods for the preparation of organic compounds barbituric acid. Org. Synth., 1938, 18, 6-9.
[http://dx.doi.org/10.15227/orgsyn.018.0008]
[37]
Fischer, E.; Dilthey, A. Ueber C‐Dialkylbarbitursäuren und über die Ureïde der Dialkylessigsäuren. Eur. J. Org. Chem., 1904, 335(3), 334-368.
[http://dx.doi.org/10.1002/jlac.19043350303]
[38]
(a)El-Mekabaty, A.; El-Shora, H.M. Synthesis and evaluation of some novel 3-hetarylindole derivatives as antimicrobial and antioxidant agents. Chem. Heterocycl. Compd., 2018, 54, 618-624.
[http://dx.doi.org/10.1007/s10593-018-2317-8]
(b)El-Mekabaty, A. Synthesis and antioxidant activity of some new heterocycles incorporating the pyrazolo[3,4-d]pyrimidin-4-one moiety. Chem. Heterocycl. Compd., 2015, 50, 1698-1706.
[http://dx.doi.org/10.1007/s10593-015-1640-6]
(c)Monier, M.; El-Mekabaty, A.; Elattar, K.M. Five-membered ring systems with one heteroatom: Synthetic routes, chemical reactivity, and biological properties of furan-carboxamide analogues. Synth. Commun., 2018, 48, 839-875.
[http://dx.doi.org/10.1080/00397911.2017.1421227]
(d)Monier, M.; El-Mekabaty, A.; Abdel-Latif, D.A. Synthesis and evaluation of enantio-selective L-histidine imprinted salicylic acid functionalized resin. React. Funct. Polym., 2018, 128, 104-113.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.04.011]
(e)Elattar, K.M.; Mert, B.D.; Monier, M.; El-Mekabaty, A. Advances in the chemical and biological diversity of heterocyclic systems incorporating pyrimido[1,6-a]pyrimidine and pyrimido[1,6-c]pyrimidine scaffolds. RSC Advances, 2020, 10, 15461-15492.
[http://dx.doi.org/10.1039/D0RA00411A]
(f)Habib, O.M.O.; Hassan, H.M.; El-Mekabaty, A. The synthesis and evaluation of some new quinazolones as antioxidant additives for Egyptian lubricating oils. Petrol. Sci. Technol., 2014, 32, 1201-1212.
[http://dx.doi.org/10.1080/10916466.2011.649097]
(g)Habib, O.M.O.; Hassan, H.M.; Moawad, E.B.; El-Mekabaty, A. Synthesis of some novel antioxidant and anticorrosive additives for Egyptian lubricating oils. Petrol. Sci. Technol., 2012, 30, 2435-2449.
[http://dx.doi.org/10.1080/10916466.2010.519754]
(h)El-Mekabaty, A.; Habib, O.M.O.; Hassan, H.M.; Moawad, E.B. Synthesis and evaluation of some new oxazolones and imidazolones as antioxidant additives for Egyptian lubricating oils. Petrol. Sci., 2012, 9, 389-399.
[http://dx.doi.org/10.1007/s12182-012-0223-8]
[39]
(a) El-Mekabaty, A.; Etman, H.A.; Mosbah, A. Synthesis of some new fused pyrazole derivatives bearing indole moiety as antioxidant agents. J. Heterocycl. Chem., 2016, 53, 894-900.
[http://dx.doi.org/10.1002/jhet.2218]
(b) Habib, O.M.O.; Hassan, H.M.; El-Mekabaty, A. Novel quinazolinone derivatives: synthesis and antimicrobial activity. Med. Chem. Res., 2013, 22, 507-519.
[http://dx.doi.org/10.1007/s00044-012-0079-x]
(c) Khatab, T.K.; Abdelghany, A.M.; Kandil, E.M.; Elsefy, D.E.; El-Mekabaty, A. Hydroxyapatite/ZnCl2 nano-flakes: an efficient catalyst for the synthesis of 2- arylbenzothiazoles with molecular docking and anti-oxidant evaluation. Biointerface Res. Appl. Chem., 2020, 10, 5182-5187.
[http://dx.doi.org/10.33263/BRIAC102.182187]
(d) Monier, M.; Abdel-Latif, D.A.; El-Mekabaty, A.; Elattar, K.M. Bicyclic 6 + 6 systems: the chemistry of pyrimido[4,5-d]pyrimidines and pyrimido[5,4-d]pyrimidines. RSC Advances, 2019, 9, 30835-30867.
[http://dx.doi.org/10.1039/C9RA05687D]
(e) El-Mekabaty, A.; Etman, H.A.; Mosbah, A.; Fadda, A.A. Synthesis, in vitro cytotoxicity and bleomycin-dependent DNA damage evaluation of some heterocyclic-fused pyrimidinone derivatives. ChemistrySelect, 2020, 5, 4856-4861.
[http://dx.doi.org/10.1002/slct.202001006]
(f) Soliman, H.A.; Mubarak, A.Y.; El-Mekabaty, A.; Awad, H.M.; Elmorsy, S.S. Eco-friendly synthesis of amidochloroalkylnaphthols and its related oxazepinones with biological evaluation. Monatsh. Chem., 2016, 147, 809-816.
[http://dx.doi.org/10.1007/s00706-015-1536-2]
(g) El-Mekabaty, A. Chemistry of 2-amino-3-carbethoxythiophene and re-lated compounds. Synth. Commun., 2014, 44, 1-31.
[http://dx.doi.org/10.1080/00397911.2013.821618]
(h) El-Mekabaty, A. Utility of 5-amino-1-phenyl-1H-pyrazole-4-carboxa-mide in heterocyclic synthesis. Synth. Commun., 2014, 44, 875-896.
[http://dx.doi.org/10.1080/00397911.2013.831905]
[40]
(a) El-Mekabaty, A.; Fadda, A.A. Novel pyrazolo[1,5-a]pyrimidines and pyrazolo[5,1-c][1,2,4]triazines incorporating indole moiety as a new class of antioxidant agents. J. Heterocycl. Chem., 2018, 55, 2303-2308.
[http://dx.doi.org/10.1002/jhet.3288]
(b) El-Mekabaty, A.; Monier, M.; Elattar, K.M. Seven-membered rings with three heteroatoms: chemistry of 1,3,4-thiadiazepines. Curr. Org. Chem., 2018, 22, 2419-2443.
[http://dx.doi.org/10.2174/1385272822666181031100107]
(c) Monier, M.; Abdel-Latif, D.A.; El-Mekabaty, A.; Mert, B.D.; Elattar, K.M. Advances in the chemistry of 6-6 bicyclic systems: chemistry of pyrido[3,4-d]pyrimidines. Curr. Org. Synth., 2019, 16, 812-854.
[http://dx.doi.org/10.2174/1570179416666190704113647] [PMID: 31984909]
(d) Monier, M.; Abdel-Latif, D.A.; El-Mekabaty, A.; Elattar, K.M. Reactivity and stereoselectivity of oxazolopyridines with a ring-junction nitrogen atom. J. Heterocycl. Chem., 2019, 56, 3172-3196.
[http://dx.doi.org/10.1002/jhet.3727]
(e) Monier, M.; Abdel-Latif, D.A.; El-Mekabaty, A.; Elattar, K.M. Recent progress in the chemistry of heterocycles incorporated oxazolo[4,5-b]pyridine and oxazolo[5,4-b]pyridine skeletons. Synth. Commun., 2020, 50, 1-32.
[http://dx.doi.org/10.1080/00397911.2019.1686644]
(f) El-Mekabaty, A. Chemistry of 3-(2-haloacyl)indoles. Synth. Commun., 2015, 45, 2271-2302.
[http://dx.doi.org/10.1080/00397911.2015.1051544]
(g) El-Mekabaty, A.; Habib, O.M.O.; Moawad, E.B.; Hasel, A.M. Reactivity of 2-thiazolylhydrazonomalononitrile toward carbon and nitrogen nucleophilic reagents: Applications to the synthesis of new heterocycles. J. Heterocycl. Chem., 2016, 53, 1214-1221.
[http://dx.doi.org/10.1002/jhet.2412]
(h) El-Mekabaty, A.; Habib, O.M.O.; Moawad, E.B.; Hasel, A.M. Synthesis and antioxidant activity of new pyrazolo[1,5-a]pyrimidine derivatives incorporating a thiazol-2-yldiazenyl moiety. J. Heterocycl. Chem., 2016, 53, 1820-1826.
[http://dx.doi.org/10.1002/jhet.2492]
[41]
aEl-Mekabaty, A.; Habib, O.M.O.; Abd El-Moneim, M.; Hussein, A.S. Efficient and convenient route to the synthesis of some novel sulfonate ester-based heterocycles as antitumor agents. Heterocycles, 2018, 96, 677-689.
[http://dx.doi.org/10.3987/COM-18-13870]
bEl-Mekabaty, A.; Awad, H.M. Convenient synthesis of novel sulfonamide derivatives as promising anticancer agents. J. Heterocycl. Chem., 2020, 57, 1123-1132.
[http://dx.doi.org/10.1002/jhet.3849]
cMonier, M.; El-Mekabaty, A.; Abdel-Latif, D.A.; Elattar, K.M. Chemistry of bicyclic 5-6 systems: Synthesis of oxazolo[3,2-a]pyridines and their salts with a ring-junction nitrogen atom. Synth. Commun., 2019, 49, 2591-2629.
[http://dx.doi.org/10.1080/00397911.2019.1643889]
dMonier, M.; El-Mekabaty, A.; Abdel-Latif, D.A.; Mert, B.D.; Elattar, K.M. Heterocyclic steroids: efficient routes for annulation of pentacyclic steroidal pyrimidines. Steroids, 2020, 154, 108548
[http://dx.doi.org/10.1016/j.steroids.2019.108548] [PMID: 31805293]
eEl-Mekabaty, A.; Mohammed, N.S.; Musbah, T.I.; Kandil, E.M. Facile and efficient routes to new pyrazolyl-imidazolone analogues with promising antioxidant activity. RJPBCS, 2020, 11, 70-78.
fEl-Mekabaty, A.; Habib, O.M.O.; Moawad, E.B.; Abo-Ouf, R.M. Efficient syntheses of some new thiophene-based heterocycles. J. Heterocycl. Chem., 2017, 54, 561-569.
[http://dx.doi.org/10.1002/jhet.2622]
gEl-Mekabaty, A.; Mesbah, A.; Fadda, A.A. An efficient and facile synthesis of functionalized indole-3-yl pyrazole derivatives starting from 3-cyanoacetylindole. J. Heterocycl. Chem., 2017, 54, 916-922.
[http://dx.doi.org/10.1002/jhet.2654]
hEl-Mekabaty, A.; Habib, O.M.O. Synthesis and evaluation of some novel additives as antioxidants and corrosion inhibitors for petroleum fractions. Petrol. Sci., 2014, 11, 161-173.
[http://dx.doi.org/10.1007/s12182-014-0328-3]
[42]
Daneshvar, N.; Shirini, F.; Langarudi, M.S.N.; Chayjani, R.K. Taurine as a green bio-organic catalyst for the preparation of bio-active barbituric and thiobarbituric acid derivatives in water media. Bioorg. Chem., 2018, 77, 68-73.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.021] [PMID: 29334621]
[43]
Seyyedi, N.; Shirini, F.; Langarudi, M.S.N. DABCO-based ionic liquids: green and recyclable catalysts for the synthesis of barbituric and thiobarbituric acid derivatives in aqueous media. RSC Advances, 2016, 6(50), 44630-44640.
[http://dx.doi.org/10.1039/C6RA05878G]
[44]
Uttam, B.M. A solvent free green protocol for synthesis of 5-arylidine barbituric acid derivatives. Org. Chem. Ind. J., 2016, 12, 102-108.
[45]
Ziarani, G.M.; Aleali, F.; Lashgari, N.; Badiei, A. Characterization and mechanical behavior of fly ash-alumina reinforced Zn-27Al alloy matrix hybrid nanocomposite using stir-casting technique. Int. J. Bio-Inorg. Hybr. Nanomater., 2015, 4, 79-85.
[http://dx.doi.org/10.13140/RG.2.1.2385.5446]
[46]
Bahrami, A.; Rafiaei, S.M. The effects of boric acid on crystal structure, nano-/microstructure and photoluminescence characteristics of rare earth-doped Y2O3/YBO3 composite compounds. J. Nanostruct., 2015, 5, 367-373.
[http://dx.doi.org/10.1007/s40097-017-0246-1]
[47]
Dighore, N.R.; Anandgaonkar, P.L.; Gaikwad, S.T.; Rajbhoj, A.S. Solvent free green synthesis of 5-arylidine barbituric acid derivatives catalyzed by copper oxide nanoparticles. Res. J. Chem. Sci., 2014, 4(7), 93-98.
[48]
Thirupathi, G.; Venkatanarayana, M.; Dubey, P.K.; Kumari, Y.B. Facile and green syntheses of 5-arylidene-pyrimidine-2,4, 6-triones and 5-arylidene-2-thioxo-dihydro-pyrimidine-4, 6-diones using L-tyrosine as an efficient and eco-friendly catalyst in aqueous medium. Chem. Sci. Trans., 2013, 2, 441-446.
[http://dx.doi.org/10.7598/cst2013.385]
[49]
Gadekar, L.S.; Lande, M.K. A facile synthesis of 5-arylidene barbituric/thiobarbituric acid derivative scatalyzed by NaOH/fly ash. Org. Chem. Ind. J., 2012, 8, 386-390.
[50]
Li, J.; Sun, M.X. SiO2•12WO3•24H2O: a highly efficient catalyst for the synthesis of 5-arylidene barbituric acid in the presence of water. Aust. J. Chem., 2009, 62, 353-355.
[http://dx.doi.org/10.1071/CH08320]
[51]
Hu, Y.; Chen, Z.C.; Le, Z.G.; Zheng, Q.G. Organic reactions in ionic liquids: ionic liquid promoted Knoevenagel condensation of aromatic aldehydes with (2‐thio)barbituric acid. Synth. Commun., 2004, 34, 4521-4529.
[http://dx.doi.org/10.1081/SCC-200043210]
[52]
Ren, Z.; Cao, W.; Tong, W.; Jing, X. Knoevenagel condensation of aldehydes with cyclic active methylene compounds in water. Synth. Commun., 2002, 32, 1947-1952.
[http://dx.doi.org/10.1081/SCC-120004844]
[53]
Faryabi, M.; Sheikhhosseini, E. Efficient synthesis of novel benzylidene barbituric and thiobarbituric acid derivatives containing ethylene glycol spacers. J. Iranian Chem. Soc., 2015, 12(3), 427-432.
[http://dx.doi.org/10.1007/s13738-014-0499-2]
[54]
Figueiredo, J.; Serrano, J.L.; Cavalheiro, E.; Keurulainen, L.; Yli-Kauhaluoma, J.; Moreira, V.M.; Ferreira, S.; Domingues, F.C.; Silvestre, S.; Almeida, P. Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents. Eur. J. Med. Chem., 2018, 143, 829-842.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.070] [PMID: 29223098]
[55]
Rauf, A.; Shahzad, S.; Bajda, M.; Yar, M.; Ahmed, F.; Hussain, N.; Akhtar, M.N.; Khan, A.; Jończyk, J. Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: structure activity relationship and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(17), 6049-6058.
[http://dx.doi.org/10.1016/j.bmc.2015.05.038] [PMID: 26081763]
[56]
Govindaraju, S.; Tabassum, S.; Pasha, M.A. Citric-acid-catalyzed green and sustainable synthesis of novel functionalized pyrano[2,3-e]pyrimidin- and pyrano[2,3-d]pyrazol-amines in water via one-pot multicomponent approaches. ChemistrySelect, 2018, 3(13), 3832-3838.
[http://dx.doi.org/10.1002/slct.201703023]
[57]
Niknam, K.; Abolpour, P. Synthesis of spirooxindole pyrimidines catalyzed by silica-bonded N-propyltriethylenetetramine as a recyclable solid base catalyst in aqueous medium. Monatsh. Chem., 2015, 146, 683-690.
[http://dx.doi.org/10.1007/s00706-014-1343-1]
[58]
Montazeri, N. Nano Al2O3: an efficient catalyst for the multi-component synthesis of pyrano[2,3-d]pyrimidinone derivatives. Int. J. Nanodimens., 2015, 6, 283-287.
[http://dx.doi.org/10.7508/IJND.2015.03.008]
[59]
Bodaghifard, M.A.; Solimannenejad, M.; Asadbegi, S.; Dolatabadifarahni, S. Mild and green synthesis of tetrahydrobenzopyran, pyranopyrimidinone and polyhydroquinoline derivatives and DFT study on product structures. Res. Chem. Intermed., 2016, 42, 1165-1179.
[http://dx.doi.org/10.1007/s11164-015-2079-1]
[60]
Jain, S.; Paliwal, P.K.; Babu, G.N.; Bhatewara, A. DABCO promoted one-pot synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological activities. J. Saudi Chem. Soc., 2014, 18, 535-540.
[http://dx.doi.org/10.1016/j.jscs.2011.10.023]
[61]
Kefayati, H.; Valizadeh, M.; Islamnezhad, A. Green electrosynthesis of pyrano[2,3-d]pyrimidinones at room temperature. Anal. Bioanal. Electrochem., 2014, 6, 80-90.
[62]
Yadav, D.K.; Quraishi, M.A. Choline chloride. ZnCl2: green, effective and reusable ionic liquid for synthesis of 7-amino-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile derivative. J. Mater. Environ. Sci., 2014, 5, 1075-1078.
[63]
Heravi, M.M.; Ghods, A.; Bakhtiari, K.; Derikvand, F. Zn[(L)proline]2: an efficient catalyst for the synthesis of biologically active pyrano[2,3-d]pyrimidine derivatives. Synth. Commun., 2010, 40, 1927-1931.
[http://dx.doi.org/10.1080/00397910903174390]
[64]
Chavan, D.N.; Patil, D.R.; Kumbhar, D.R.; Deshmukh, M.B. Trichloroisocyanuric acid: Novel, ecofriendly and efficient catalysts for the one-pot synthesis of pyrano[2,3-d]pyrimidine dione derivatives in aqueous media. Chem. Sci. Rev. Lett., 2015, 4, 1051-1058.
[http://dx.doi.org/10.1080/713714880]
[65]
Khazaei, A.; Nik, H.A.A.; Zare, A.M. Water mediated domino Knoevenagel-Michael-cyclocondensation reaction of malononitrile, various aldehydes and barbituric acid derivatives using boric acid aqueous solution system compared with nano-titania sulfuric acid. J. Chin. Chem. Soc. (Taipei), 2015, 62, 675-679.
[http://dx.doi.org/10.1002/jccs.201500115]
[66]
Yu, J.; Wang, H. Green synthesis of pyrano[2,3‐d]pyrimidine derivatives in ionic liquids. Synth. Commun., 2005, 35, 3133-3140.
[http://dx.doi.org/10.1080/00397910500282661]
[67]
Maleki, A.; Jafari, A.A.; Yousefi, S. Green cellulose-based nanocomposite catalyst: Design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr. Polym., 2017, 175, 409-416.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.019] [PMID: 28917883]
[68]
Bahat, A.R.; Shalla, A.H.; Dongre, R.S. Synthesis of new annulated pyrano[2,3-d]pyrimidine derivatives using organo catalyst (DABCO) in aqueous media. J. Saudi Chem. Soc., 2014, 21, S305-S310.
[http://dx.doi.org/10.1016/j.jscs.2014.03.008]
[69]
Abedini, M.; Shirini, F.; Omran, J.M.A.; Seddighi, M.; Jolodar, O.G. Succinimidinium N-sulfonic acid hydrogen sulfate as an efficient ionic liquid catalyst for the synthesis of 5-arylmethylene-pyrimidine-2,4,6-trione and pyrano[2,3-d]pyrimidinone derivatives. Res. Chem. Intermed., 2016, 42, 4443-4458.
[http://dx.doi.org/10.1007/s11164-015-2289-6]
[70]
Mashhadinezhad, M.; Shirini, F.; Mamaghani, M. Nanoporous Na+-montmorillonite perchloric acid as an efficient heterogeneous catalyst for synthesis of merocy anine dyes based on isoxazolone and barbituric acid. Microporous Mesoporous Mater., 2018, 262, 269-282.
[http://dx.doi.org/10.1016/j.micromeso.2017.11.031]
[71]
Nagaraju, S.; Paplal, B.; Sathish, K.; Giri, S.; Kashinath, D. Synthesis of functionalized chromene and spirochromenes using L-proline-melamine as highly efficient and recyclable homogeneous catalyst at room temperature. Tetrahedron Lett., 2017, 58(44), 4200-4204.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.060]
[72]
Ibad, A.; Waseem, M.A.; Ibad, F.; Ansari, K.; Lone, A.M.; Watal, G.; Siddiqui, I.R. A green access to tetrahydro-1H-pyrano[2,3-d]pyrimidines: visible-light-triggered and ethylene-glycol-mediated multicomponent one-pot process. ChemistrySelect, 2017, 2(17), 4587-4592.
[http://dx.doi.org/10.1002/slct.201700229]
[73]
Hazeri, N.; Maghsoodlou, M.T.; Mousavi, M.R.; Aboonajmi, J.; Safarzaei, M. Potassium sodium tartrate as a versatile and efficient catalyst for the one-pot synthesis of pyran annulated heterocyclic compounds in aqueous media. Res. Chem. Intermed., 2015, 41(1), 169-174.
[http://dx.doi.org/10.1007/s11164-013-1179-z]
[74]
Mokhtari, T.S.; Amrollahi, M.A.; Sheikhhosseini, E.; Sheibani, H.; Nezhad, S.S. Poly(4-vinylpyridine) catalyzed synthesis and characterization of pyrano[2,3-d]pyrimidine derivatives as potent antibacterial agents. Curr. Bioact. Compd., 2018, 14(1), 54-59.
[http://dx.doi.org/10.2174/1573407213666170104153128]
[75]
Edjlali, L.; Khanamiri, R.H. Titanium dioxide nanoparticles as efficient catalyst for the synthesis of Pyran’s annulated heterocyclic systems via three-component reaction. Monatsh. Chem., 2016, 147(7), 1221-1225.
[http://dx.doi.org/10.1007/s00706-015-1624-3]
[76]
Panahi, F.; Niknam, E.; Sarikhani, S.; Haghighi, F.; Khalafi-Nezhad, A. Multicomponent synthesis of new curcumin-based pyrano[2,3-d]pyrimidine derivatives using a nano-magnetic solid acid catalyst. New J. Chem., 2017, 41(20), 12293-12302.
[http://dx.doi.org/10.1039/C7NJ02370G]
[77]
Shirini, F.; Langarudi, M.S.N.; Daneshvar, N.; Jamasbi, N.; Khanghah, M.I. Preparation and characterization of [H2-DABCO][ClO4]2 as a new member of DABCO-based ionic liquids for the synthesis of pyrimido[4,5-b]-quinoline and pyrimido[4,5-d]pyrimidine derivatives. J. Mol. Struct., 2018, 1161, 366-382.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.069]
[78]
Mobinikhaledi, A.; Mosleh, T.; Foroughifar, N. Triethylbenzylammonium Chloride (TEBAC) catalyzed solvent-free one-pot synthesis of pyrimido[4,5-d]pyrimidines. Res. Chem. Intermed., 2015, 41(5), 2985-2990.
[http://dx.doi.org/10.1007/s11164-013-1406-7]
[79]
Dabiri, M.; Nezhad, H.A.; Khavasi, H.R.; Bazgir, A. A novel and efficient synthesis of pyrimido[4,5-d]pyrimidine-2,4,7-trione and pyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8-tetrone derivatives. Tetrahedron, 2007, 63, 1770-1774.
[http://dx.doi.org/10.1016/j.tet.2006.12.043]
[80]
Mohamed, M.A.A.; Mahmoud, N.F.H.; Saghier, A.M.M.E. Ceric (IV) a facile and eco-friendly catalysis in heterocyclic synthesis (II): A one-pot synthesis of pyrimido[4,5-d]pyrimidines through Biginelli reaction. Chem. J., 2012, 2(2), 64-68.
[81]
Kidwai, M.; Singhal, K.; Kukreja, S. One-pot green synthesis for pyrimido[4,5-d]pyrimidine derivatives. Naturforsch., 2007, 62(5), 732-736.
[http://dx.doi.org/10.1515/znb-2007-0518]
[82]
Kategaonkar, A.H.; Sadaphal, S.A.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Microwave assisted synthesis of pyrimido[4,5-d]pyrimidine derivatives in dry media. Ukr. Bioorg. Acta, 2009, 1, 3-7.
[83]
Shinde, S.V.; Jadhav, W.N.; Karade, N.N. Three component solvent-free synthesis and fungicidal activity of substituted pyrimido [4,5-d]pyrimidine-2-(1H)-one. Orient. J. Chem., 2010, 26, 307-317.
[84]
Gupta, R.; Jain, A.; Joshi, R.; Jain, M. Eco-friendly solventless synthesis of 5-indolylpyrimido[4,5-d]pyrimidinones and their antimicrobial activity. Bull. Korean Chem. Soc., 2011, 32(3), 899-904.
[http://dx.doi.org/10.5012/bkcs.2011.32.3.899]
[85]
Gupta, P.; Gupta, S.; Sachar, A.; Kour, D.; Singh, J.; Sharma, R.L. One pot synthesis of spiro pyrimidinethiones/spiro pyrimidinones, quinazolinethiones/quinazolinones, and pyrimidopyrimidines. J. Heterocycl. Chem., 2010, 47, 324-333.
[http://dx.doi.org/10.1002/jhet.282]
[86]
Bhosle, M.R.; Khillare, L.D.; Mali, J.R.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V. DIPEAc promoted one-pot synthesis of dihydropyrido[2,3-d:6,5-d′]dipyrimidinetetraone and pyrimido[4,5-d]pyrimidine derivatives as potent tyrosinase inhibitors and anticancer agents: in vitro screening, molecular docking and ADMET predictions. New J. Chem., 2018, 42, 18621-18632.
[http://dx.doi.org/10.1039/C8NJ04622K]
[87]
Li, X.T.; Zhao, A.D.; Mo, L.P.; Zhang, Z.H. Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Advances, 2014, 4, 51580-51588.
[http://dx.doi.org/10.1039/C4RA08689A]
[88]
Mahmoudi, Z.; Ghasemzadeh, M.A.; Fard, H.K. Fabrication of UiO-66 nanocages confined bronsted ionic liquids as an efficient catalyst for the synthesis of dihydropyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidines. J. Mol. Struct., 2019, 1194, 1-10.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.079]
[89]
Doosti, R.; Bakherad, M.; Mirzaee, M.; Jadidi, K. Boehmite silylpropyl amine sulfamic acid as an efficient and recyclable catalyst for the synthesis of some pyrazole derivatives. Lett. Org. Chem., 2017, 14(6), 450-460.
[http://dx.doi.org/10.2174/1570178614666170505113009]
[90]
Dastkhoon, S.; Tavakoli, Z.; Khodabakhshi, S.; Baghernejad, M.; Abbasabadi, M.K. Nanocatalytic one-pot, four-component synthesis of some new triheterocyclic compounds consisting of pyrazole, pyran, and pyrimidinone rings. New J. Chem., 2015, 39, 7268-7271.
[http://dx.doi.org/10.1039/C5NJ01046B]
[91]
Bakherad, M.; Keivanloo, A.; Gholizadeh, M.; Doosti, R.; Javanmardi, M. Using magnetized water as a solvent for a green, catalyst- free, and efficient protocol for the synthesis of pyrano[2,3-c]pyrazoles and pyrano[4′,3′:5,6]py-razolo[2,3-d]pyrimidines. Res. Chem. Intermed., 2017, 43(2), 1013-1029.
[http://dx.doi.org/10.1007/s11164-016-2680-y]
[92]
Bakherad, M.; Doosti, R.; Keivanloo, A.; Gholizadeh, M.; Amin, A.H.A. New, simple, catalyst-free method for the synthesis of pyrazolopyranopyrimidines in magnetized water. Lett. Org. Chem., 2017, 14(7), 510-516.
[http://dx.doi.org/10.2174/1570178614666170511170329]
[93]
Kardooni, R.; Kiasat, A.R. A green, catalyst-free synthesis of pyrazolopyranopyrimidines in polyethylene glycol as a biodegradable medium at ambient temperature. Mol. Divers., 2019, 23(3), 639-649.
[http://dx.doi.org/10.1007/s11030-018-9898-0] [PMID: 30547372]
[94]
Heravi, M.M.; Mousavizadeh, F.; Ghobadi, N.; Tajbakhsh, M. A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, four-component reaction in water. Tetrahedron Lett., 2014, 55, 1226-1228.
[95]
Rai, P.; Sagir, H.; Kumar, A.; Yadav, V.B.; Siddiqui, I.R. Organocatalyzed synthesis of medicinally important chromeno[2,3-d]pyrimidine-triones in biodegradable reaction medium. ChemistrySelect, 2018, 3(9), 2565-2570.
[http://dx.doi.org/10.1002/slct.201702483]
[96]
Soleimani, E.; Torkaman, S.; Sepahvand, H.; Ghorbani, S. Ciprofloxacin-functionalized magnetic silica nanoparticles: as a reusable catalyst for the synthesis of 1H-chromeno[2,3-d]pyrimidine-5-carboxamides and imidazo[1,2-a]pyridines. Mol. Divers., 2019, 23(3), 739-749.
[http://dx.doi.org/10.1007/s11030-018-9907-3] [PMID: 30603937]
[97]
Ghodsi, M.Z.; Saidian, F.; Gholamzadeh, P.; Badiei, A.; Soorki, A.A. Green synthesis of pyrazol-chromeno[2,3-d]pyrimidinones using SBA-Pr-SO3H as an efficient nanocatalyst. Iran. J. Chem. Chem. Eng., 2017, 36(6), 39-48.
[98]
Soleimani, E.; Ghanbarian, M.; Saei, P.; Taran, M. Synthesis of new derivatives of pyrazol-chromeno[2,3-d]pyrimidine-ones by a one-pot three-component reaction. J. Iran. Chem. Soc., 2015, 12(12), 2227-2232.
[http://dx.doi.org/10.1007/s13738-015-0701-1]
[99]
Bakherad, M.; Moosavi-Tekyeh, Z.; Keivanloo, A.; Gholizadeh, M.; Toozandejani, Z. A catalyst-free and green method for synthesis of 9-substituted-9H-diuracilopyrans in magnetized water: experimental aspects and molecular dynamics simulation. Res. Chem. Intermed., 2018, 44(1), 373-387.
[http://dx.doi.org/10.1007/s11164-017-3109-y]
[100]
Ghorbani-Vaghei, R.; Salimi, Z.; Malaekehpoor, S.M.; Eslami, F.; Noori, S. One-pot synthesis of new derivatives of pyran using N-halosulfonamide. RSC Advances, 2014, 4, 33582-33586.
[http://dx.doi.org/10.1039/C4RA04929B]
[101]
(a) Moskvin, A.V.; Polkovnikova, I.I.; Ivin, B.A. Azoles and azines: CVII. Synthesis of 5H-Pyrano[2,3-d: 6,5-d’]dipyrimidine-2,4,6,8(1H,3H,7H,9H)-tetraones and their 2,8-dithio analogs. Russ. J. Gen. Chem., 1998, 68, 1300.
(b) Moskvin, A.V.; Reznikova, N.R.; Ivin, B.A. Condensation of hydroxypyrimidines with carbonyl compounds: I. Barbituric acids. Russ. J. Org. Chem., 2002, 38(4), 463-474.
[http://dx.doi.org/10.1023/A:1016574401192]
[102]
Polshettiwar, V.; Varma, R.S. Nano-organocatalyst: magnetically retrievable Ferrite-Anchored glutathione for microwave-assisted Paal-Knorr reaction, Aza-Michael addition, and pyrazole synthesis. Tetrahedron, 2010, 66(5), 1091-1097.
[http://dx.doi.org/10.1016/j.tet.2009.11.015]
[103]
Baruwati, B.; Polshettiwar, V.; Varma, R.S. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem., 2009, 11(7), 926.
[http://dx.doi.org/10.1039/b902184a]
[104]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst. Chem. Commun. (Camb.), 2009, 1(14), 1837-1839.
[http://dx.doi.org/10.1039/b900784a] [PMID: 19319418]
[105]
Nongthombam, G.S.; Nongkhlaw, R. Experimental and theoretical studies on SPION@glutathione catalyzed synthesis of indolyl chromene, indolo xanthene, and pyrimido[4,5-b]quinoline. Synth. Commun., 2018, 48(5), 541-552.
[http://dx.doi.org/10.1080/00397911.2017.1410893]
[106]
Divar, M.; Panahi, F.; Shariatipour, S.R.; Nezhad, A.K. Synthesis of imidazole and theophylline derivatives incorporating pyrimidine-fused heterocycles using Magnetic Nanoparticles-Supported Tungstic Acid (MNP-TA). Catalyst. J. Heterocycl. Chem., 2017, 54(1), 660-669.
[http://dx.doi.org/10.1002/jhet.2639]
[107]
Naeimi, H.; Didar, A.; Rashid, Z. Microwave-assisted synthesis of pyrido-dipyrimidines using magnetically CuFe2O4 nanoparticles as an efficient, reusable, and powerful catalyst in water. J. Iranian Chem. Soc., 2017, 14, 377-385.
[http://dx.doi.org/10.1007/s13738-016-0986-8]
[108]
Naeimi, H.; Didar, A. Facile one-pot four component synthesis of pyrido[2,3-d:6,5-d′]dipyrimidines catalyzed by CuFe2O4 magnetic nanoparticles in water. J. Mol. Struct., 2017, 1137, 626-633.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.044]
[109]
Naeimi, H.; Didar, A. Efficient sonochemical green reaction of aldehyde, thiobarbituric acid and ammonium acetate using magnetically recyclable nanocatalyst in water. Ultrason. Sonochem., 2017, 34, 889-895.
[http://dx.doi.org/10.1016/j.ultsonch.2016.07.021] [PMID: 27773317]
[110]
Naeimi, H.; Didar, A.; Rashid, Z.; Zahraie, Z. Sonochemical synthesis of pyrido[2,3-d:6,5-d’]-dipyrimidines catalyzed by [HNMP]+[HSO4]- and their antimicrobial activity studies. J. Antibiot. (Tokyo), 2017, 70(7), 845-852.
[http://dx.doi.org/10.1038/ja.2017.47] [PMID: 28442734]
[111]
Naeimi, H.; Nejadshafiee, V.; Islami, M.R. Iron (III)-doped, ionic liquid matrix-immobilized, mesoporous silica nanoparticles: Application as recyclable catalyst for synthesis of pyrimidines in water. Micropor. Mesopor. Mater., 2016, 227, 23-30.
[http://dx.doi.org/10.1016/j.micromeso.2016.02.036]
[112]
Shaabani, A.; Sepahvand, H.; Boroujeni, M.B.; Faroghi, M.T. A green one-pot three-component cascade reaction: the synthesis of 2-amino-5,8-dihydro-3H-pyrido[2,3-D]pyrimidin-4-ones in aqueous medium. Mol. Divers., 2017, 21(1), 147-153.
[http://dx.doi.org/10.1007/s11030-016-9712-9] [PMID: 28083767]
[113]
Zare, A.; Kohzadian, A.; Abshirini, Z.; Sajadikhah, S.S.; Phipps, J.; Benamara, M.; Beyzavi, M.H. Nano-2-(dimethylamino)-N-(silica-n-propyl)-N,N-dimethylethanaminium chloride as a novel basic catalyst for the efficient synthesis of pyrido[2,3-d:6,5-d’]dipyrimidines. New J. Chem., 2019, 43, 2247-2257.
[http://dx.doi.org/10.1039/C8NJ04921A]
[114]
Patil, P.T.; Warekar, P.P.; Patil, K.T.; Jamale, D.K.; Kolekar, G.B.; Anbhule, P.V. Uncatalyzed synthesis of new substituted dihydro-2H-dipyrimido[1,2-a,4,5-d]pyrimidine-2,4-(3H)-dione. Res. Chem. Intermed., 2017, 43, 4103-4114.
[http://dx.doi.org/10.1007/s11164-017-2868-9]
[115]
Brahmachari, G.; Nayek, N. Catalyst-free one-pot three-component synthesis of diversely substituted 5-aryl-2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]ch-romeno[2,3-d]pyrimidine-4,6,11(5H)-triones under ambient conditions. ACS Omega, 2017, 2(8), 5025-5035.
[http://dx.doi.org/10.1021/acsomega.7b00791] [PMID: 31457779]
[116]
Jadhav, S.J.; Patil, R.B.; Kumbhar, D.R.; Patravale, A.A.; Chandam, D.R.; Deshmukh, M.B. Sulfamic acid catalyzed atom economic, eco- friendly synthesis of novel 7-(aryl)-10-thioxo-7,9,10,11-tetrahydro-6H-pyrimido-[5′,4′:5, 6]pyrano[3,2-c]quinoline-6,8(5H)-dione and its derivatives. J. Heterocycl. Chem., 2017, 54(4), 2206-2215.
[http://dx.doi.org/10.1002/jhet.2807]
[117]
Brahmachari, G.; Nurjamal, K. Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Lett., 2019, 60(29), 1904-1908.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.028]
[118]
Kumbhar, D.; Chandam, D.; Patil, R.; Jadhav, S.; Patil, D.; Patravale, A.; Deshmukh, M. Synthesis and antimicrobial activity of novel derivatives of 7-aryl-10-thioxo-7,10,11,12-tertahydro-9H-benzo[H] pyrimido[4,5-b]quino-line-8-one. J. Heterocycl. Chem., 2018, 55(3), 692-698.
[http://dx.doi.org/10.1002/jhet.3089]
[119]
Bhaskarachar, R.K.; Revanasiddappa, V.G.; Hegde, S.; Balakrishna, J.P.; Reddy, S.Y. Design, synthesis and anticancer activity of functionalized spiro-quinolines with barbituric and thiobarbituric acids. Med. Chem. Res., 2015, 24(9), 3516-3528.
[http://dx.doi.org/10.1007/s00044-015-1408-7]
[120]
Chidurala, P.; Jetti, V.; Meshram, J.S. Facile synthesis of new 3,5-dispiro substituted piperidine analogs via microwave-assisted one pot multicomponent reaction. J. Heterocycl. Chem., 2016, 53(2), 389-392.
[http://dx.doi.org/10.1002/jhet.2424]
[121]
Bayat, M.; Hosseini, H. An efficient synthesis of novel spiroindenopyridazine-4H-pyran derivatives. New J. Chem., 2017, 41(24), 14954-14959.
[http://dx.doi.org/10.1039/C7NJ03397D]
[122]
Satasia, S.P.; Kalaria, P.N.; Avalani, J.R.; Raval, D.K. An efficient approach for the synthesis of spirooxindole derivatives catalyzed by novel sulfated choline based heteropolyanion at room temperature. Tetrahedron, 2014, 70, 5763-5767.
[http://dx.doi.org/10.1016/j.tet.2014.06.050]
[123]
Moradi, L.; Ataei, Z. Efficient and green pathway for one-pot synthesis of spirooxindoles in the presence of CuO nanoparticles. Green Chem. Lett. Rev., 2017, 10(4), 380-386.
[http://dx.doi.org/10.1080/17518253.2017.1390611]
[124]
Agarwal, S.; Kidwai, M.; Nath, M. A facile and green pathway for one- pot multicomponent synthesis of functionalized spiroxyindoles using caffeinium hydrogen sulfate as a catalyst. ChemistrySelect, 2019, 4(7), 2135-2139.
[http://dx.doi.org/10.1002/slct.201900121]
[125]
Shinde, V.V.; Reddy, M.V.; Kim, Y.H.; Cho, B.K.; Jeong, Y.T. Silica sodium carbonate: the most efficient catalyst for the one-pot synthesis of indeno[1,2-b]quinoline and spiro[chromene-4,3′-indoline]-3-carbonitriles under solvent-free condition. Monatsh. Chem., 2015, 146, 673-682.
[http://dx.doi.org/10.1007/s00706-014-1380-9]
[126]
Baghernejad, M.; Khodabakhshi, S.; Tajik, S. Isatin-based three-component synthesis of new spirooxindoles using magnetic nano-sized copper ferrite. New J. Chem., 2016, 40, 2704-2709.
[http://dx.doi.org/10.1039/C5NJ03027G]
[127]
Ganta, R.K.; Ramgopal, A.; Ramesh, C.; Babu, K.R.; Kumar, M.M.K.; Rao, B.V. Four-component, one-pot synthesis of spiropyrazolopyrimidine derivatives by using recyclable nanocopper ferrite catalyst and antibacterial studies. Synth. Commun., 2016, 46(24), 1999-2008.
[http://dx.doi.org/10.1080/00397911.2016.1244271]
[128]
Kamal, A.; Babu, K.S.; Vishnu Vardhan, M.V.; Hussaini, S.M.A.; Mahesh, R.; Shaik, S.P.; Alarifi, A. Sulfamic acid promoted one-pot three-component synthesis and cytotoxic evaluation of spirooxindoles. Bioorg. Med. Chem. Lett., 2015, 25(10), 2199-2202.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.054] [PMID: 25870131]
[129]
Teimouri, M.B.; Akbari-Moghaddam, P. Molecular iodine-catalyzed tandem synthesis of oxospirotricyclic furopyrimidines in water. J. Chem. Res., 2016, 40(4), 196-198.
[http://dx.doi.org/10.3184/174751916X14568468874639]
[130]
Kong, D-l.; Lu, G-p.; Wu, M-s.; Shi, Z-f.; Lin, Q. One-pot, catalyst-free synthesis of spiro[dihydroquinolinenaphthofuranone] compounds from isatins in water triggered by hydrogen bonding effects. ACS Sustain. Chem.& Eng., 2017, 5(4), 3465-3470.
[http://dx.doi.org/10.1021/acssuschemeng.7b00145]
[131]
Bayat, M.; Amiri, Z. Catalyst-free synthesis of tetrahydroacenaphtho[1,2-b]indolone derivatives via one-pot four-component reaction. J. Heterocycl. Chem., 2018, 55(6), 1346-1351.
[http://dx.doi.org/10.1002/jhet.3167]
[132]
Kong, D.; Wang, Q.; Zhu, Z.; Wang, X.; Shi, Z.; Lin, Q.; Wu, M. Convenient one-pot synthesis of thiobarbituro-quinoline derivatives via catalyst-free multicomponent reactions in water. Tetrahedron Lett., 2017, 58(27), 2644-2647.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.047]
[133]
Ghahremanzadeh, R.; Amanpour, T.; Sayyafi, M.; Bazgir, A. One‐pot, three‐component synthesis of spironaphthopyrano[2,3‐d]pyrimidine‐5,3′‐in-dolines in water. J. Heterocycl. Chem., 2010, 47, 421-424.
[http://dx.doi.org/10.1002/jhet.399]
[134]
Olyaei, A.; Gahramannejad, F.; Khoeiniha, R. One-pot access to new tetrahydrobenzo[a]xanthen-11-ones and naphthopyranopyrimidines using 2,3-dihydroxynaphthalene. Synth. Commun., 2016, 46, 1699-1707.
[http://dx.doi.org/10.1080/00397911.2016.1223308]
[135]
Siddiqui, Z.N. Chitosan catalyzed an efficient, one pot synthesis of pyridine derivatives. Tetrahedron Lett., 2015, 56(14), 1919-1924.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.111]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy